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Abstract�It is known that processing of data under general
type-1 fuzzy uncertainty can be reduced to the simplest case
� of interval uncertainty: namely, Zadeh's extension principle
is equivalent to level-by-level interval computations applied to
α-cuts of the corresponding fuzzy numbers.

However, type-1 fuzzy numbers may not be the most ad-
equate way of describing uncertainty, because they require
that an expert can describe his or her degree of con�dence
in a statement by an exact value. In practice, it is more
reasonable to expect that the expert estimates his or her degree
by using imprecise words from natural language � which can
be naturally formalized as fuzzy sets. The resulting type-2 fuzzy
numbers more adequately represent the expert's opinions, but
their practical use is limited by the seeming computational
complexity of their use. In his recent research, J. Mendel has
shown that for the practically important case of interval-valued
fuzzy sets, processing such sets can also be reduced to interval
computations. In this paper, we show that Mendel's idea can
be naturally extended to arbitrary type-2 fuzzy numbers.

I. WHY DATA PROCESSING AND KNOWLEDGE
PROCESSING ARE NEEDED IN THE FIRST PLACE

Some quantities y we can simply directly measure. For
example, when we want to know the current state of a patient
in a hospital, we can measure the patient's body temperature,
blood pressure, weight, and many other important character-
istics. In some situations, we do not even need to measure:
we can simply ask an expert, and the expert will provide us
with an (approximate) value ỹ of the quantity y.

However, many other quantities of interest are dif�cult or
even important to measure or estimate directly. Examples of
such quantities include the amount of oil in a given well
or a distance to a star. Since we cannot directly measure
the values of these quantities, the only way to learn some
information about them is: to measure (or ask an expert to es-
timate) some other easier-to-measured quantities x1, . . . , xn,
and then to estimate y based on the measured values x̃i of
these auxiliary quantities xi.

For example, to estimate the amount of oil in a given well,
we perform seismic experiments: we set up small explosions
at some locations and measure the resulting seismic waves at
different distances from the location of the explosion. To �nd

Vladik Kreinovich is with the Department of Computer Science, Univer-
sity of Texas at El Paso, El Paso, TX 79968 (email vladik@utep.edu). Gang
Xiang is with the Philips Healthcare Informatics (email gxiang@acm.org).

This work was supported in part by NSF grants HRD-0734825, EAR-
0225670, and EIA-0080940, by Texas Department of Transportation contract
No. 0-5453, by the Japan Advanced Institute of Science and Technology
(JAIST) International Joint Research Grant 2006-08, and by the Max Planck
Institut für Mathematik.

the distance to a faraway star, we measure the direction to
the star from different location on Earth (and/or at different
seasons) and the coordinates of (and the distances between)
the locations of the corresponding telescopes.

To estimate the value of the desired quantity y, we
must know the relation between y and the easier-to-measure
(or easier-to-estimate) quantities x1, . . . , xn. Speci�cally, we
want to use the estimates of xi to come up with an estimate
for y. Thus, the relation between y and xi must be given
in the form of an algorithm f(x1, . . . , xn) which transforms
the values of xi into an estimate for y. Once we know this
algorithm f and the measured values x̃i of the auxiliary
quantities, we can estimate y as ỹ = f(x̃1, . . . , x̃n).

-

· · ·
-

-

x̃n

x̃2

x̃1

-ỹ = f(x̃1, . . . , x̃n)f

In different practical situations, we have algorithms f of
different complexity. For example, to �nd the distance to star,
we can usually have an explicit analytical formula coming
from geometry. In this case, f is a simple formula. On the
other hand, to �nd the amount of oil, we must numerically
solve a complex partial differential equation. In this case, f
is a complex iterative algorithm of solving this equation.

In the case when the values xi are obtained by measure-
ment, this two-stage process does involve measurement. To
distinguish it from direct measurements (i.e., measurements
which directly measure the values of the desired quantity),
the above two-stage process is called an indirect measure-
ment.

When the inputs come from measurements � i.e., constitute
data � the computational part of the corresponding procedure
is called data processing. When the inputs come from experts
� i.e., constitute knowledge � the computational part of the
corresponding procedure is called knowledge processing.

II. NEED TO TAKE UNCERTAINTY INTO ACCOUNT

In the case of data processing, we start with measurement
results x̃1, . . . , x̃n. Measurements are never exact. There
is a non-zero difference ∆xi

def= x̃i − xi between the



(approximate) measurement result x̃i and the (unknown)
actual value xi of the i-th quantity xi. This difference is
called the measurement error. The result ỹ = f(x̃1, . . . , x̃n)
of applying the algorithm f to the measurement results x̃i

is, in general, different from the result y = f(x1, . . . , xn)
of applying this algorithm to the actual values xi. Thus, our
estimate ỹ is, in general, different from the actual value y of
the desired quantity: ∆y

def= ỹ − y 6= 0.
In many practical applications, it is important to know

not only the desired estimate for the quantity y, but also
how accurate this estimate is. For example, in geophysical
applications, it is not enough to known that the amount of oil
in a given oil �les is about 100 million tons. It is important
to know how accurate is this estimate. If the amount is 100
± 10, this means that the estimates are good enough, and we
should start exploring this oil �eld. On the other hand, if it is
100 ± 200, this means that it is quite possible that the actual
value of the desired quantity y is 0, i.e., that there is no oil
at all. In this case, it may be prudent to perform additional
measurements before we invest a lot of money into drilling
oil wells.

It is therefore desirable to �nd out the uncertainty ∆y
caused by the uncertainties ∆xi in the inputs:

-

. . .

-

-

∆xn

∆x2

∆x1

-∆yf

Comment. We assumed that the relation f provides the exact
relation between the variables x1, . . . , xn, and the desired
value y. In this case, in the ideal case when we plug in the
actual (unknown) values of xi into the algorithm f , we get
the exact value y = f(x1, . . . , xn) of y.

In many real-life situations, the relation f between xi and
y is only approximately known. The corresponding model
uncertainty has to be estimated separately and added to the
uncertainty caused by the measurement errors.

III. FROM PROBABILISTIC TO INTERVAL UNCERTAINTY

To estimate the uncertainty ∆y caused by the measure-
ment uncertainties ∆xi, we need to have some information
about these original uncertainties ∆xi. The whole idea of
uncertainty is that we do not know the exact value of xi

(hence, we do not know the exact value of ∆xi). In order
words, there are several possible values of ∆xi. So, the �rst
thing we would like to know is what is the set of possible
values of ∆xi.

We may also know that some of these possible values are
more frequent than the others. In other words, we may also
have some information about the probabilities of different
possible values ∆xi.

The manufacturers of a measuring device usually provide
us with an upper bound ∆i for the (absolute value of)
possible measurement errors, i.e., with the bound ∆i for
which we are guaranteed that |∆xi| ≤ ∆i.

The need for such a bound comes from the very nature of a
measurement process. Indeed, if no such bound is provided,
this means that the actual value xi can be as different from
the �measurement result� x̃i as possible. Such a value x̃i is
not a measurement, it is a wild guess.

Since the (absolute value of the) measurement error ∆xi =
x̃i−xi is bounded by the given bound ∆i, we can therefore
guarantee that the actual (unknown) value of the desired
quantity belongs to the interval

xi
def= [x̃i −∆i, x̃i + ∆i].

For example, if the measured value of a quantity is x̃i =
1.0, and the upper bound ∆i on the measurement error is 0.1,
this means that the (unknown) actual value of the measured
quantity can be anywhere between 1 − 0.1 = 0.9 and 1 +
0.1 = 1.1, i.e., that it can take any value from the interval
[0.9, 1.1].

In many practical situations, we not only know the interval
[−∆i, ∆i] of possible values of the measurement error; we
also know the probability of different values ∆xi within this
interval [13].

In most practical applications, it is assumed that the corre-
sponding measurement errors are normally distributed with 0
means and known standard deviation. Numerous engineering
techniques are known (and widely used) for processing this
uncertainty; see, e.g., [13].

In practice, we can determine the desired probabilities of
different values of ∆xi by comparing
• the result x̃i of measuring a certain quantity with this

instrument and
• the result x̃i st of measuring the same quantity by a

standard (much more accurate) measuring instrument.
Since the standard measuring instrument is much more accu-
rate than the one we use, i.e., |x̃i st−xi| ¿ |x̃i−xi|, we can
assume that x̃i st = xi, and thus, that the difference x̃i− x̃i st

between these two measurement results is practically equal
to the measurement error ∆xi = x̃i − xi.

Thus, the empirical distribution of the difference x̃i− x̃i st

is close to the desired probability distribution for measure-
ment error.

There are two cases, however, when this determination is
not done:
• First is the case of cutting-edge measurements, e.g.,

measurements in fundamental science. When a Hubble
telescope detects the light from a distant galaxy, there is
no �standard� (much more accurate) telescope �oating
nearby that we can use to calibrate the Hubble: the
Hubble telescope is the best we have.

• The second case is the case of real industrial appli-
cations (such as measurements on the shop �oor). In
this case, in principle, every sensor can be thoroughly
calibrated, but sensor calibration is so costly � usually



costing several orders of magnitude more than the
sensor itself � that manufacturers rarely do it (only if it
is absolutely necessary).

In both cases, we have no information about the probabilities
of ∆xi; the only information we have is the upper bound on
the measurement error.

In this case, after performing a measurement and getting
a measurement result x̃i, the only information that we have
about the actual value xi of the measured quantity is that it
belongs to the interval xi = [x̃i −∆i, x̃i + ∆i].

In other words, we do know not the actual value xi of the
i-th quantity. Instead, we know the interval [x̃i−∆i, x̃i+∆i]
that contains xi.

In this situation, for each i, we know the interval xi of
possible values of xi, and we need to �nd the range

y def= {f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}
of the given function f(x1, . . . , xn) over all possible tuples
x = (x1, . . . , xn) with xi ∈ xi.

Since the function f(x1, . . . , xn) is usually continuous,
this range is also an interval, i.e., y = [y, y] for some y and
y. So, to �nd this range, it is suf�cient to �nd the endpoints
y and y of this interval.

Let us formulate the corresponding interval computations
problem of interval computations in precise terms. We are
given:
• an integer n;
• n intervals x1 = [x1, x1], . . . , xn = [xn, xn], and
• an algorithm f(x1, . . . , xn) which transforms n real

numbers into a real number y = f(x1, . . . , xn).
We need to compute the endpoints y and y of the interval

y = [y, y] = {f(x1, . . . , xn) : x1 ∈ [x1, x1], . . . , [xn, xn]}.

-

. . .

-

-

xn

x2

x1

-yf

There exist many ef�cient algorithms and software pack-
ages for solving interval computation problems, and these
algorithms has led to numerous useful applications; see, e.g.,
[1], [2].

IV. KNOWLEDGE PROCESSING AND FUZZY
UNCERTAINTY

A. Need to Process Fuzzy Uncertainty
In many practical situations, we only have expert estimates

for the inputs xi. Sometimes, experts provide guaranteed
bounds on xi, and even the probabilities of different values
within these bounds. However, such cases are rare. Usually,
the experts' opinion about the uncertainty of their estimates

are described by (imprecise, �fuzzy�) words from natural
language. For example, an expert can say that the value xi

of the i-th quantity is approximately equal to 1.0, with an
accuracy most probably about 0.1. Based on such �fuzzy�
information, what can we say about y = f(x1, . . . , xn)?

The need to process such �fuzzy� information was �rst
emphasized in the early 1960s by L. Zadeh who designed a
special technique of fuzzy logic for such processing; see, e.g.,
[3], [12]. In this technique, our imprecise knowledge about
xi is described by assigning, to each possible real value xi,
the degree mi(xi) ∈ [0, 1] with which this value is a possible
value of the i-th input.

In most practical situations, the membership function starts
with 0, continuously increases until a certain value and then
continuously decreases to 0. Such membership function de-
scribe usual expert's expressions such as �small�, �medium�,
�reasonably high�, �approximately equal to a with an error
about σ�, etc. Since membership functions of this type are
actively used in expert estimates of number-valued quantities,
they are usually called fuzzy numbers.

B. Zadeh's Extension Principle

Let us recall how fuzzy techniques can be used for
processing fuzzy uncertainty.

We know an algorithm y = f(x1, . . . , xn) that relates the
value of the desired dif�cult-to-estimate quantity y with the
values of easier-to-estimate auxiliary quantities x1, . . . , xn.
We also have expert knowledge about each of the quantities
xi. For each i, this knowledge is described in terms of
the corresponding membership function mi(xi). Based on
this information, we want to �nd the membership function
m(y) which describes, for each real number y, the degree of
con�dence that this number is a possible value of the desired
quantity.

Intuitively, y is a possible value of the desired quantity
if for some values x1, . . . , xn, x1 is a possible value of
the 1st input quantity, and x2 is a possible value of the
1st input quantity, . . . , and y = f(x1 . . . , xn). We know
that the degree of con�dence that x1 is a possible value of
the 1st input quantity is equal to m1(x1), that the degree
of con�dence that x2 is a possible value of the 2nd input
quantity is equal to m2(x2), etc. The degree of con�dence
d(y, x1, . . . , xn) in an equality y = f(x1 . . . , xn) is, of
course, equal to 1 if this equality holds, and to 0 if this
equality does not hold.

The simplest way to represent �and� is to use min. Thus,
for each combination of values x1, . . . , xn, the degree of
con�dence in a composite statement �x1 is a possible value
of the 1st input quantity, and x2 is a possible value of the
1st input quantity, . . . , and y = f(x1 . . . , xn)� is equal to

min(m1(x1),m2(x2), . . . , d(y, x1, . . . , xn)).

We can simplify this expression if we consider two possible
cases: when the equality y = f(x1 . . . , xn) holds, and when
this equality does not hold.



When the equality y = f(x1 . . . , xn) holds, we get
d(y, x1, . . . , xn) = 1, and thus, the above degree of con-
�dence is simply equal to

min(m1(x1),m2(x2), . . . , d(y, x1, . . . , xn)).

When the equality y = f(x1 . . . , xn) does not hold, we
get d(y, x1, . . . , xn) = 0, and thus, the above degree of
con�dence is simply equal to 0.

We want to combine these degrees of belief into a single
degree of con�dence that �for some values x1, . . . , xn, x1

is a possible value of the 1st input quantity, and x2 is
a possible value of the 1st input quantity, . . . , and y =
f(x1 . . . , xn)�. The words �for some values x1, . . . , xn�
means that the following composite property hold either for
one combination of real numbers x1, . . . , xn, or from another
combination � until we exhaust all (in�nitely many) such
combinations. The simplest way to represent �or� is to use
max. Thus, the desired degree of con�dence m(y) is equal
to the maximum of the degrees corresponding to different
combinations x1, . . . , xn. Since we have in�nitely many
possible combinations, maximum is not necessarily attained,
so we should, in general, consider supremum instead of the
maximum:

m(y) = sup min(m1(x1),m2(x2), . . . , d(y, x1, . . . , xn)),

where the supremum is taken over all possible combinations.
Since we know that the maximized degree is non-zero

only when y = f(x1 . . . , xn), it is suf�cient to only take
supremum over such combinations. For such combinations,
we can omit the term d(y, x1, . . . , xn) in the maximized
expression, so we arrive at the following formula:

m(y) = sup{min(m1(x1),m2(x2), . . .) :

y = f(x1, . . . , xn)}.
This formula describes a reasonable way to extend an ar-
bitrary data processing algorithm f(x1, . . . , xn) from real-
valued inputs to a more general case of fuzzy inputs. It
was �rst proposed by L. Zadeh and is thus called Zadeh's
extension principle. This is the main formula that describes
knowledge processing under fuzzy uncertainty.

C. Reduction to Interval Computations
It is known that from the computational viewpoint, the

application of this formula can be reduced to interval compu-
tations � and indeed, this is how knowledge processing under
fuzzy uncertainty is usually done, by using this reduction;
see, e.g., [3], [8], [12].

Speci�cally, for each fuzzy set with a membership function
m(x) and for each α ∈ (0, 1], we can de�ne this set's α-cut
as x(α) def= {x : m(x) ≥ α}. Vice versa, if we know the
α-cuts for all α, we, for each x, can reconstruct the value
m(x) as the largest value α for which x ∈ x(α).

It is known that when the inputs mi(xi) are fuzzy num-
bers, and the function y = f(x1, . . . , xn) is continuous, then

for each α, the α-cut y(α) of y is equal to the range of
possible values of f(x1, . . . , xn) when xi ∈ xi(α) for all i:

y(α) = f(x1(α), . . . ,xn(α)).

Thus, from the computational viewpoint, the problem of
processing data under fuzzy uncertainty can be reduced to
several problems of data processing under interval uncer-
tainty � as many problems as there are α-levels.

As we have mentioned, there exist many ef�cient algo-
rithms and software packages for solving interval computa-
tions problems. So, the above reduction can help to ef�ciently
solve the problems of fuzzy data processing as well.

V. TYPE-2 FUZZY SETS

A. Need for Type-2 Fuzzy Sets
The main objective of fuzzy logic is to describe uncertain

(�fuzzy�) knowledge, when an expert cannot describe his
or her knowledge by an exact value or by a precise set of
possible values. Instead, the expert describe this knowledge
by using words from natural language. Fuzzy logic provides
a procedure for formalizing these words into a computer-
understandable form � as fuzzy sets.

In the traditional approach to fuzzy logic, the expert's
degree of certainty in a statement � such as the value mA(x)
describing that the value x satis�es the property A (e.g.,
�small�) � is described by a number from the interval [0, 1].
However, we are considering situations in which an expert is
unable to describe his or her knowledge in precise terms. It is
not very reasonable to expect that in this situation, the same
expert will be able to meaningfully express his or her degree
of certainty by a precise number. It is much more reasonable
to assume that the expert will describe these degrees also by
words from natural language.

Thus, for every x, a natural representation of the degree
m(x) is not a number, but rather a new fuzzy set. Such
situations, in which to every value x we assign a fuzzy
number m(x), are called type-2 fuzzy sets.
B. Successes of Type-2 Fuzzy Sets

Type-2 fuzzy sets are actively used in practice; see, e.g.,
[4], [5]. Since type-2 fuzzy sets provide a more adequate
representation of expert knowledge, it is not surprising that
such sets lead to a higher quality control, higher quality
clustering, etc., in comparison with the more traditional type-
1 sets.
C. The Main Obstacle to Using Type-2 Fuzzy Sets

If type-2 fuzzy sets are more adequate, why are not they
used more? The main reason why their use is limited is that
the transition from type-1 to type-1 fuzzy sets leads to an
increase in computation time. Indeed, to describe a traditional
(type-1) membership function function, it is suf�cient to de-
scribe, for each value x, a single number m(x). In contrast, to
describe a type-2 set, for each value x, we must describe the
entire membership function � which needs several parameters
to describe. Since we need more numbers just to store such
information, we need more computational time to process all
the numbers representing these sets.



D. Interval-Valued Fuzzy Sets
In line with this reasoning, the most widely used type-2

fuzzy sets are the ones which require the smallest number
of parameters to store. We are talking about interval-valued
fuzzy numbers, in which for each x, the degree of certainty
m(x) is an interval m(x) = [m(x),m(x)]. To store each
interval, we need exactly two numbers � the smallest possible
increase over the single number needed to store the type-1
value m(x).

VI. MENDEL'S 2007 ALGORITHM FOR PROCESSING
INTERVAL-VALUED FUZZY DATA

In his plenary talk [6], J. M. Mendel provided a
new groundbreaking algorithm which drastically reduced
the computational complexity of processing interval-valued
fuzzy data. Speci�cally, he showed that processing interval-
valued fuzzy data can be ef�ciently reduced to interval
computations. Since there exist many ef�cient algorithms and
software packages for solving interval computation problems,
Mendel's reduction means that we can use these packages
to also process interval-valued fuzzy data � and thus, that
processing interval-valued fuzzy data is (almost) as ef�cient
as processing the traditional (type-1) fuzzy data.

Mendel's algorithm can be explained as follows. In the
case of interval-valued fuzzy data, we do not know the exact
numerical values mi(xi) of the membership functions, we
only know the interval mi(xi) = [mi(x), mi(x)] of possible
values of mi(xi), By applying Zadeh's extension principle to
different combinations of values mi(xi) ∈ [mi(x), mi(x)],
we can get, in general, different values of

m(y) = sup{min(m1(x1),m2(x2), . . .) :

y = f(x1, . . . , xn)}.
The result of processing interval-valued fuzzy numbers can
be thus described if for each y, we describe the set of possible
values of m(y).

When the values mi(xi) continuously change, the value
m(y) also continuously change. So, for every y, the set
m(y) of all possible values of m(y) is an interval: m(y) =
[m(y), m(y)]. Thus, to describe this set, it is suf�cient, for
each y, to provide the lower endpoint m(y) and the upper
endpoint m(y) of this interval.

This computation is a particular case of the general prob-
lem of interval computations. Indeed, in general, we start
with the intervals of possible values of the input, and we
want to compute the interval of possible values of the output.
In our case, we start with the intervals of possible values of
mi(xi), and we want to �nd the set of possible values of
m(y).

It is worth mentioning that the corresponding interval com-
putation problem is easier than the general problem because
the expression described by Zadeh's extension principle is
monotonic � to be more precise, (non-strictly) increasing.
Namely, if we increase one of the values mi(xi), then the
resulting value m(y) can only increase (or stay the same).

For monotonic functions, the range of possible values is easy
to compute:
• the function attains its smallest value when all the inputs

are the smallest, and
• the function attains its largest value when all the inputs

are the largest.
In our case, for each input mi(xi), the smallest possible value
of mi(xi), and the largest possible value is mi(xi). Thus, we
conclude that:

m(y) = sup{min(m1(x1),m2(x2), . . .) :

y = f(x1, . . . , xn)};
m(y) = sup{min(m1(x1),m2(x2), . . .) :

y = f(x1, . . . , xn)}.
In other words,
• to compute the lower membership function m(y), it

is suf�cient to apply the standard Zadeh's extension
principle to the lower membership functions mi(xi),
and

• to compute the upper membership function m(y), it
is suf�cient to apply the standard Zadeh's extension
principle to the upper membership functions mi(xi).

We already know that for type-1 fuzzy sets, Zadeh's exten-
sion principle can be reduced to interval computations. Thus,
we conclude that for every level α ∈ (0, 1], we have

x(α) = f(x1(α), . . . ,xn(α))

and
x(α) = f(x1(α), . . . ,xn(α)),

where

xi
def= {xi : mi(xi) ≥ α} and xi

def= {xi : mi(xi) ≥ α}.
These are, in effect, the formulas proposed by Mendel in [5].

VII. NEW RESULT: EXTENSION OF MENDEL'S
FORMULAS TO GENERAL TYPE-2 FUZZY NUMBERS

Let us show that Mendel's idea can be extended beyond
interval-valued fuzzy numbers, to arbitrary type-2 fuzzy
numbers. Indeed, for arbitrary type-2 fuzzy numbers, for each
xi, the value mi(xi) is also a fuzzy number. The relation
between the input fuzzy numbers mi(xi) and the desired
fuzzy number m(y) can be expressed by the same Zadeh's
principle:

m(y) = sup{min(m1(x1),m2(x2), . . .) :

y = f(x1, . . . , xn)},
but this time, all the values mi(xi) and m(y) are fuzzy
numbers. How can we describe this relation between fuzzy
numbers?

Let us �rst describe the fuzzy numbers themselves. By
de�nition, a fuzzy number is a function that maps every
possible value to a degree from the interval [0, 1] describing
to what extend this value is possible. Thus, e.g., for each y,



the corresponding fuzzy number m(y) is a mapping which
maps all possible values t ∈ [0, 1] into a degree (from the
interval [0, 1]) with which t is a possible value of m(y). Let
us denote this degree by m(y, t).

Similarly, for each i and for each real number xi, the fuzzy
number mi(xi) is a mapping which maps all possible values
t ∈ [0, 1] into a degree (from the interval [0, 1]) with which
t is a possible value of mi(xi). Let us denote this degree by
mi(xi, t).

As we have already mentioned, processing fuzzy numbers
can be reduced to processing the corresponding α-cuts.
In this case, all the values mi(xi) and m(y) are fuzzy
numbers, we conclude that, for every α ∈ (0, 1], the α-cut
(m(y))(α) for the fuzzy number m(y) can be obtained by
processing the corresponding α-cuts (m(y))(α) for mi(xi).
To avoid confusion between standard α-cuts, let us denote
the corresponding threshold not as α but as β. As a result,
we conclude that

m(y)(β) = sup{min(m1(x1)(β),m2(x2)(β), . . .) :

y = f(x1, . . . , xn)}.
For fuzzy numbers, the corresponding β-cuts are inter-
vals: m(y)(β) = [m(y)(β),m(y)(β)] and mi(xi)(β) =
[mi(xi)(β), mi(xi)(β)].

From our description of Mendel's result, we already know
that in the interval case, since the expression corresponding
to Zadeh's extension principle is monotonic,
• the lower endpoints of the output can be obtained form

the lower endpoints of the inputs, and
• the upper endpoint of the output can be obtained from

the upper endpoints of the inputs,
hence, that

m(y)(β) = sup{min(m1(x1)(β),m2(x2)(β), . . .) :

y = f(x1, . . . , xn)};
m(y)(β) = sup{min(m1(x1)(β), m2(x2)(β), . . .) :

y = f(x1, . . . , xn)}.
For the corresponding functions m(y)(β), mi(xi)(β),
m(y)(β), and mi(xi)(β), we get the standard Zadeh's ex-
tension principle relation between membership functions. We
already know that this relation can be described in terms of
interval computations. Thus, we conclude that

y(α, β) = f(x1(α, β), . . . ,xn(α, β))

and
y(α, β) = f(x1(α, β), . . . ,xn(α, β)),

where

y(α, β) = {x : y(β) ≥ α} and y(α, β) = {x : y(β) ≥ α}
are the α-cuts of the corresponding membership functions
m(y)(β), and m(y)(β), and similarly,

xi(α, β) = {x : xi(β) ≥ α}

and
xi(α, β) = {x : xi(β) ≥ α}

are the α-cuts of the corresponding membership functions
mi(xi)(β), and mi(xi)(β).

Thus, from the computational viewpoint, the problem
of processing data under type-2 fuzzy uncertainty can be
reduced to several problems of data processing under interval
uncertainty � as many problems as there are (α, β)-levels.

VIII. CONCLUSION

Type-2 fuzzy sets more adequately describe expert's opin-
ion than the more traditional type-1 fuzzy sets. Because of
this, in many practical applications, the use of type-2 fuzzy
sets has led to better quality control, better quality clustering,
etc. The main reason why they are not universally used
is that when we go from type-1 sets to type-2 sets, the
computational time of data processing increases. In his 2007
paper, J. Mendel has shown that for the practically important
case of interval-valued fuzzy numbers, processing of such
such data can be reduced to processing interval data � and
is, thus, (almost) as fast as processing type-1 fuzzy data. In
this paper, we show that Mendel's idea can be extended to
arbitrary type-2 fuzzy numbers � and thus, that processing
general type-2 fuzzy numbers is also (almost) as fast as
processing type-1 fuzzy data. This result will hopefully lead
to more practical applications of type-2 fuzzy sets � which
more adequately describe expert knowledge.

REFERENCES

[1] Interval computations website http://www.cs.utep.edu/interval-comp
[2] Jaulin, L., Kieffer, M., Didrit, O, and Walter, E.: Applied Interval

Analysis, with Examples in Parameter and State Estimation, Robust
Control and Robotics, Springer-Verlag, London, 2001.

[3] Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Prentice Hall (1995)
[4] Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction

and New Directions, Prentice-Hall (2001)
[5] Mendel, J.M.: Type-2 Fuzzy Sets and Systems: an Overview, IEEE

Computational Intelligence Magazine 2, 20�29 (2007)
[6] Mendel, J.M.: Novel Weighted Averages as a Computing With Words

Engine, Plenary talk at IFSA World Congress IFSA'07, Cancun, Mex-
ico, June 18�21, 2007.

[7] Nguyen, H.T.: A note on the extension principle for fuzzy sets. J. Math.
Anal. and Appl. 64, 369�380 (1978)

[8] Nguyen, H.T., Kreinovich, V.: Nested intervals and sets: concepts,
relations to fuzzy sets, and applications. In: R.B. Kearfott, V. Kreinovich
(eds.) Applications Of Interval Computations, pp. 245�290. Kluwer
Academic Publishers Group, Norwell, MA, USA, and Dordrecht, The
Netherlands (1996)

[9] Nguyen, H.T., Kreinovich, V.: Applications Of Continuous Mathematics
To Computer Science. Kluwer Academic Publishers Group, Norwell,
MA, USA, and Dordrecht, The Netherlands (1997)

[10] Nguyen, H.T., Kreinovich, V.: Methodology of fuzzy control: an
introduction. In: H.T. Nguyen, M. Sugeno (eds.) Fuzzy Systems:
Modeling and Control, pp. 19�62. Kluwer Academic Publishers Group,
Norwell, MA, USA, and Dordrecht, The Netherlands (1998)

[11] Nguyen, H.T., Kreinovich, V., Zuo, Q.: Interval-valued degrees of
belief: applications of interval computations to expert systems and
intelligent control. International Journal of Uncertainty, Fuzziness, and
Knowledge-Based Systems (IJUFKS) 5, 317�358 (1997)

[12] Nguyen, H.T., Walker, E.A.: First Course In Fuzzy Logic. CRC Press,
2000 N.W. Corporate Blvd., Boca Raton, FL 33431-9868, USA (2006)

[13] Rabinovich, S.: Measurement Errors and Uncertainties: Theory and
Practice. American Institute of Physics, New York, NY, USA (2005)


