
Quantum Computations Techniques for Gauging Reliability of
Interval and Fuzzy Data

Luc Longpré and Christian Servin

Abstract�In traditional interval computations, we assume
that the interval data corresponds to guaranteed interval
bounds, and that fuzzy estimates provided by experts are
correct. In practice, measuring instruments are not 100%
reliable, and experts are not 100% reliable, we may have
estimates which are �way off�, intervals which do not contain
the actual values at all. Usually, we know the percentage of
such outlier un-reliable measurements. However, it is desirable
to check that the reliability of the actual data is indeed within
the given percentage. The problem of checking (gauging) this
reliability is, in general, NP-hard; in reasonable cases, there
exist feasible algorithms for solving this problem. In this paper,
we show that quantum computations techniques can drastically
speed up the computation of reliability of given data.

I. TWO MAIN SOURCES OF INFORMATION ABOUT THE
REAL WORLD

In many practical situations, we want to know the state of
the world. In science, we are simply interested in this state.
For example, we may want to know the level of water in the
river, so that we will be able to predict the possible �oods.
In engineering, we need the information about the state of
the world to decide on the best way to favorably change the
situation: e.g., how to build a dam to prevent �ooding.

To describe the state of the world, we must describe the
values of the physical quantities that characterize this state.
To get the most accurate and the most reliable estimate of
each quantity, we can measure it � directly or indirectly. In
many cases, it is too dif�cult or too expensive to measure
all the quantities; in such situations, we can ask the experts
to estimate the values of these quantities. Measurements and
expert estimates are thus the two main sources of information
about the real world.

II. MEASUREMENT UNCERTAINTY AND INTERVAL DATA

Measurements are usually more accurate than expert esti-
mates, but they are never 100% accurate. The result x̃ of a
measurement is usually somewhat different from the actual
(unknown) value x of the quantity of interest.

Usually, the manufacturer of the measuring instrument
provides us with an upper bound ∆ on the absolute value
of the measurement error ∆x

def= x̃− x: |∆x| ≤ ∆. Because
of this bound, once we know the measurement result x̃, we

Luc Longpré and Christian Servin are with the Department of Computer
Science, The University of Texas at El Paso, 500 W. University, El Paso,
TX 79968, USA (email: christians@miners.utep.edu).

This work was supported by the Alliances for Graduate Education and
the Professoriate (AGEP) grant from the National Science Foundation
(NSF). The authors are thankful to Gilles Chabert, Alexandre Goldsztejn,
Luc Jaulin, Vladik Kreinovich, and Alasdair Urquhart for their help and
encouragement.

can conclude that the actual (unknown) value x belongs to
the interval [x̃−∆, x̃ + ∆].

In some situations, we also know the probabilities of
different values ∆x ∈ [−∆,∆]. In this case, we can
use the standard statistical techniques used in science and
engineering to process the corresponding uncertainty; see,
e.g., [16]. However, in many practical situations, we do not
know these probabilities, we only know the upper bound ∆.
In these situations, the only information that we have about
x is that x belongs to the interval x def= [x̃ −∆, x̃ + ∆]. In
such situations, we need to process this interval data; see,
e.g., [6].

III. EXPERT ESTIMATES AND FUZZY DATA

When measurement is not possible, we can use experts to
estimate the values of the desired quantity. Expert estimates
are never exact, they are approximate estimates x̃ of the
desired quantity x: ∆x = x̃− x 6= 0. Of course, in contrast
to the measuring instruments for which the manufacturer
provides us with an upper bound on the measurement error,
there is no guarantee of expert's accuracy. Instead of the exact
100% bounds on |∆x|, we can provide bounds which are
valid with some degree of certainty. This degree of certainty
is usually described by a number from the interval [0, 1].

As a result, after the expert estimate, for each degree β ∈
[0, 1], we have an interval x(α) with contains the actual value
x with certainty α = 1−β. The larger certainty we want, the
broader should the corresponding interval be. So, we get a
nested family of intervals corresponding to different values α.

An alternative way to describe this nested family of
intervals is to describe, for each possible value x of the
quantity of interest, the largest possible value α for which this
value x belongs to the interval x(α). This value is usually
denoted by µ(x) and called a membership function corre-
sponding to this estimate. Once we know the membership
function, we can reconstruct the intervals x(α) as its α-cuts:
x(α) = {x : µ(x) ≥ α}; see, e.g., [7], [14].

So, to process expert estimates, we must process the
corresponding fuzzy data.

IV. RELIABILITY OF INTERVAL DATA

In interval computations, i.e., in processing interval data,
we usually assume that all the measuring instruments func-
tioned correctly, and that all the resulting intervals

[x̃−∆, x̃ + ∆]

indeed contain the actual value x.

In practice, nothing is 100% reliable. There is a certain
probability that a measurement instrument malfunctions. As a
result, when we repeatedly measure the same quantity several
times, we may have a certain number of measurement results
(and hence intervals) which are `'way off�, i.e., which do not
contain the actual value at all.

For example, when we measure the temperature, we will
usually get values which are close to the actual temperature,
but once in a while the thermometer will not catch the
temperature at all, and return a meaningless value like 0.
It may be the fault of a sensor, and/or it may be a fault of
the processor which processes data from the sensor. Such
situations are rare, but when we process a large amount of
data, it is typical to encounter some outliers.

Such outliers can ruin the results of data processing. For
example, if we compute the average temperature in a given
geographic area, then averaging the correct measurement
results would lead a good estimate, but if we add an outlier,
we can get a nonsense result. For example, based on the
measurements of temperature in El Paso in Summer resulting
in 95, 100, and 105, we can get a meaningful value

95 + 100 + 105
3

= 100.

However, if we add an outlier 0 to this set of data points,
we get a misleading estimate

95 + 100 + 105 + 0
4

= 75

creating the false impression of El Paso climate.
A natural way to characterize the reliability of the data is

to set up the bound on the probability p of such outliers. Once
we know the value p, then, out of n results of measuring the
same quantity, we can dismiss k

def= p ·n largest values and k
smallest values, and thus make sure that the outliers do not
ruin the results of data processing.

V. NEED TO GAUGE THE RELIABILITY OF INTERVAL DATA

Where does the estimate p for data reliability come from?
The main idea of gauging this value comes from the fact
that if we measure the same quantity several times, and
all measurements are correct (no outliers), then all resulting
intervals x(1), . . . ,x(n) contain the same (unknown) value x
� and thus, their intersection is non-empty.

If we have an outlier, then it is highly probably that this
outlier will be far away from the actual value x � and
thus, the intersection of the resulting n intervals (including
intervals coming from outliers) will be empty.

In general, if the percentage of outliers does not exceed p,
then we expect that out of n given intervals, at least n − k

of these intervals (where k
def= p · n) correspond to correct

measurements and thus, have a non-empty intersection.
So, to check whether our estimate p for reliability is

correct, we must be able to check whether out of n given
intervals, n− k have a non-empty intersection.

VI. NEED TO GAUGE RELIABILITY OF INTERVAL DATA:
MULTI-D CASE

In the previous text, we considered a simpli�ed situation
in which each measuring instrument measures exactly one
quantity. In practice, a measuring instrument often measure
several different quantities x1, . . . , xd. Due to uncertainty,
after the measurement, for each quantity xi, we have an
interval xi of possible values. Thus, the set of all possible
values of the tuple x = (x1, . . . , xd) is a box

X = x1×. . .×xd = {(x1, . . . , xd) : x1 ∈ x1, . . . , xd ∈ xd}.
In this multi-D case, if all the measurements are correct (no
outliers), all the corresponding boxes X(1), . . . , X(n) contain
the actual (unknown) tuple and thus, the intersection of all
these boxes is non-empty.

Thus, to check whether our estimate p for reliability is
correct, we must be able to check whether out of n given
boxes, n− k have a non-empty intersection.

VII. HOW TO GAUGE RELIABILITY OF FUZZY DATA

In the fuzzy case, several experts estimate the value of the
desired (1-D or multi-D) quantity x. Each of such estimates
means that in addition to the (wider) �guaranteed� interval
or box X(0) (about which the expert is 100% con�dent that
it contains the actual value of x) we also have narrower
intervals (boxes) X(α) which contain x with certainty 1−α.

If all experts are right, then at least all the guaranteed
boxes X(0) should contain the actual value x. Thus, in this
situation, the boxes X(0) corresponding to different experts
must have a non-empty intersection. In practice, some experts
may be wrong; as a result, the corresponding boxes may be
way off, and the intersection of all the experts' boxes may
turn out to be empty.

It is reasonable to gauge the reliability of the experts (and,
correspondingly, the reliability of the resulting fuzzy data)
by the probability p that an expert is wrong. For example,
if p = 0.1, this means that we expect 90% of the experts
to provide us with correct bounds X(0). In this case, we
expect that out of all the boxes provided by the experts, we
can select 90% of them in such a way that the intersection
of these selected boxes will be non-empty.

For boxes X(α) which are known with smaller certainty,
the experts themselves agree that these boxes may not cover
the actual value x � and thus, the intersection of all such
boxes can also turn out to be false. To describe the related
reliability, we must know, for every α, the probability p
that the corresponding box X(α) does not contain the actual
value x. For example, if for α = 0.5, we have p = 0.3, this
means that we expect 70% of the experts' boxes X(0.5) to
contain the (unknown) actual value x. In this case, we expect
that out of all the boxes X(0.5) based on expert estimates,
we can select 70% of them in such a way that the intersection
of these selected boxes will be non-empty.

To check whether the data �ts these reliability estimates,
we must therefore be able to check whether out of n given
boxes, n− k have a non-empty intersection.

VIII. RESULTING COMPUTATIONAL PROBLEM: BOX
INTERSECTION PROBLEM

Thus, both in the interval and in the fuzzy cases, we need
to solve the following computational problem:
• Given:

• integers d, n, and k; and
• n d-dimensional boxes

X(j) = [x(j)
1 , x

(j)
1]× . . .× [x(j)

n , x(j)
n],

j = 1, . . . , n, with rational bounds x
(j)
i and x

(j)
i .

• Check: whether we can select n − k of these n boxes
in such a way that the selected boxes have a non-empty
intersection.

IX. FIRST RESULT: THE BOX INTERSECTION PROBLEM IS
NP-COMPLETE

The �rst result related to this problem is that in general,
the above computational problem is NP-hard.

X. THE MEANING OF NP-COMPLETENESS: A BRIEF
EXPLANATION

Crudely speaking, NP-completeness means that it is im-
possible to have an ef�cient algorithm that solves all partic-
ular instances of the above computational problem.

The notion of NP-completeness is relayed to the fact that
some algorithms require so much computation time that even
for inputs of reasonable size, the required computation time
exceeds the lifetime of the Universe � and thus, cannot
be practically computed. For example, if for n inputs, the
algorithm requires time 2n, then for n ≈ 300 − 400, the
resulting computation time is un-realistically large. How can
we separate �realistic� (�feasible�) algorithms from non-
feasible ones?

The running time of an algorithm depends on the size of
the input. In the computer, every object is represented as
a sequence of bits (0s and 1s). Thus, for every computer-
represented object x, it is reasonable to de�ne its size (or
length) len(x) as the number of bits in this object's computer
representation.

It is known that in most feasible algorithms, the running
time on an input x is bounded either by the size of the input,
or by the square of the size of the input, or, more generally,
by a polynomial of the size of the input. It is also known
that in most non-feasible algorithms, the running time grows
exponentially (or even faster) with the size, so it cannot be
bounded by any polynomial. In view of this fact, in theory
of computation, an algorithm is usually called feasible if
its running time is bounded by a polynomial of the size of
the input. This de�nition is not perfect: e.g., if the running
time on input of size n is 1040 · n, then this running time
is bounded by a polynomial but it is clearly not feasible.
However, this de�nition is the closest to the intuitive notion
of feasible, and thus, the best we have so far.

According to this de�nition, an algorithm A is called
polynomial time if there exists a polynomial P (n) such that
on every input x, the running time of the algorithm A does

not exceed P (len(x)). The class of all the problems which
can be solved by polynomial-time algorithms is denoted by P.

What do we mean by �a problem�? In most practical
situations, to solve a problem means to �nd a solution that
satis�es some (relatively) easy-to-check constraint: e.g., to
design a bridge that can withstand a certain amount of load
and wind, to design a spaceship and its trajectory that enables
us to deliver a robotic rover to Mars, etc. In all these cases,
once we have a candidate for a solution, we can check,
in reasonable (polynomial) time whether this candidate is
indeed a solution. In other words, once we guessed a solution,
we can check its correctness in polynomial time. In theory of
computation, this procedure of guess-then-compute is called
non-deterministic computation, so the class of all problems
for which solution can be checked in polynomial time is
called Non-deterministic Polynomial, or NP, for short.

Most computer scientists believe that not all problems
from the class NP can be solved in polynomial time, i.e.,
that NP 6= P . However, no one has so far been able to prove
that this belief is indeed true. What is known is that some
problems from the class NP are the hardest in this class � in
the sense that every other problem from the class NP can be
reduced to such a problem.

Speci�cally, a general problem (not necessarily from the
class NP) is called NP-hard if every problem from the class
NP can be reduced to particular cases of this problem. If
a problem from the class NP is NP-hard, we say that it is
NP-complete.

One of the best known examples of NP-complete problems
is the problem of propositional satis�ability for 3-CNF
formulas. Let us describe this problem is some detail. We
start with v Boolean variables z1, . . . , zv , i.e., variables which
can take only values �true� or �false�. A literal ` is de�ned
as a variable zi or its negation ¬zi. A clause is de�ned
as a formula of the type `1 ∨ `2 ∨ . . . ∨ `m. Finally, a
propositional formula in CNF is de�ned as a formula F of
the type C1 & . . . &Cn, where C1, . . . , Cn are clauses. This
formula is called a 3-CNF formula if every clause has at
most 3 literals, and a 2-CNF formula if every clause has at
most 2 literals.

The propositional satis�ability problem is as follows:
• Given a propositional formula F (e.g., a formula in

CNF);
• Find the values of the variables z1, . . . , zv which make

the formula F true.
For the propositional satis�ability problem, the proof of

NP-hardness is somewhat complex. However, once this NP-
hardness is proven, we can prove the NP-hardness of other
problems by reducing satis�ability to these problems.

Indeed, by de�nition, NP-hardness of satis�ability means
that every problem from the class NP can be reduced to
satis�ability. If we can reduce satis�ability to some other
problem, this means that by combining these two reductions,
we can reduce every problem from the class NP to this new
problem � and thus, that this new problem is also NP-hard.

For a more detailed and more formal de�nition of NP-

hardness, see, e.g., [10], [15].

XI. THE BOX INTERSECTION PROBLEM IS NP-COMPLETE

In the Appendix, we present a proof that the box intersec-
tion problem is NP-complete. The main ideas of this proof
comes from [9].

XII. CASE OF FIXED DIMENSION: EFFICIENT ALGORITHM
FOR GAUGING RELIABILITY

In general, when we allow unlimited dimension d, the
box intersection problem (computational problem related to
gauging reliability) is computationally dif�cult (NP-hard).

In practice, however, the number d of quantities measured
by a sensor is small: e.g.,
• a GPS sensor measures 3 spatial coordinates;
• a weather sensor measures (at most) 5: temperature,

atmospheric pressure, and the 3 dimensions of the wind
vector, etc.

It turns out that if we limit ourselves to the case of a �xed
dimension d, then we can solve the above computational
problem in polynomial time O(nd); see, e.g., [3].

Indeed, for each of d dimensions xi (1 ≤ i ≤ d), the
corresponding n intervals have 2n endpoints x

(j)
i and x

(j)
i .

Let us show if there exists a vector x which belongs to ≥
n−k boxes X(j), then there also exists another point y with
this property in which every coordinate yi coincides with one
of the endpoints. Indeed, if for some i, the value xi is not an
endpoint, then we can take the closest endpoint as yi. One
can easily check that this change will keep the vector is all
the boxes X(j).

Thus, to check whether there exists a vector x that belongs
to at least n−k boxes X(j), it is suf�cient to check whether
there exist a vector formed by endpoints which satis�es this
property. For each vector y = (y1, . . . , yd) and for each box
X(j), it takes d = O(1) steps to check whether y ∈ X(j).
After repeating this check for all n boxes, we thus check
whether this vector y satis�es the desired property in time
n ·O(1) = O(n).

For each of d dimensions, there are 2n possible endpoints;
thus, there are (2n)d possible vectors y formed by such
endpoints. For each of these vectors, we need time O(n),
so the overall computation time for this procedure requires
time O(n)·(2n)d = O(nd+1) � i.e., indeed time which grows
polynomially with n.

XIII. REMAINING PROBLEM

In the previous section, we have shown that for a bounded
dimension d, we can solve the box intersection problem in
polynomial time. However, as we have mentioned, poly-
nomial time does not always mean that the algorithm is
practically feasible.

For example, for a meteorological sensor, the dimension d
is equal to 5, so we need n6 computational steps. For n = 10,
we get 106 steps, which is easy to perform. For n = 100, we
need 1006 = 1012 steps which is also doable � especially on
a fast computer. However, for a very reasonable amount of
n = 103 = 1000 data points, the above algorithm requires

10006 = 1018 computational steps � which already requires
a long time, and for n = 104 data points, the algorithm
requires a currently practically impossible amount of 1024

computational steps.
It is therefore desirable to speed up the computations. In

this paper, we show that we can achieve a signi�cant speed
up if we use quantum computations.

XIV. QUANTUM COMPUTATIONS: A REMINDER

Before we explain how exactly quantum computations can
speed up the computations needed to gauge reliability, let us
brie�y recall how quantum effects can be used to speed up
computations.

In this paper, we will use Grover's algorithm for quantum
search. Without using quantum effects, we need � in the
worst case � at least N computational steps to search for a
desired element in an unsorted list of size N . A quantum
computing algorithm proposed by Grover (see, e.g., [4], [5],
[13]) can �nd this element much faster � in O(

√
N) time.

Speci�cally, Grover's algorithm, given:
• a database a1, . . . , aN with N entries,
• a property P (i.e., an algorithm that checks whether P

is true), and
• an allowable error probability δ,

returns, with probability ≥ 1− δ, either the element ai that
satis�es the property P or the message that there is no such
element in the database.

This algorithm requires c ·√N steps (= calls to P), where
the factor c depends on δ (the smaller δ we want, the larger
c we must take).

For the Grover's algorithm, the entries ai do not need to
be all physically given, it is suf�cient to have a procedure
that, given i, produces ai.

Brassard et al. used the ideas behind Grover's algorithm
to produce a new quantum algorithm for quantum counting;
see, e.g., [2], [13]. Their algorithm, given:
• a database a1, . . . , aN with N entries,
• a property P (i.e., an algorithm that checks whether P

is true), and
• an allowable error probability δ,

returns an approximation t̃ to the total number t of entries
ai that satisfy the property P .

This algorithm contains a parameter M that determines
how accurate the estimates are. The accuracy of this estimate
is characterized by the inequality

∣∣t̃− t
∣∣ ≤ 2π

M
·
√

t +
π2

M2
(1)

that is true with probability ≥ 1− δ.
This algorithm requires c ·M · √N steps (= calls to P),

where the factor c depends on δ (the smaller δ we want, the
larger c we must take).

In particular, to get the exact value t, we must attain
accuracy

∣∣t̃− t
∣∣ ≤ 1, for which we need M ≈ √

N . In
this case, the algorithm requires O(

√
t ·N) steps.

XV. QUANTUM COMPUTATIONS CAN DRASTICALLY
SPEED UP GAUGING RELIABILITY

As a part of the above algorithm for checking box in-
tersections, we search among O(nd) vectors y for a vector
that belongs to at least n− k boxes X(j). For each of these
vectors y, we need to �nd to how many of n boxes X(j) the
vector y belongs; this requires time O(n).

For each vector y, we can use the quantum counting
algorithm to compute the number of boxes in time O(

√
n).

We can then use Grover's algorithm to reduce the non-
quantum search of N = O(nd) vectors to a search whose
time is equivalent to processing

√
N = O(nd/2) such

vectors. For each of these vectors, we need time O(
√

n).
Thus, if we use quantum computations, we need the total
computation time O(nd/2) ·O(

√
n) = O(n(d+1)/2).

This time is much smaller than the non-quantum compu-
tation time O(nd+1). For example, for the above meteoro-
logical example of n = 104 and d = 5, the non-quantum
algorithm requires a currently impossible amount of 1024

computational steps, while the quantum algorithm requires
only a reasonable amount of 1012 steps.
Comment. A similar square root reduction can be achieved in
the general case, but for general d, n(d+1)/2 computational
steps may still take too long.

XVI. CONCLUSION

In traditional interval computations, we assume that the
interval data corresponds to guaranteed interval bounds, and
that fuzzy estimates provided by experts are correct. In
practice, measuring instruments are not 100% reliable, and
experts are not 100% reliable, we may have estimates which
are �way off�, intervals which do not contain the actual
values at all. Usually, we know the percentage of such
outlier un-reliable measurements. It is desirable to check that
the reliability of the actual data is indeed within the given
percentage. In this paper, we have shown that:
• in general, the problem of checking (gauging) this

reliability is computationally intractable (NP-hard);
• in the reasonable case when each sensor measures a

small number of different quantities, it is possible to
solve this problem in polynomial time; and

• quantum computations can drastically reduce the re-
quired computation time.

REFERENCES

[1] G. Ausiello, P. Crescenzi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi, Complexity and Approximation: Combinatorial Optimiza-
tion Problems and Their Approximability Properties, Springer-Verlag,
Berlin-Heidelberg, 1999.

[2] G. Brassard, P. Hoyer, and A. Tapp, �Quantum counting�, In: Proc.
25th ICALP, Lecture Notes in Computer Science, Vol. 1443, Springer,
Berlin, 1998, 820�831.

[3] A. Goldsztejn, private communication, 2007.
[4] L. Grover, �A fast quantum mechanical algorithm for database search�,

Proc. 28th ACM Symp. on Theory of Computing, 1996, pp. 212�219.
[5] L. K. Grover, �Quantum mechanics helps in searching for a needle in

a haystack�, Phys. Rev. Lett., 1997, Vol. 79, No. 2, pp. 325�328.
[6] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis,

with Examples in Parameter and State Estimation, Robust Control and
Robotics, Springer-Verlag, London, 2001.

[7] G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and
Applications, Prentice Hall, Upper Saddle River, NJ, 1995.

[8] R. Kohli, R. Krishnamurthi, and P. Mirchandani, �The Minimum
Satis�ability Problem�, SIAM Journal on Discrete Mathematics, 1994,
Vol. 7, No. 2, pp. 275�283.

[9] V. Kreinovich, private communication, 2007.
[10] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational Com-

plexity and Feasibility of Data Processing and Interval Computations,
Kluwer, Dordrecht, 1997.

[11] V. Kreinovich and L. Longpré, �Fast Quantum Algorithms for Han-
dling Probabilistic and Interval Uncertainty�, Mathematical Logic Quar-
terly, 2004, Vol. 50, No. 4/5, pp. 507�518.

[12] M. Martinez, L. Longpré, V. Kreinovich, S. A. Starks, and
H. T. Nguyen, �Fast Quantum Algorithms for Handling Probabilistic,
Interval, and Fuzzy Uncertainty�, Proceedings of the 22nd International
Conference of the North American Fuzzy Information Processing Soci-
ety NAFIPS'2003, Chicago, Illinois, July 24�26, 2003, pp. 395�400.

[13] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum
information, Cambridge University Press, Cambridge, U.K., 2000.

[14] H. T. Nguyen and E. A. Walker, First Course in Fuzzy Logic, CRC
Press, Boca Raton, FL, 2006.

[15] C. H. Papadimitriou, Computational Complexity, Addison Wesley, San
Diego, 1994.

[16] S. Rabinovich, Measurement Errors: Theory and Practice, American
Institute of Physics, N.Y., 2005.

APPENDIX

As we have mentioned in the main text, in gauging
reliability, it is important to be able to solve the following
box intersection problem:
• Given: a set of n d-dimensional boxes, and a number

k < n.
• Check: is there a vector x which belongs to at least

n− k of these n boxes?
This box intersection problem obviously in NP: it is easy

to check that a given vector x belongs to each of the boxes,
and thus, to check whether it belongs to at least n−k of the
boxes. So we only need a proof of NP-hardness.

The proof is by reduction from the following auxiliary
�limited clauses� problem which has been proved to be NP-
complete:
• Given: a 2-CNF formula F and a number k,
• check: is there a Boolean vector which satis�es at most

k clauses of F .
This problem was proved to be NP-complete in [8] (see also
[1], p. 456).

As we have mentioned in the main text of this paper, to
prove the NP-hardness of our box intersection problem, it is
therefore suf�cient to be able to reduce this �limited clauses�
problem to the box intersection problem.

Indeed, suppose that we are given a 2-CNF formula F . Let
us denote the number of Boolean variables in this formula
by d, and the overall number of clauses in this formula
F by n. Based on the formula F , let us build a set of
n d-dimensional boxes, one for each clause. If clause Ci

contains Boolean variables zi1 and zi2 variables, then the i-
th box X(i) has sides [0, 1] in all dimensions except in the
dimensions associated with variables zi1 and zi2. For those
two dimensions, the side is:
• [0, 0] if the variable occurs positively in the clause (i.e.,

if the clause contains the positive literal zij), and

• [1, 1] is the variable occurs negatively in the clause (i.e.,
if the clause contains the negative literal ¬zij).

According to the construction:
• for a clause zi1 ∨ zi2, a vector x belongs to the box

X(i) = . . .×[0, 1]×[0, 0]×[0, 1]×. . .×[0, 1]×[0, 0]×[0, 1]×. . .

if and only of xi1 = 0 and xi2 = 0;
• for a clause zi1 ∨ ¬zi2, a vector x belongs to the box

X(i) if and only of xi1 = 0 and xi2 = 1;
• for a clause ¬zi1 ∨ zi2, a vector x belongs to the box

X(i) if and only of xi1 = 1 and xi2 = 0;
• for a clause ¬zi1 ∨¬zi2, a vector x belongs to the box

X(i) if and only of xi1 = 1 and xi2 = 1.
The claim is that there exists a vector x which belongs

to at least n − k of these n boxes if and only if there is
a Boolean vector z which satis�es at most k clauses of the
formula F .

Suppose that there exists a vector x which belongs to at
least n− k of these n boxes. According to our construction,
each box X(i) comes from a clause Ci that contains variables
zi1 and zi2. For each box X(i) to which the vector x belongs,
make zi1 =�false� if the box has [0, 0] on the side associated
with variable zi1. Similarly, we make zi2 =�false� if the box
has [0, 0] on the side associated with variable zi2. Because of
the way the boxes were build, the Boolean vector we build
will make the clause associated with the box corresponding
box X(i) false.

For example, if the clause is zi1 ∨ zi2, then the box will
have [0, 0] for the sides associated with both variable, so they
will be both assigned the �false� Boolean value, making the
clause false. This means that the Boolean formula built will
make at least n− k clauses become false. This formula will
satisfy at most k = n− (n− k) clauses.

In the opposite direction, if there is a Boolean vector z
which satis�es at most k clauses of the formula F , build a
vector x = (x1, . . . , xn) which has value:
• xi = 0 in dimension i if the Boolean variable zi

associated with this dimension is false, and
• xi = 1 otherwise.

One can check that for this arrangement, x ∈ X(i) if and
only if the original Boolean vector z made the corresponding
clause Ci false.

Since the Boolean vector z satis�es at most k clauses of
the formula F , it makes at least n − k clauses false. This
means that the vector x that we have built will belong to all
the boxes associated with at least n−k clauses that are false.

The reduction is proven, and so is NP-hardness.

