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Abstract—Many authors have emphasized the similarity be-
tween quantum logic and fuzzy logic. In this paper, we show
that, in spite of this similarity, these logics are not identical.
Specifically, we show that while quantum logic has a special
“square root of not” operation which is very useful in quantum
computing, fuzzy logic lacks such an operation.

I. SIMILARITY BETWEEN QUANTUM LOGIC AND Fuzzy
LogGic

Both quantum logic and fuzzy logic describe uncertainty:
o quantum logic describes uncertainties of the real world,
while
o fuzzy logic described the uncertainty of our reasoning.
Due to this common origin, there is a lot of similarity
between the two logics, similarities which have been em-
phasized in several papers on fuzzy logic.

II. WHAT WE PLAN TO DO

We plan to emphasize that, in spite of the similarity, quan-
tum logic and fuzzy logic are not mathematically identical.

Specifically, in this paper, we show the difference on the
example of one of the major features of quantum logic, a
features that underlies most successful quantum computing
algorithms: that in quantum logic, there is a “square root of
not” operation.

III. WHAT IS A SQUARE ROOT OF NOT?

In precise terms, the fact that an operation s(z) is a square
root of “not” means that if we apply this operation twice to
a truth value a, we get —a (“not a”):

s(s(a)) = —a
for all a.

IV. NEGATION (“NOT”) IN CLASSICAL (2-VALUED)
LoGIC

In the traditional (2-valued) logic, we have two possible
truth values — “true” and “false”. In the computer, “true” is
usually represented as 1, and “false” as O.

In these terms, the negation operation has a very simple
form: =(0) =1 and —(1) = 0.
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V. THERE IS NO SQUARE ROOT OF NOT IN CLASSICAL
Logic

In classical logic, a unary operation s(a) can be described
by listing its values s(0) and s(1). There are two possible
values of s(0) and two possible values of s(1), so overall,
we have 2 X 2 = 4 possible unary operations:

o when s(0) = s(1) = 0, then we get a constant function
whose value is “false”’;

o when s(0) = s(1) = 1, then we get a constant function
whose value is “true”;

e when s(0) = 0 and s(1) = 1, we get the identity
function;

o finally, when s(0) =
negation.

1 and s(1) = 0, we get the

In all four cases, the composition s(s(a)) is different from
the negation:

o for the “constant false” function s, we have s(s(a)) =
s(a), i.e., the composition of s and s is also a constant
false function;

o for the “constant true” function s, also s(s(a)) = s(a),
i.e., the composition of s and s is also a constant true
function;;

o for the identity function s, we have s(s(a)) = s(a), i.e.,
the composition of s and s is also the identity function;

« finally, for the negation s, the composition of s and s
is the identity function.

VI. QUANTUM MECHANICS

Since early 20th century, physicists have found out that
our physical world is better described not by the classical
Newtonian physics, but by the laws of quantum mechanics.
The smaller the particles, the larger the deviation between
the classical and quantum descriptions. So, for macro-size
bodies, Newtonian mechanics provides a very accurate de-
scription. However, for molecules and atoms, it is important
to take into account quantum effects.

One of the main features of quantum mechanics is the
possibility of superpositions. Namely, each classical state s
is also a quantum state — denoted by |s). However, in addition
to this, for every n states s1, ..., S,, and for every n complex
numbers cq, ..., ¢, for which

e+ e =1,
the following state is also possible:

e |si)+ .ot en s |sn).



If, in this state, we try to measure whether we are in the state
s1, or in the state so, etc., then:

o we will get the state s; with the probability |c |?;

o ...

o we will get the state s,, with the probability |c,|2.
The above requirement |c1|? +. ..+ |c,|? = 1 simply comes
from the fact that the probabilities should add up to 1.

It is worth mentioning that if we multiply all the values
¢; by the same constant e (with real o) whose absolute
value if 1, we get the same probabilities of all the states.
In quantum mechanics, mathematically different states s and
el are therefore considered to be corresponding to the same
physical state.

VII. QUANTUM LOGIC
Quantum Logic is an application of the general idea of
quantum mechanics to logic. In the classical logic, there are
two possible states: 0 and 1. In quantum logic, in addition to
these states |0) and |1), we can have arbitrary superpositions

Co |0> +cqp - |1>

for complex values cg and ¢; for which |cg|? + |e1|? = 1.
These superpositions are the “truth values” of quantum
logic.

VIII. NEGATION IN QUANTUM LOGIC

For “pure” (classical) states |0) and |1), negation can be
defined in a standard way:

=(10)) = [1)
and

=(11)) = |0).

In general, in quantum mechanics, all operations are linear
in terms of superpositions. By using this linearity, we can
describe the negation of an arbitrary quantum state:

—‘(CO . |0> +Cl . |1>) =Co ‘1> +Cl . |0>
IX. SQUARE ROOT OF NOT

Let us show that in quantum mechanics, there exists an
operation s whose square is, in some reasonable sense, equal
to negation. Due to linearity, it is sufficient to define this
operation for the basic states |0) and |1). We can define it
as follows:

1 1
5(]0)) = NoR |0) — NoA 11);

1 1
s(|1)) = N |0) + N |0).

Let us show that the composition of this operation with itself
indeed leads to negation, i.e., that s(s(a)) = —(a) for all a.
Due to linearity, it is sufficient to prove this fact for the
basic states |0) and |1).
For |1), we get
).

1

s(s(11) = (5 0)+

Sl

Due to linearity, this means that
1 1
s(s(|1)) = — - s(|0)) + — - s(|1)).
(s(I1)) ﬂ(H) ﬂ(|>)

Substituting the above expressions for s(|0)) and s(|1)) into
this formula, we conclude that

s(s(|1))) =
1 1 1 1 1 1
mmm-mm)(Ees

Thus, we conclude that

s(s(|1))) =
1 1 1 1
~oy =<1 z. ) =
(G:0-3-m)+(5-0+5-m) =10
. So, for the “true” state a = |1), the value s(s(a)) is indeed

equal to its negation “false”.
For |0), we get

1 1
s(s(10) =5 (5100 = =11}
Due to linearity, this means that
1 1
s(s(|0)) = N 5(10)) — Noh s(I1)).

Substituting the above expressions for s(|0)) and s(|1)) into
this formula, we conclude that

s(s(10))) =
1 1 1 1
m(mm-mm)-g

Thus, we conclude that

s(s(10))) =
1 1 1 1
===z 0+ =1y ) =11
(3:0-3-m) - (5-0+5-m) =
. This is literally the same state as the negation |1) of
the original “false” state s = |0), but, since states s and
—s represent the same physical state, from the physical
viewpoint, this is exactly negation.

X. SQUARE ROOT OF NOT IS AN IMPORTANT PART OF
QUANTUM ALGORITHMS

Square root of not is an important part of quantum
algorithms.

For example, without using quantum effects, we need — in
the worst case — at least N computational steps to search for
a desired element in an unsorted list of size N. A quantum
computing algorithm proposed by Grover (see, e.g., [1], [2],
[6]) can find this element much faster — in O(v/N) time.

An even more impressive speedup is achieved in factoring
large integers — an important operation in trying to decode
the existing RSA code. The traditional algorithms require
time which grows exponentially with the length of the
integer, while quantum algorithms enables us to perform this
factorization in time which only grows polynomially with
this size — and which is, thus, quite practically feasible [6],

[7].



XI. Fuzzy LoGIC

Let us now consider fuzzy logic; see, e.g., [4], [5]. In
quantum logic, in addition to the classical values O and 1,
we also allow intermediate truth values, i.e., arbitrary real
numbers from the interval [0, 1].

XII. NEGATION IN Fuzzy LoGIC

Usually, in fuzzy logic, negation is defined as
=(a)=1-a.

In principle, there exist other negation operations, but it is
known (see, e.g., [4], [S]) that they can be reduced to this
standard negation by an appropriate re-scaling of the interval
[0,1].

XIII. THERE Is NO CONTINUOUS SQUARE ROOT OF NOT
IN Fuzzy LOGIC: A STATEMENT

In fuzzy logic, usually, we only consider logical operations
which are continuous functions of their inputs. This makes
sense because the degree of uncertainty are only approxi-
mately know, and for operations to be meaningful, we need
to require that similar values of the input degrees lead to
similar values of the result of the logical operation.

Let us prove that, in contrast to quantum logic, in fuzzy
logic, if we restrict ourselves to continuous operations

s :[0,1] —[0,1],
there is no square root of negation.

XIV. PROOF

We will prove the above statement by contradiction. Let
us assume that there exists a continuous function

s:[0,1] — [0,1]

for which s(s(a)) =1 — a for all a.

If a # b, then s(a) # s(b): indeed, otherwise, if we
had s(a) = s(b), then we would have s(s(a)) = s(s(b)),
hence a = b, and we assumed that a # b. So, s is a 1-
1 function. It is known that every 1-1 function should be
strictly monotonic. Thus, the function s(a) is either strictly
increasing or strictly decreasing.

In the first case, if the function s(a) is strictly increas-
ing, then we have a < b imply s(a) < s(b) and thus,
s(s(a) < s(s(b)). Thus, the composition s(s(a)) is also
strictly increasing — and thus cannot be equal to the strictly
decreasing function —(a) =1 — a.

In the second case, if the function s(a) is strictly de-
creasing, then we have a < b imply s(a) > s(b) and
thus, s(s(a) < s(s(b)). Thus, the composition s(s(a)) is
strictly increasing — and thus cannot be equal to the strictly
decreasing function —(a) =1 — a.

In both cases, we get a contradiction. This contradiction
shows that in fuzzy logic, there is no (continuous) square
root of not.

XV. COMMENT: DISCONTINUOUS SQUARE ROOTS OF
“NOT” ARE POSSIBLE IN FuzzY LOGIC

Let us show that if we do not require continuity, then
a square root of not is possible in fuzzy logic. Indeed, in
this case, we can consider the following piece-wise linear
function s(z):

o when0§x<1,weset
s(x) =z 4+ —;

1 1
o when1§x<§,weset

5
s(x) = i x;
e when x = —, we set
1
S(J“) - 57
1 3
o When§<x§1,weset
3
s(z) = 1%

3
« finally, when 1 <z <1, we set

s(x) =x— %

By considering all 5 cases, we can check that s(s(z)) = z
for all = € [0, 1]. Indeed:

1 1
e When 0 <z < T then for s(z) =z + -, we get

4
1 1
o 5 .
Thus, in this case, s(s(z)) = i s(x). Since
1
s(z) =z + T

s(s(a) = § =) = § = (o4 1) =

5 1
Wh 1<<1thf()5 t
. n - —, then for =-—
en o <@ < o, then for s(z) = o —z, we ge
3
Z<5(:17)<1
Thus, in this case, s(s(z)) = s(z) — =. Since
5
s(z)zzfx,



5 1
1 1
. Whenxzi, then s(z)ziand thus
1 1
—s(z)===1-
s(s(x)) é<2) 5 x
3
e When - < Sz,thenfors(x)zf—x,weget
0< ()<1
s(z) < =.
- 4

3
« Finally, when 1 < x < 1, then for s(x)

get

3
4

1
3 < s(z) <

> w

—|—1 1
——z+-=1-ux.
4

1
=xr— -, We

4

Thus, in this case, s(s(z)) = Z — s(x). Since
s(z) =z — %,
we get
s(s(a) = § ~stw) = § = (- 1) =
Z —x+ % =1—-uz.

So, this discontinuous function is indeed a square root of
negation.
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