
Square Root of �Not�: A Major Difference Between
Fuzzy and Quantum Logics

Vladik Kreinovich
Department of Computer Science

University of Texas at El Paso
El Paso, TX 79968

email vladik@utep.edu

Ladislav J. Kohout
Department of Computer Science

Florida State University
Tallahassee, Florida 32306
email kohout@cs.fsu.edu

Eunjin Kim
Department of Computer Science

University of North Dakota
Grand Forks, North Dakota 58202-9015

email ejkim@aero.und.edu

Abstract�Many authors have emphasized the similarity be-
tween quantum logic and fuzzy logic. In this paper, we show
that, in spite of this similarity, these logics are not identical.
Speci�cally, we show that while quantum logic has a special
�square root of not� operation which is very useful in quantum
computing, fuzzy logic lacks such an operation.

I. SIMILARITY BETWEEN QUANTUM LOGIC AND FUZZY
LOGIC

Both quantum logic and fuzzy logic describe uncertainty:
• quantum logic describes uncertainties of the real world

(to be more precise, the uncertainty of our best theory of
the world), while

• fuzzy logic described the uncertainty of our reasoning.
Due to this common origin, there is a lot of similarity between
the two logics, similarities which have been emphasized in
several papers on fuzzy logic; see, e.g., [6] and references
therein.

II. WHAT WE PLAN TO DO

We plan to emphasize that, in spite of the similarity, quan-
tum logic and fuzzy logic are not mathematically identical.

Speci�cally, in this paper, we show the difference on the
example of one of the major features of quantum logic, a
features that underlies most successful quantum computing
algorithms: that in quantum logic, there is a �square root of
not� operation.

III. WHAT IS A SQUARE ROOT OF NOT?
In precise terms, the fact that an operation s(x) is a square

root of �not� means that if we apply this operation twice to a
truth value a, we get ¬a (�not a�):

s(s(a)) = ¬a

for all a.

IV. NEGATION (�NOT�) IN CLASSICAL (2-VALUED)
LOGIC

In the traditional (2-valued) logic, we have two possible
truth values � �true� and �false�. In the computer, �true� is
usually represented as 1, and �false� as 0.

In these terms, the negation operation has a very simple
form: ¬(0) = 1 and ¬(1) = 0.

V. THERE IS NO SQUARE ROOT OF NOT IN CLASSICAL
LOGIC

In classical logic, a unary operation s(a) can be described
by listing its values s(0) and s(1). There are two possible
values of s(0) and two possible values of s(1), so overall, we
have 2× 2 = 4 possible unary operations:
• when s(0) = s(1) = 0, then we get a constant function

whose value is �false�;
• when s(0) = s(1) = 1, then we get a constant function

whose value is �true�;
• when s(0) = 0 and s(1) = 1, we get the identity function;
• �nally, when s(0) = 1 and s(1) = 0, we get the negation.

In all four cases, the composition s(s(a)) is different from the
negation:
• for the �constant false� function s, we have s(s(a)) =

s(a), i.e., the composition of s and s is also a constant
false function;

• for the �constant true� function s, also s(s(a)) = s(a),
i.e., the composition of s and s is also a constant true
function;;

• for the identity function s, we have s(s(a)) = s(a), i.e.,
the composition of s and s is also the identity function;

• �nally, for the negation s, the composition of s and s is
the identity function.

VI. QUANTUM MECHANICS

Since early 20th century, physicists have found out that
our physical world is better described not by the classical
Newtonian physics, but by the laws of quantum mechanics.
The smaller the particles, the larger the deviation between the
classical and quantum descriptions. So, for macro-size bodies,
Newtonian mechanics provides a very accurate description.
However, for molecules and atoms, it is important to take into
account quantum effects.

One of the main features of quantum mechanics is the
possibility of superpositions. Namely, each classical state s
is also a quantum state � denoted by |s〉. However, in addition
to this, for every n states s1, . . . , sn, and for every n complex
numbers c1, . . . , cn for which

|c1|2 + . . . + |cn|2 = 1,

the following state is also possible:

c1 · |s1〉+ . . . + cn · |sn〉.
If, in this state, we try to measure whether we are in the state
s1, or in the state s2, etc., then:
• we will get the state s1 with the probability |c1|2;
• . . .
• we will get the state sn with the probability |cn|2.

The above requirement |c1|2 + . . . + |cn|2 = 1 simply comes
from the fact that the probabilities should add up to 1.

It is worth mentioning that if we multiply all the values
ci by the same constant ei·α (with real α) whose absolute
value is 1, we get the same probabilities of all the states.
In quantum mechanics, mathematically different states s and
ei·α are therefore considered to be corresponding to the same
physical state.

VII. QUANTUM LOGIC

Quantum Logic is an application of the general idea of
quantum mechanics to logic. In the classical logic, there are
two possible states: 0 and 1. In quantum logic, in addition to
these states |0〉 and |1〉, we can have arbitrary superpositions

c0 · |0〉+ c1 · |1〉
for complex values c0 and c1 for which |c0|2 + |c1|2 = 1.

These superpositions are the �truth values� of quantum
logic.

VIII. NEGATION IN QUANTUM LOGIC

For �pure� (classical) states |0〉 and |1〉, negation can be
de�ned in a standard way:

¬(|0〉) = |1〉
and

¬(|1〉) = |0〉.
In general, in quantum mechanics, all operations are linear
in terms of superpositions. By using this linearity, we can
describe the negation of an arbitrary quantum state:

¬(c0 · |0〉+ c1 · |1〉) = c0 · |1〉+ c1 · |0〉.
IX. SQUARE ROOT OF NOT

Let us show that in quantum mechanics, there exists an
operation s whose square is, in some reasonable sense, equal
to negation. Due to linearity, it is suf�cient to de�ne this
operation for the basic states |0〉 and |1〉. We can de�ne it
as follows:

s(|0〉) =
1√
2
· |0〉 − 1√

2
· |1〉;

s(|1〉) =
1√
2
· |0〉+

1√
2
· |1〉.

Let us show that the composition of this operation with itself
indeed leads to negation, i.e., that s(s(a)) = ¬(a) for all a.

Due to linearity, it is suf�cient to prove this fact for the
basic states |0〉 and |1〉.

For |1〉, we get

s(s(|1〉) = s

(
1√
2
· |0〉+

1√
2
· |1〉

)
.

Due to linearity, this means that

s(s(|1〉) =
1√
2
· s(|0〉) +

1√
2
· s(|1〉).

Substituting the above expressions for s(|0〉) and s(|1〉) into
this formula, we conclude that

s(s(|1〉)) =

1√
2
·
(

1√
2
· |0〉 − 1√

2
· |1〉

)
+

1√
2
·
(

1√
2
· |0〉+

1√
2
· |1〉

)
.

Thus, we conclude that

s(s(|1〉)) =

(
1
2
· |0〉 − 1

2
· |1〉

)
+

(
1
2
· |0〉+

1
2
· |1〉

)
= |0〉.

So, for the �true� state a = |1〉, the value s(s(a)) is indeed
equal to its negation �false�.

For |0〉, we get

s(s(|0〉) = s

(
1√
2
· |0〉 − 1√

2
· |1〉

)
.

Due to linearity, this means that

s(s(|0〉) =
1√
2
· s(|0〉)− 1√

2
· s(|1〉).

Substituting the above expressions for s(|0〉) and s(|1〉) into
this formula, we conclude that

s(s(|0〉)) =

1√
2
·
(

1√
2
· |0〉 − 1√

2
· |1〉

)
− 1√

2
·
(

1√
2
· |0〉+

1√
2
· |1〉

)
.

Thus, we conclude that

s(s(|0〉)) =

(
1
2
· |0〉 − 1

2
· |1〉

)
−

(
1
2
· |0〉+

1
2
· |1〉

)
= −|1〉.

This is literally the same state as the negation |1〉 of the
original �false� state s = |0〉, but, since states s and −s
represent the same physical state, from the physical viewpoint,
this is exactly negation.

X. SQUARE ROOT OF NOT IS AN IMPORTANT PART OF
QUANTUM ALGORITHMS

Square root of not is an important part of quantum algo-
rithms.

For example, without using quantum effects, we need � in
the worst case � at least N computational steps to search for
a desired element in an unsorted list of size N . A quantum
computing algorithm proposed by Grover (see, e.g., [2], [3],
[8]) can �nd this element much faster � in O(

√
N) time.

An even more impressive speedup is achieved in factor-
ing large integers. This problem is extremely important for
computer security. Most security features of online com-
munications and e-commerce use RSA encryption algorithm
originally invented by R. Rivest, A. Shamir, and L. Adle-
man; see, e.g., [1]. At present, this algorithm provides safe
communication because to decrypt RSA-encrypted messages,
one needs to factor large integers, and all known factoring
algorithms require an unrealistically large computation time:
namely, time which grows exponentially with the length of
the integer. On the other hand, there exist quantum algorithms
which enable us to perform this factorization in time which
only grows polynomially with this size � and which is, thus,
quite practically feasible [8], [9]. Thus, quantum computers
will leads to breaking most exiting encryption codes.

XI. FUZZY LOGIC

Let us now consider fuzzy logic; see, e.g., [5], [7]. In fuzzy
logic, in addition to the classical values 0 and 1, we also allow
intermediate truth values, i.e., arbitrary real numbers from the
interval [0, 1].

XII. NEGATION IN FUZZY LOGIC

Usually, in fuzzy logic, negation is de�ned as

¬(a) = 1− a.

In principle, there exist other negation operations, but it is
known (see, e.g., [5], [7]) that they can be reduced to this
standard negation by an appropriate re-scaling of the interval
[0, 1].

XIII. THERE IS NO CONTINUOUS SQUARE ROOT OF NOT
IN FUZZY LOGIC: A STATEMENT

In fuzzy logic, usually, we only consider logical operations
which are continuous functions of their inputs. This makes
sense because the degree of uncertainty are only approximately
know, and for operations to be meaningful, we need to require
that similar values of the input degrees lead to similar values
of the result of the logical operation.

Let us prove that, in contrast to quantum logic, in fuzzy
logic, if we restrict ourselves to continuous operations

s : [0, 1] → [0, 1],

there is no square root of negation.

XIV. PROOF

We will prove the above statement by contradiction. Let us
assume that there exists a continuous function

s : [0, 1] → [0, 1]

for which s(s(a)) = 1− a for all a.
If a 6= b, then s(a) 6= s(b): indeed, otherwise, if we had

s(a) = s(b), then we would have s(s(a)) = s(s(b)), hence
a = b, and we assumed that a 6= b. So, s is a 1-1 function. It
is known that every 1-1 function should be strictly monotonic.
Thus, the function s(a) is either strictly increasing or strictly
decreasing.

In the �rst case, if the function s(a) is strictly increas-
ing, then we have a < b imply s(a) < s(b) and thus,
s(s(a) < s(s(b)). Thus, the composition s(s(a)) is also
strictly increasing � and thus cannot be equal to the strictly
decreasing function ¬(a) = 1− a.

In the second case, if the function s(a) is strictly decreasing,
then we have a < b imply s(a) > s(b) and thus, s(s(a) <
s(s(b)). Thus, the composition s(s(a)) is strictly increasing
� and thus cannot be equal to the strictly decreasing function
¬(a) = 1− a.

In both cases, we get a contradiction. This contradiction
shows that in fuzzy logic, there is no (continuous) square root
of not.

XV. COMMENT: DISCONTINUOUS SQUARE ROOTS OF
�NOT� ARE POSSIBLE IN FUZZY LOGIC

Let us show that if we do not require continuity, then a
square root of not is possible in fuzzy logic. Indeed, in this
case, we can consider the following piece-wise linear function
s(x):
• when 0 ≤ x <

1
4

, we set

s(x) = x +
1
4
;

• when 1
4
≤ x <

1
2

, we set

s(x) =
5
4
− x;

• when x =
1
2

, we set

s(x) =
1
2
;

• when 1
2 < x ≤ 3

4
, we set

s(x) =
3
4
− x;

• �nally, when 3
4

< x ≤ 1, we set

s(x) = x− 1
4
.

By considering all 5 cases, we can check that s(s(x)) = 1−x
for all x ∈ [0, 1]. Indeed:

• When 0 ≤ x <
1
4

, then for s(x) = x +
1
4

, we get

1
4
≤ s(x) <

1
2
.

Thus, in this case, s(s(x)) =
5
4
− s(x). Since

s(x) = x +
1
4
,

we get

s(s(x)) =
5
4
− s(x) =

5
4
−

(
x +

1
4

)
=

5
4
− x− 1

4
= 1− x.

• When 1
4
≤ x <

1
2

, then for s(x) =
5
4
− x, we get

3
4

< s(x) ≤ 1.

Thus, in this case, s(s(x)) = s(x)− 1
4

. Since

s(x) =
5
4
− x,

we get

s(s(x)) = s(x)− 1
4

=
(

5
4
− x

)
− 1

4
=

5
4
− x− 1

4
= 1− x.

• When x =
1
2

, then s(x) =
1
2

and thus,

s(s(x)) = s

(
1
2

)
=

1
2

= 1− x.

• When 1
2

< x ≤ 3
4

, then for s(x) =
3
4
− x, we get

0 ≤ s(x) <
1
4
.

Thus, in this case, s(s(x)) = s(x) +
1
4

. Since

s(x) =
3
4
− x,

we get

s(s(x)) = s(x) +
1
4

=
(

3
4
− x

)
+

1
4

=

3
4
− x +

1
4

= 1− x.

• Finally, when 3
4

< x ≤ 1, then for s(x) = x− 1
4

, we get

1
2

< s(x) ≤ 3
4
.

Thus, in this case, s(s(x)) =
3
4
− s(x). Since

s(x) = x− 1
4
,

we get

s(s(x)) =
3
4
− s(x) =

3
4
−

(
x− 1

4

)
=

3
4
− x +

1
4

= 1− x.

So, this discontinuous function is indeed a square root of
negation.

XVI. CONCLUSIONS AND FUTURE WORK

What do the results of the paper mean for both logics?
Our main result means that in spite of the seeming similarity

between the two logics, they are different. Moreover, these
logics are different in an important feature (square root of
�not�) which is crucial for the most impressive applications
of quantum logic � to the drastic computation speed-up.

This difference is not unexpected. After all, fuzzy logic is
a human way of reasoning about the real-world phenomena.
Most real-world phenomena are well described by classical
physics, so it is not surprising that our way of reasoning about
these phenomena is well-suited for classical physics, but not
for the quantum physics.

Our auxiliary result means that if we add some non-classical
(quantum) features into fuzzy logic, then we can emulate
very intuitively unusual quantum features such as the square
root of �not�. Speci�cally, we show that in order to be able
to represent a square root of �not� in fuzzy logic, it is
suf�cient to add discontinuity to this logic. Discontinuity is
one of the original phenomena which characterized quantum
phenomena � where, e.g., an atom in an excited state, instead
of continuously decreasing its energy, decreases it abruptly, by
emitting a quantum of energy � a photon.

It is worth mentioning that discontinuity seems to be op-
posite to the main idea behind fuzzy logic: that everything is
a matter of degree, and that every seemingly discontinuous
transition is actually continuous.

This auxiliary result raises the possibility that by combining
such empirically clear quantum phenomena as discontinuity
with the main intuitively clear ideas behind fuzzy logic, we
can get a better explanation of very technical (and somewhat
counter-intuitive) quantum phenomena such as the square root
of �not�.

ACKNOWLEDGMENTS

This work was supported in part by NSF grants HRD-
0734825, EAR-0225670, and EIA-0080940, by Texas Depart-
ment of Transportation contract No. 0-5453, by the Japan
Advanced Institute of Science and Technology (JAIST) Inter-
national Joint Research Grant 2006-08, and by the Max Planck
Institut für Mathematik.

The authors are thankful to the anonymous referees for
valuable suggestions.

REFERENCES

[1] Th. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, MIT Press, Cambridge, MA, 2001.

[2] L. Grover, A fast quantum mechanical algorithm for database search,
Proc. 28th ACM Symp. on Theory of Computing, 1996, 212�219.

[3] L. K. Grover, Quantum mechanics helps in searching for a needle in a
haystack, Phys. Rev. Lett., 79(2):325�328, 1997.

[4] L. Grover, A framework for fast quantum mechanical algorithms, Phys.
Rev. Lett. 80:4329�4332, 1998.

[5] G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applica-
tions, Prentice Hall, Upper Saddle River, NJ, 1995.

[6] B. Kosko, Fuzzy Thinking: The New Science of Fuzzy Logic, Hyperion,
New York, 1993.

[7] H. T. Nguyen and E. A. Walker, First Course in Fuzzy Logic, CRC Press,
Boca Raton, FL, 2006.

[8] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum
information, Cambridge University Press, Cambridge, U.K., 2000.

[9] P. Shor, �Algorithms for quantum computation: Discrete logarithms
and factoring�, Proceedings of the 35th Annual IEEE Symposium on
Foundations of Computer Science, 1994, pp. 124�134.

