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Abstract�In this paper, we consider two seemingly unre-
lated problems: the hydrology problem of relation between
groundwater and surface water, and a problem of identi�cation
of human gait in neuro-rehabilitation. It turns out that in
both problems, we can ef�ciently use soft computing-motivated
algorithms originally developed for image referencing.

I. FIRST PRACTICAL PROBLEM: RELATION BETWEEN
GROUNDWATER AND SURFACE WATER

Most of our water consumption comes from groundwater
reservoirs. Because of this, it is vitally important, for each
project � whether it is a new water-consuming manufacturing
plant or a new way of agriculture irrigation � to predict how
this project will affect the groundwater. One way groundwa-
ter is affected is through the surface water: contamination
of surface water can lead to an eventual contamination of
groundwater. The relation between groundwater and surface
water is often very complex. In some geographic areas, the
groundwater reservoirs are pretty secure; whatever surface
water seeps into these reservoirs, it takes a long time,
during which many contaminants are safely dissolved. In
other areas, the relation is more straightforward, and the
contaminants in the surface water take a very short time to
propagate into the groundwater reservoirs.

In view of this possible difference, it is desirable to
determine a delay t0 between the change in the surface water
and the resulting change in the groundwater. One way to �nd
this time delay is to measure the characteristics x(t) of the
surface water at different moments of time, and to measure
the characteristics x′(t) of the ground water. Because of the
delay, the characteristics of the groundwater x′(t) at a time t
are closely related with the state of the surface water at time
t− t0:

x′(t) ≈ x(t− t0).

The question is how to �nd the delay t0 once we know the
time series x(t) and x′(t); see, e.g., [7].

One possibility is to try all possible shifts t0 but this
is computationally very intensive. In this talk, we adjust
the known soft-computing-motivated fast image referencing
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techniques (see, e.g., [5]) to design a fast algorithm that uses
Fast Fourier Transform for �nding the optimal shift.

II. SECOND PRACTICAL PROBLEM: IDENTIFICATION OF
HUMAN GAIT IN NEURO-REHABILITATION

Many neurological diseases such as stroke, traumatic body
injury, and spinal cord injury drastically decrease the pa-
tient's ability to walk without physical assistance. To re-
establish normal gait, patients undergo extensive rehabilita-
tion. At present, rehabilitation requires gait assessment by
highly quali�ed experienced clinicians. To make rehabilita-
tions easier to access and to decrease the rehabilitation cost,
it is desirable to automate gait assessment; see, e.g., [4].

In precise terms, a gait is measured by the dependence
x′(t) of some characteristic � e.g., the acceleration or the
angle between different parts of the foot. The gait assessment
means comparing the recorded patient's gait with a standard
(average) gait x(t) of healthy people of the same age, body
measurements, etc. One of the problems in this comparison is
that patients walk slower; so, to properly compare gaits, we
must �rst appropriately shift and �scale� the standard gait so
that it best matches the speed with which the patient walks,
i.e., to �nd the values t0 and λ for which

x′(t) ≈ x(λ · t− t0).

One possibility is to try all possible shifts and scalings
but this is computationally very intensive. In this talk, we
adjust the known image referencing techniques to design
an ef�cient algorithm that uses Fast Fourier Transform for
�nding the optimal combination of a shift and a scaling.

III. IMAGE REFERENCING (REGISTRATION) PROBLEM: A
BRIEF REMINDER

In geosciences, we often need to combine two (or more)
images of the same area:
• different images bring different information; so, to get

a better understanding, we must fuse the corresponding
data; e.g., we must combine a satellite image with a
radar image;

• comparison of two images � e.g., images made at
different moments of time � can also give us information
about the changes: e.g., by comparing pre- and post-
earthquake images, we can determine the effect of the
earthquake.

Compared images are often obtained from slightly different
angles, from slightly different positions. Therefore, in order
to compare these images, we must �rst reference (register)
them, i.e., �nd the shift, rotation, and scaling after which



these images match as much as possible, and then apply
these transformations to the original images.

IV. IMAGE REGISTRATION ALGORITHMS: BRIEF
OVERVIEW

There exist many methods for image registration; see, e.g.,
[2], [8]. Among the most widely used methods are methods
of point matching, where we �nd the matching points in the
two images, and then the most appropriate transformation
(rotation and/or shift) which maps the points from one image
into the corresponding points from the other image.

Point matching methods work well when the images have
clearly identi�able matching points, and when we know the
images with a high accuracy � so that we can identify and
match these matching points with a reasonable accuracy. For
example, in satellite images, we often have clear matching
points representing special landmarks such as landmark
city areas, landmark bridges, or tips of peninsulas. Such
landmarks can usually be easily found in highly populated
areas or in special terrains in which the area is highly non-
homogeneous: e.g., there may be a clear shore line with
a clear landmark point, or there may be a large clearly
distinguishable river with a clear landmark turn.

However, there are many homogenous areas where it is
not easy to �nd landmarks. For example, in the desert areas
of the U.S. Southwest, the only visible landmarks are road
intersections, and there are usually several similar-looking
road intersections in the same image, so it is dif�cult to �nd
the matching points between the two images. Similarly, in the
mountain areas, there are many landmarks like summits and
ridges, but usually, there are several similar-looking summits
and ridges in each image, so it is dif�cult to match points in
the two images.

For images known with very low accuracy, we may still
�nd landmarks. However, since we only know the images
with a very low accuracy, we may only be able to locate
these landmarks with a very low accuracy, too low to enable
us to adequately register the two images.

Sometimes, instead of landmark points, we have landmark
features. For example, we may not have a landmark bridge,
but we may have a clearly distinguishable river. In such
situations, instead of matching points, we can match features.
Such feature-matching algorithms are also ef�ciently used in
image registration. However, in homogenous terrains and/or
in situations when we only know the images with low
accuracy, we may only be able to locate these features with a
very low accuracy, too low to enable us to adequately register
the two images.

In some cases, e.g., in many astronomical images, we have
an image surrounded by an empty space. In this case, even
when we cannot �nd the landmark points in the two images,
we can match these images by comparing, e.g., the centers of
gravity of these images. Alas, this is not the case in images
like satellite images or radar images.

As an example of low accuracy images for which reg-
istration is practically important, we will actually consider
low accuracy satellite images. So, in order to come up

with an algorithm for registering low accuracy images, an
algorithm which should be applicable for satellite images,
we must place our emphasis on image registration techniques
which go beyond point matching, feature matching, or simple
geometric transformations in the image domain. Many such
algorithms are based on the use of the Fast Fourier Transform
(FFT).

Before we start describing these methods and adjusting
them to the signal, let us provide a motivation for using FFT
in such problems.

V. WHY FOURIER-BASED METHODS

Let us start with a hydrology-motivated problem. We have
two functions x(t) and x′(t), and we must �nd the shift
t0 for which the signal x′(t) will be, in some reasonable
sense, the closest to the shifted signal x(t−t0). A reasonable
way to describe the closeness between the two signals is to
require that for every moment of time t, the corresponding
intensities are close to each other. We can use, e.g., the
squared difference (x′(t)−x(t− t0))2 between these values
as the measure of the similarity at t, and we can use the sum
(integral)

∫
(x′(t)−x(t− t0))2 dt of these square differences

over all moments t as the measure of overall similarity
between the two signals.

The problem of �nding the shift t0 that minimizes the
above integral takes the following form: �nd t0 for which the
integral

∫
(x′(t)−x(t− t0))2 dt attains the smallest possible

value. By representing the square of the difference (x′−x)2

as the sum of three terms (x′)2 + x2 − 2 · x′ · x, we can
represent the above scoring function as∫

(x′(t))2 dt +
∫

x(t− t0)2 dt− 2
∫

x′(t) · x(t− t0) dt.

The �rst integral in the sum does not depend on the shift
at all. By using the new variable s = t − t0, we can show
that the second integral is equal to

∫
x(s)2 ds and thus, also

does not depend on the shift. So, �nding the shift for which
the sum is the smallest possible is equivalent to �nding the
shift for which the cross-correlation term

∫
x′(t)·x(t−t0) dt

attains the largest possible value.
For signals described by values at n moments of time,

a straightforward approach would require that we compute
the value of the scoring function for all n possible shifts t0.
Computing each integral requires time O(n), so overall, we
need time O(n) ·O(n) = O(n2).

This computation can be performed much faster if we take
into account that the cross-correlation term is a convolution
between the signals x(t) and x′(t). Convolution is one of
the main techniques in signal processing, and it is well
known that we can compute convolution faster (in time
O(n · log(n))) by using Fast Fourier Transform (FFT); see,
e.g., [3]. Speci�cally, to compute the convolution, we need
the following steps:
• �rst, we apply FFT to the original signals, resulting in

functions F (ω) and F ′(ω);
• then, for each frequency ω, we compute the product

R(ω) def= F (ω) · (F ′)∗(ω)



(where F ∗ means complex conjugation);
• �nally, we apply the inverse Fourier transform to the

resulting function R(ω), and get the desired auto-
correlation function.

We can now �nd the shift as the value t0 for which the
cross-correlation attains the largest possible value.

The FFT of a signal of size n requires O(n · log(n))
steps. Multiplication of the two Fourier transforms and the
�nal search for the largest value both require processing each
value ω and t0 once, so both require time O(n). As a result,
we can �nd the desired shift t0 in time O(n·log(n))+O(n) =
O(n · log(n)).

VI. THE SIMPLEST CASE: SHIFT DETECTION IN THE
ABSENCE OF NOISE

Let us �rst consider the above case when two signals
differ only by shift. It is known that if two signals x(t) and
x′(t) differ only by shift, i.e., if x′(t) = x(t− t0) for some
(unknown) shift t0, then their Fourier transforms

F (ω) =
1√
2π

·
∫

x(t) · e−2π·i·(t·ω) dt,

F ′(ω) =
1√
2π

·
∫

x′(t) · e−2π·i·(t·ω) dt,

where i def=
√−1, are related by the following formula:

F ′(ω) = e2π·i·(−ω·t0) · F (ω). (1)

Let us explain this formula. Since x′(t) = x(t − t0), the
Fourier transform F ′(ω) of the image x′(t) takes the form

F ′(ω) =
1√
2π

·
∫

x(t− t0) · e−2π·i·(t·ω) dt.

We can simplify this expression if we introduce a new
variable s

def= t− t0, so that t = s + t0. Here, ds = dt, so

F ′(ω) =
1√
2π

·
∫

x(s) · e−2π·i·((s+t0)·ω) ds.

Here, ((s + t0) · ω) = (s · ω) + (t0 · ω), hence

e−2π·i·((s+t0)·ω) = e−2π·i·(s·ω) · e−2π·i·(t0·ω).

The second factor does not depend on s, so we can move it
outside the integral and conclude that

F ′(ω) = e−2π·i·(t0·ω) ·
(

1√
2π

·
∫

x(s) · e−2π·i·(s·ω) ds

)
.

The expression in parentheses is exactly F (ω), so indeed the
formula (1) is true. ¤

It is known that the magnitude |e−2π·i·(t0·ω)| (also known
as the modulus or the absolute value) of the complex value

e−2π·i·(ω·t0) = cos(−2π · (ω · t0)) + i · sin(−2π · (ω · t0))
is equal to 1. Therefore, if the images are indeed obtained
from each other by shift, then their Fourier transforms have
the same magnitude:

M ′(ω) = M(ω), (2)

where we denoted

M(ω) = |F (ω)|, M ′(ω) = |F ′(ω)|. (3)

The actual value of the shift t0 can be obtained if we use
the formula (1) to compute the value of the following ratio:

R0(ω) =
F ′(ω)
F (ω)

. (4)

Substituting (1) into (4), we get

R0(ω) = e−2π·i·(ω·t0). (5)

Therefore, the inverse Fourier transform P0(t) of this ratio
is equal to the delta-function δ(t + t0).

In other words, in the ideal no-noise situation, this inverse
Fourier transform P0(t) is equal to 0 everywhere except for
the point t = −t0; so, from P0(t), we can easily determine
the desired shift by using the following algorithm:

1) we apply FFT to the original signals x(t)
and x′(t) and compute their Fourier
transforms F (ω) and F ′(ω);

2) we compute the ratio R0(ω);
3) we apply the inverse FFT to the ratio

R0(ω) and compute its inverse
Fourier transform P0(t);

4) we determine the desired shift t0 as the
only value t0 for which P0(−t0) 6= 0.

VII. SHIFT DETECTION IN THE PRESENCE OF NOISE

The above simpli�ed algorithm assumes that the signals
x(t) and x′(t) are exactly the same signal, differing only by
a shift: x′(t) = x(t − t0). In real life, e.g., the measured
intensity of the groundwater values do not depend only on
the surface water levels, so the corresponding intensity values
will be only approximately equal: x′(t) ≈ x(t− t0).

In the ideal non-noise case, the inverse Fourier transform
P0(t) of the ratio (4) is equal to the delta-function

δ(t + t0),

i.e., equal to 0 everywhere except for the point t = −t0. In
the presence of noise, the values of P0(t) will be slightly
different from the delta-function. It seems reasonable to
expect that still, the value |P0(−t0)| should be much larger
than all the other values of this function. Thus, in principle,
it may seem that the value of the shift can be determined as
the value at which |P0(−t0)| is the largest.

In practice, however, due to noise, for some frequencies
ω, the value of the Fourier transform F (ω) corresponding
to the signal x(t) may be close to 0, while the value of the
Fourier transform F ′(ω) corresponding to the signal x′(t)
may be non-zero. For such frequencies, the ratio (4) can be
very high. These high values dominate the ratio R0(ω) and
thus, distort the inverse Fourier transform P0(t). To avoid
this distortion, it is desirable to replace the formula (4) with
a more noise-resistant one.

In general, one of the general techniques for making a
data processing algorithm more noise-resistant is to take into



account constraints on the input data. In the ideal case, the
magnitude |R0(ω)| of the complex ratio R0(ω) (as described
by the expression (4)) is equal to 1. In the presence of noise,
the observed values of the intensities may differ from the
actual values; as a result, their Fourier transforms also differ
from the values and hence, the magnitude of the ratio (4)
may be different from 1.

Let us therefore describe how we can improve the accuracy
of this method if, instead of simply processing the mea-
surement results, we take into consideration the additional
knowledge that the magnitude of the actual ratio (4) is exactly
equal to 1.

Let us denote the actual (unknown) value of the value
e−2π·i·(ω·t0) by r. Then, in the absence of noise, the equation
(1) takes the form

F ′(ω) = r · F (ω). (5)

In the presence of noise, the computed values F (ω) and
F ′(ω) of the Fourier transforms can be slightly different
from the actual values, and therefore, the equality (5) is only
approximately true:

F ′(ω) ≈ r · F (ω). (6)

In addition to the equation (6), we know that the magnitude
of r is equal to 1, i.e., that

|r|2 = r · r∗ = 1, (7)

where r∗ denotes a complex conjugate to r.
As a result, we know two things about the unknown value

r:
• that r satis�es the approximate equation (6), and
• that r satis�es the additional constraint (7).

We would like to get the best estimate for r among all
estimates that satisfy the condition (7). To get the optimal
estimate, we can use the Least Squares Method (LSM).
According to this method, for each estimate r, we de�ne
the error

E = F ′(ω)− r · F (ω) (8)

with which the condition (6) is satis�ed. Then, we �nd
among all estimates which satisfy the additional condition
(7), a value r for which the square |E|2 = E · E∗ of this
error is the smallest possible.

The square |E|2 of the error E can be reformulated as
follows:

E · E∗ = (F ′(ω)− r · F (ω)) · (F ′∗(ω)− r∗ · F ∗(ω)
)

=

F ′(ω) · F ′∗(ω)− r∗ · F ∗(ω) · F ′(ω)− r · F (ω) · F ′∗(ω)+

r · r∗ · F (ω) · F ∗(ω). (9)

We need to minimize this expression under condition (7).
For conditional minimization, there is a known technique

of Lagrange multipliers, according to which the minimum
of a function f(x) under the condition g(x) = 0 is attained
when for some real number λ, the auxiliary function f(x)+

λ · g(x) attains its unconditional minimum; this value λ is
called a Lagrange multiplier.

For our problem, the Lagrange multiplier technique leads
to the following unconditional minimization problem:

MinimizeF ′(ω) · F ′∗(ω)− r∗ · F ∗(ω) · F ′(ω)−
r · F (ω) · F ′∗(ω) + r · r∗ · F (ω) · F ∗(ω)+

λ · (r · r∗ − 1). (10)

We want to �nd the value of the complex variable r for
which this expression takes the smallest possible value. A
complex variable is, in effect, a pair of two real variables,
so the minimum can be found as a point at which the
partial derivatives with respect to each of these variables are
both equal to 0. Alternatively, we can represent this equality
by computing the partial derivative of the expression (10)
relative to r and r∗. If we differentiate (10) relative to r∗,
we get the following linear equation:

−F ∗(ω) · F ′(ω) + r · F (ω) · F ∗(ω) + λ · r = 0. (11)

From this equation, we conclude that

r =
F ∗(ω) · F ′(ω)

F (ω) · F ∗(ω) + λ
. (12)

The coef�cient λ can now be determined from the condition
that the resulting value r should satisfy the equation (7). In
other words, we must have

|F ∗(ω) · F ′(ω)|
|F (ω) · F ∗(ω) + λ| = 1,

i.e., equivalently, that

|F ∗(ω) · F ′(ω)| = |F (ω) · F ∗(ω) + λ|. (13)

The expression F (ω) · F ∗(ω) + λ is a real number, so �
depending on the sign � its magnitude (absolute value) is
equal either to this same number or to its opposite, i.e.,

F (ω) · F ∗(ω) + λ = ±|F (ω) · F ∗(ω) + λ|. (14)

Due to (13) and (14), we thus have

F (ω) · F ∗(ω) + λ = ±|F ∗(ω)| · |F ′(ω)|. (15)

Substituting the expression (15) into the formula (11), we
conclude that

r = ± F ∗(ω) · F ′(ω)
|F ∗(ω)| · |F ′(ω)| .

In principle, the sign can depend on the frequency ω. How-
ever, since the observed signals x(t) and x′(t) are functions
which are different from 0 only in a bounded area, their
Fourier transforms are continuous. It is therefore reasonable
to consider expressions which are continuously depending on
the frequency ω. To make the above expression continuous,
we must use the same sign for all frequencies. If we use the
positive sign for all the frequencies, then we arrive at the
following ratio:

r =
F ∗(ω) · F ′(~ω)
|F ∗(~ω)| · |F ′(~ω)| . (16)



(One can check that if we select a negative sign for all the
frequencies, we will end up with the exact same algorithm.)

So, in the presence of noise, instead of using the ratio (4),
we should compute, for every ω, the optimal approximation

R(ω) =
F ∗(ω) · F ′(ω)
|F ∗(ω)| · |F ′(ω)| . (17)

This expression is known in signal and image processing; it
is called a �cross-correlation power spectrum� (see, e.g., [2],
[8]). What we have just shown is that this expression provides
an optimal estimate for the desired value e−2π·i·(ω·t0).

How can we use this ratio in registration? In the ideal
non-noise case, when x′(t) = x(t − t0), the ratio (17) also
equals to e−2π·i·(ω·t0). Hence, in the ideal no-noise case, the
inverse Fourier transform P (t) of this ratio is equal to the
delta-function δ(t+t0), i.e., it is equal to 0 everywhere except
for the point t = −t0. In the presence of noise, we expect
the values of P (t) to be slightly different from the delta-
function, but still, the value |P (−t0)| should be much larger
than all the other values of this function. Thus, the value of
the shift can be determined as the value at which |P (−t0)|
is the largest. We arrive at the following algorithm:

1) we apply FFT to the original signals x(t)
and x′(t) and compute their Fourier
transforms F (ω) and F ′(ω);

2) we compute the ratio R0(ω);
3) we apply the inverse FFT to the ratio

R0(ω) and compute its inverse
Fourier transform P0(t);

4) we determine the desired shift t0 as the
only value t0 for which the magnitude
|P (−t0)| attains the largest possible value.

VIII. THE ROLE OF SOFT COMPUTING: A COMMENT

In the above explanation of why FFT-based techniques are
useful in shift detection, we started with the need to describe
the degree with which the signals x′(t) and x(t − t0) are
similar, and ended up with an integral expression∫

(x′(t)− x(t− t0))2 dt.

To come up with this expression, we simply made a heuristic
transition. A more justi�ed way would be to use a formalism
which is speci�cally designed to translate natural-language
expressions like �close� and �similar� to explicit expressions
� the formalism of fuzzy logic.

For example, to describe the function �similar�, we can
use a Gaussian membership function

µ(x′ − x) = exp(−c · (x′ − x)2),

for some real number c > 0. In this case, for each moment
of time t, the degree with which the corresponding values
x′(t) and x(t− t0) are similar is equal to

exp(−c · (x′(t)− x(t− t0))2).

We want to �nd the degree to which the corresponding
values are similar for the �rst moment of time t(1), and the

corresponding values are similar for the second pixel t(2),
etc.

If we use the algebraic product a · b to describe �and� �
one of the choices proposed in Zadeh's original papers � then
the resulting degree that the images x′(t) and x(t− t0) are
similar is equal to the product

∏
t

exp(−c · (x′(t)− x(t− t0))2).

Since the product of the exponents is equal to the exponent
of the sum, this degree is equal to exp(−c · S), where

S
def=

∑
t

(x′(t)− x(t− t0))2.

Since the degree of similarity

exp(−c · S)

is a monotonically decreasing function of S, to �nd the shift
t0 for which the degree of similarity between the signal x′(t)
and the shifted signal x(t− t0) is the largest, we must �nd
the shift for which the sum S is the smallest. This sum is,
in effect, the desired integral

∫
(x′(t)− x(t− t0))2 dt.

We have selected this quadratic expression simply to
explain that, even in this simple setting, we need to use FFT
to make shift determination more ef�cient. If this quadratic
integral was the most adequate expression of the degree of
similarity between the two images, then we would be able
to argue that, since this expression is an example of least
square expressions used in statistical data processing, we
could probably use the traditional statistical techniques to
derive this expression.

However, it is known that in many practical problems, the
above more sophisticated FFT-based algorithm works much
better than the minimization of the quadratic integral (see,
e.g., [2]) � which shows that the quadratic integral is, in
general, not necessarily the most adequate description of
image matching.

Intuitively, it is reasonably clear why the more sophis-
ticated algorithm is often better: in the ideal case of the
exact shift, this algorithm returns an impulse function, which
has 0 values everywhere except for the desired shift point
−t0, and which has a high value at −t0. In contrast, the
value of the cross-correlation function is slowly decreasing
around t = −t0. Not surprisingly, in the presence of a
reasonable noise, the new algorithm leads to a more accurate
reconstruction of the shift than the method based on the
minimization of the quadratic integral.

The fact that a more sophisticated expression for the
degree of similarity is needed is a good indication that soft
computing techniques are needed here: for soft computing,
if we select more complex membership functions and more
complex �and� operations (t-norms), we would end up with
more complex expression for the degree of similarity be-
tween the two images.



IX. REDUCING SCALING TO SHIFT

Let us now consider a more complex problem, in which
we must �nd a shift t0 and scaling λ for which

x′(t) ≈ x(λ · t− t0).

Since, in addition to shift, we also have scaling, the
magnitudes M(ω) and M ′(ω) of the corresponding Fourier
transforms are not equal, but differ from each by the corre-
sponding scaling:

M ′(ω) ≈ 1
λ
·M

(ω

λ

)
.

If we go to log frequencies ρ = log(ω) (for which ω =
exp(ρ)), then scaling becomes shift-like: ρ → ρ − b, where
b = log(λ). So, in log frequencies, scaling is described by a
shift.

In view of the above reduction, in order to determine the
scaling between M and M ′, we can do the following:
• transform both images from the original frequencies to

log frequencies;
• use the above FFT-based algorithm to determine the

corresponding shift log(λ);
• from the corresponding �shift� values, reconstruct the

scaling coef�cient λ.
Comment. The main computational problem with the trans-
formation to log frequencies is that we need values M(ξ) on
a rectangular grid in log frequencies space, but computing
log(ω) for the original grid points leads to points outside that
grid. So, we need interpolation to �nd the values M(ξ) on
the desired grid. One possibility is to use linear interpolation.

X. FINAL ALGORITHM: DETERMINING SHIFT AND
SCALING

1) we apply FFT to the original signals x(t)
and x′(t) and compute their Fourier
transforms F (ω) and F ′(ω);

2) we compute the magnitudes M(ω) = |F (ω)|
and M ′(ω) = |F ′(ω)| of these Fourier
transforms;

3) we apply the above scaling detection
algorithm to the functions M(ω) and
M ′(ω), and determine the scaling
coef�cient λ;

4) we apply the corresponding scaling to x(t);
as a result, we get a new signal x̃(t);

5) the signals x̃(t) and x′(t) are
already aligned in terms of scaling, the only
difference between them is in an (unknown)
shift; so, we again apply the above described
FFT-based algorithm for determining shift:
this time, actually to determine shift.

As a result, we get the desired values of shift and scaling.
This algorithm also requires the time O(n · log(n)). hence,
we get the desired registration.
Comment. Similar techniques have been applied to pavement
engineering; see, e.g., [1], [6].
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