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Abstract�One of the main applications of fuzzy techniques
is to formalize the notions of �typical�, �representative�, etc.

The main idea behind fuzzy techniques is that they formalize
expert knowledge expressed by words from natural language.

In this paper, we show that if we do not use this knowledge,
i.e., if we only use the data, then selecting the most represen-
tative sample becomes a computationally dif�cult (NP-hard)
problem. Thus, the need to �nd such samples in reasonable
time justi�es the use of fuzzy techniques.

I. INTRODUCTION TO THE PROBLEM

In many practical situations, it is desirable to �nd the
statistical analysis of a certain population, but this population
is so large that it is not practically possible to analyze
every individual element from this population. In this case,
we select a sample (subset) of the population, perform a
statistical analysis on this sample, and use these results as
an approximation to the desired statistical characteristics of
the population as a whole.

For example, this is how polls work: instead of asking the
opinion of all the people, pollsters ask a representative sam-
ple, and use the opinion of this sample as an approximation
to the opinion of the whole population.

The more �representative� the sample, the larger our
con�dence that the statistical results obtained by using this
sample are indeed a good approximation to the desired pop-
ulation statistics. Typically, we gauge the representativeness
of a sample by how well its statistical characteristics re�ect
the statistical characteristics of the entire population. For
example, in the sample of human voters, it is reasonable
to require that in the selected sample, the average age, the
average income, and other characteristics are the same as in
the population in a whole. Of course, the representativeness
of averages is not enough: e.g., the voting patterns of
people whose salary is exactly the national average are not
necessarily a good representation of how people will work on
average. For that, we need the sample to include both poorer
and reacher people � i.e., in general, to be representative not
only in terms of averages but also in terms of, e.g., standard
deviations (i.e., equivalently, in terms of variances).

In practice, many techniques are used to design a repre-
sentative sample; see, e.g., [2]. In this paper, we consider this
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problem as the exact optimization problem, and we show that
this problem is computationally dif�cult (NP-hard).

Comment. Similar results are known: for example, we know
that a similar problem of maximizing diversity is NP-hard;
see, e.g., [1].

II. TOWARDS FORMULATION OF THE PROBLEM IN EXACT
TERMS

Let us assume that we have a population consisting of
N objects. For each of N objects, we know the values
of k characteristics x1, x2, . . . , xk. The value of the �rst
characteristic x1 for i-th object will be denoted by x1,i,
the value of the second characteristic x2 for the i-th object
will be denoted by x2,i, . . . , and �nally, the value of the
characteristic xk for the i-th object will be denoted by xk,i.
As a result, we arrive at the following formal de�nition:

De�nition 1. By a population, we mean a tuple

p
def= 〈N, k, {xj,i}〉,

where:
• N is an integer; this integer will be called the popula-

tion size;
• k is an integer; this integer is called the number of

characteristics;
• xj,i (1 ≤ j ≤ k, 1 ≤ i ≤ N ) are real numbers; the

real number xj,i will be called the value of the j-th
characteristic for the i-th object.

Based on these known values, we can compute the popu-
lation means

E1 =
1
N
·

N∑

i=1

x1,i, E2 =
1
N
·

N∑

i=1

x2,i, . . . ,

and the population variances

V1 =
1
N
·

N∑

i=1

(x1,i − E1)2,

V2 =
1
N
·

N∑

i=1

(x2,i − E2)2, . . .

We can also compute higher order central moments.

De�nition 2. Let p = 〈N, k, {xj,i}〉 be a population, and let
j be an integer from 1 to k.



• By the population mean Ej of the j-th characteristic,
we mean the value

Ej =
1
N
·

N∑

i=1

xj,i.

• By the population variance Vj of the j-th characteristic,
we mean the value

Vj =
1
N
·

N∑

i=1

(xj,i − Ej)2.

• For every integer d ≥ 1, by the even order population
central moment M

(2d)
j of order 2d of the j-th charac-

teristic, we mean the value

M
(2d)
j =

1
N
·

N∑

i=1

(xj,i − Ej)2d.

Comment. In particular, the population central moment M
(2)
2

of order 2 (corresponding to d = 1) is simply the population
variance.

In addition to the values x1,i, x2,i, . . . , we are given a
size n < N of the desirable sample. For each sample I =
{i1, . . . , in} ⊆ {1, 2, . . . , N} of size n, we can compute the
sample means

E1(I) =
1
n

∑

i∈I

x1,i, E2(I) =
1
n

∑

i∈I

x2,i, . . .

and the sample variances

V1(I) =
1
n

∑

i∈I

(x1,i − E1(I))2,

V2(I) =
1
n

∑

i∈I

(x2,i −E2(I))2, . . .

De�nition 3. Let N be a population size.
• By a sample, we mean a non-empty subset

I ⊆ {1, 2, . . . , N}.
• For every sample I , by its size, we mean the number of

elements in I .

De�nition 4. Let p = 〈N, k, {xj,i}〉 be a population, let I
be a sample of size n, and let j be an integer from 1 to k.
• By the sample mean Ej(I) of the j-th characteristic,

we mean the value

Ej(I) =
1
n
·
∑

i∈I

xj,i.

• By the sample variance Vj(I) of the j-th characteristic,
we mean the value

Vj(I) =
1
n
·
∑

i∈I

(xj,i − Ej(I))2.

• For every d ≥ 1, by the sample central moment
M

(2d)
j (I) of order 2d of the j-th characteristic, we mean

the value

M
(2d)
j (I) =

1
n
·
∑

i∈I

(xj,i − Ej(I))2d.

Comment. Similarly to the population case, the sample cen-
tral moment M

(2)
2 of order 2 (corresponding to d = 1) is

simply the sample variance.

We want to select the most representative sam-
ple, i.e., the sample for which the sample statistics
E1(I), E2(I), . . . , V1(I), V2(I), . . . are the closest to the
population statistics E1, E2, . . . , V1, V2, . . .

De�nition 5. Let p = 〈N, k, {xj,i}〉 be a population.
• By an E-statistics tuple corresponding to p, we mean a

tuple
t(1)

def= (E1, . . . , Ek).

• By an (E, V )-statistics tuple corresponding to p, we
mean a tuple

t(2)
def= (E1, . . . , Ek, V1, . . . , Vk).

• For every integer d ≥ 1, by a statistics tuple of order
2d corresponding to p, we mean a tuple

t(2d) def= (E1, . . . , Ek,M
(2)
1 , . . . ,M

(2)
k ,

M
(4)
1 , . . . , M

(4)
k , . . . , M

(2d)
1 , . . . , M

(2d)
k ).

Comment. In particular, the statistics tuple of order 2 is
simply the (E, V )-statistics tuple.

De�nition 6. Let p = 〈N, k, {xj,i}〉 be a population, and let
I be a sample.
• By an E-statistics tuple corresponding to I , we mean a

tuple
t(1)(I) def= (E1(I), . . . , Ek(I)).

• By an (E, V )-statistics tuple corresponding to I , we
mean a tuple

t(2)(I) def= (E1(I), . . . , Ek(I), V1(I), . . . , Vk(I)).

• For every integer d ≥ 2, by a statistics tuple of order
2d corresponding to I , we mean a tuple

t(2d)(I) def= (E1(I), . . . , Ek(I),

M
(2)
1 (I), . . . ,M (2)

k (I),

M
(4)
1 (I), . . . ,M (4)

k (I) . . . , M
(2d)
1 (I), . . . ,M (2d)

k (I)).

Comment. In particular, the statistics tuple of order 2 corre-
sponding to a sample I is simply the (E, V )-statistics tuple
corresponding to this same tuple.

We will show that no matter how we de�ne closeness, this
problem is NP-hard (computationally dif�cult).



Let us describe the problem in precise terms. To describe
which tuple

t(I) def= (E1(I), E2(I), . . . , V1(I), V2(I), . . .)

is the closest to the original statistics tuple

t
def= (E1, E2, . . . , V1, V2, . . .),

we need to �x a distance function ρ(t(I), t) describing how
distant are the two given tuples. Similarly to the usual
distance, we would like this distance function to be equal
to 0 when the tuples coincide and to be positive if when the
tuples are different. So, we arrive at the following de�nitions.

De�nition 7. By a distance function, we mean a mapping ρ
that maps every two real-valued tuples t and t′ of the same
size into a real value ρ(t, t′) in such a way that ρ(t, t) = 0
for all tuples t and ρ(t, t′) > 0 for all t 6= t′.

As an example, we can take Euclidean metric between the
tuples t = (t1, t2, . . .) and t′ = (t′1, t

′
2, . . .):

ρ(t, t′) =
√∑

j

(tj − t′j)2.

Now, we are ready to formulate the problem.

De�nition 8. Let ρ be a distance function. By a E-sample
selection problem corresponding to ρ, we mean the following
problem. We are given:
• a population p = 〈N, k, {xj,i}〉, and
• an integer n < N .

Among all samples I ⊆ {1, . . . , N} of size n, we must
�nd the sample I for which the distance ρ(t(1)(I), t(1))
between the corresponding E-statistical tuples is the smallest
possible.

De�nition 9. Let ρ be a distance function. By a (E, V )-
sample selection problem corresponding to ρ, we mean the
following problem. We are given:
• a population p = 〈N, k, {xj,i}〉, and
• an integer n < N .

Among all samples I ⊆ {1, . . . , N} of size n, we must �nd
the sample I for which the distance ρ(t(2)(I), t(2)) between
the corresponding (E, V )-statistical tuples is the smallest
possible.

De�nition 10. Let ρ be a distance function, and let d ≥ 1
be an integer. By a 2d-th order sample selection problem
corresponding to ρ, we mean the following problem. We are
given:
• a population p = 〈N, k, {xj,i}〉, and
• an integer n < N .

Among all samples I ⊆ {1, . . . , N} of size n, we must
�nd the sample I for which the distance ρ(t(2d)(I), t(2d))
between the corresponding (2d)-th order statistical tuples is
the smallest possible.

III. MAIN RESULTS

Proposition 1. For every distance function ρ, the correspond-
ing E-sample selection problem is NP-hard.
Proposition 2. For every distance function ρ, the correspond-
ing (E, V )-sample selection problem is NP-hard.
Proposition 3. For every distance function ρ and for every
integer d ≥ 1, the corresponding (2d)-th order sample
selection problem is NP-hard.

IV. PROOF OF PROPOSITIONS 1�3
A. Main idea: reduction to subset sum, a known NP-hard
problem

We prove NP-hardness of our problem by reducing a
known NP-hard problem to it: namely, a subset sum problem,
in which we are given m positive integers s1, . . . , sm, and
we must �nd the signs εi ∈ {−1, 1} for which

m∑

i=1

εi · si = 0;

see, e.g., [3].
A reduction means that to every instance s1, . . . , sm of

the subset sum problem, we must assign (in a feasible, i.e.,
polynomial-time way) an instance of our problem in such a
way that the solution to the new instance will lead to the
solution of the original instance.
B. Reduction: explicit description

Let us describe this reduction: we take N = 2n, k = 2,
n = m, and we select the values xj,i as follows:
• x1,i = si and x1,m+i = −si for all i = 1, . . . , m;
• x2,i = x2,m+i = 2i for all i = 1, . . . ,m.

We will show that for this new problem, the most represen-
tative sample I has ρ(t(I), t) = 0 if and only if the original
instance of the subset sum problem has a solution.
C. General analysis

Indeed, by de�nition of a distance function, the equality
ρ(t(I), t) = 0 is equivalent to t(I) = t, i.e., to the
requirement that for the sample I , means (and variances)
within the sample are exactly the same as for the entire
population.
D. Consequences for the second component

Let us start by analyzing the consequences of this re-
quirement for the mean of the second component. For the
entire population of size N = 2m, for each i from 1 to m,
we have two elements, i-th and (m + i)-th, with the value
x2,i = x2,m+i = 2i. Thus, for the population as a whole,
this mean is equal to

E2 =
2 + 22 + . . . + 2m

m
.

For the selected subset I of size m, this mean should be
exactly the same: E2(I) = E2. Thus, we must have

E2(I) =
2 + 22 + . . . + 2m

m
.



By de�nition,
E2(I) =

1
m
·
∑

i∈I

x2,i.

Thus, we conclude that

S2(I) def=
∑

i∈I

x2,i = 2 + 22 + . . . + 2m.

What can we now conclude about the set I?
First of all, we can notice that in the sum 2+22+. . .+2m,

all the terms are divisible by 4 except for the �rst term 2.
Thus, the sum itself is not divisible by 4.

In our population, we have exactly two elements, element
1 and element m + 1, for which x2,1 = x2,m+1 = 2. For
every other element, we have x2,i = x2,m+i = 2i for i ≥ 2
and therefore, the corresponding value is divisible by 4.

In regards to a selection I , there are exactly three possi-
bilities:
• the set I contains none of the two elements 1 and m+1;
• the set I contains both elements 1 and m + 1; and
• the set I contains exactly one of the two elements 1 and

m + 1.
In the �rst two cases, the contribution of these two elements
to the sum S2(I) is divisible by 4 (it is 0 or 4). Since all
other elements in the sum S2(I) are divisible by 4, we would
thus conclude that the sum itself is divisible by 4 � which
contradicts to our conclusion that this sum is equal to 2 +
22 + . . . + 2m and is, therefore, not divisible by 4.

This contradiction shows that the set I must contain
exactly one of the two elements 1 and m + 1. Let us denote
this element by k1. For this element, x2,k1 = 2. Subtracting
x2,k1 and 2 from the two sides of the equality

S2(I) =
∑

i∈I

x2,i = 2 + 22 + . . . + 2m,

we conclude that

S2(I − {k1}) =
∑

i∈I−{k1}
x2,i = 22 + 23 + . . . + 2m.

In the new sum 22 + 23 + . . . + 2m, all the terms are
divisible by 23 = 8 except for the �rst term 22. Thus, the
sum itself is not divisible by 8.

In our remaining population {2, . . . ,m, m + 2, . . . , 2m},
we have exactly two elements, element 2 and element m+2,
for which x2,2 = x2,m+2 = 22. For every other element,
we have x2,i = x2,m+i = 2i for i ≥ 3 and therefore, the
corresponding value is divisible by 3.

In regards to a selection I , there are exactly three possi-
bilities:
• the set I contains none of the two elements 2 and m+2;
• the set I contains both elements 2 and m + 2; and
• the set I contains exactly one of the two elements 2 and

m + 2.
In the �rst two cases, the contribution of these two elements
to the sum S2(I−{k1}) is divisible by 8 (it is 0 or 8). Since
all other elements in the sum S2(I − {k1}) are divisible by

8, we would thus conclude that the sum itself is divisible
by 8 � which contradicts to our conclusion that this sum is
equal to 22 + 23 + . . . + 2m and is, therefore, not divisible
by 8.

This contradiction shows that the set I must contain
exactly one of the two elements 2 and m + 2. Let us denote
this element by k2. For this element, x2,k2 = 22. Subtracting
x2,k2 and 22 from the two sides of the equality

S2(I − {k1}) =
∑

i∈I−{k1}
x2,i = 22 + 23 + . . . + 2m,

we conclude that

S2(I − {k1, k2}) =
∑

i∈I−{k1,k2}
x2,i = 23 + 24 + . . . + 2m.

Now, we can similarly conclude that the set I contains
exactly one element from the pair {3,m+3}, and in general,
for every i from 1 to m, we can conclude that the selection
set I contains exactly one element ki from the pair {i,m+i}.

E. Consequences for the �rst component

Let us now analyze the consequences of this requirement
for the mean of the �rst component. For the entire population
of size N = 2m, for each i from 1 to m, we have two
elements, i-th and (m+i)-th, with the opposite values x1,i =
si and x2,m+i = −si. Thus, for the population as a whole,
this mean is equal to E1 = 0.

For each i from 1 to m, the selection set contains exactly
one element of these two: ki = i and ki = m + i. Thus,
E1(I) = 0 means that the corresponding sum is equal to 0:
m∑

i=1

x1,ki = 0. Here, x1,ki = εi · si, where:

• εi = 1 if ki = i, and
• εi = −1 if ki = m + i.

Thus, we conclude that
m∑

i=1

εi ·si = 0 for some εi ∈ {−1, 1},
i.e., that the original instance of the subset problem has a
solution.

F. Equivalence

Vice versa, if the original instance of the subset problem
has a solution, i.e., if

m∑
i=1

εi · si = 0 for some εi ∈ {−1, 1},
then we can select I = {k1 . . . , km}, where:
• ki = i when εi = 1, and
• ki = m + i when εi = −1.

One can easily check that in this case, we have E1(I) = E1,
E2(I) = E2, V1(I) = V1, V2(I) = V2, and, in general,
M

(2d)
1 (I) = M

(2d)
1 and M

(2d)
2 (I) = M

(2d)
2 .

G. Conclusion

The reduction is proven, so the problem of �nding the
most representative sample is indeed NP-hard.



V. AUXILIARY RESULTS

A. Motivations
In our proofs, we considered the case when the desired

sample contains half of the original population. In practice,
however, samples form a much smaller portion of the pop-
ulation. A natural question is: what if we �x a large even
number 2P À 2, and look for samples which constitute the
(2P )-th part of the original population? It turns out that the
resulting problem of selecting the most representative sample
is still NP-hard.

B. De�nitions
De�nition 11. Let ρ be a distance function, and let 2P be a
positive even integer. By a problem of selecting an E-sample
of relative size 1

2P
, we mean the following problem:

• We are given a population p = 〈N, k, {xj,i}〉.
• Among all samples I ⊆ {1, . . . , N} of size n =

n

2P
,

we must �nd the sample I for which the distance
ρ(t(1)(I), t(1)) between the corresponding E-statistical
tuples is the smallest possible.

De�nition 12. Let ρ be a distance function, and let 2P be a
positive even integer. By a problem of selecting an (E, V )-
sample of relative size 1

2P
, we mean the following problem:

• We are given a population p = 〈N, k, {xj,i}〉.
• Among all samples I ⊆ {1, . . . , N} of size n =

n

2P
,

we must �nd the sample I for which the distance
ρ(t(2)(I), t(2)) between the corresponding (E, V )-
statistical tuples is the smallest possible.

De�nition 13. Let ρ be a distance function, let d ≥ 1 be an
integer, and let 2P be a positive even integer. By a problem
of selecting an (2d)-th order sample of relative size 1

2P
, we

mean the following problem:
• We are given a population p = 〈N, k, {xj,i}〉.
• Among all samples I ⊆ {1, . . . , N} of size n =

n

2P
,

we must �nd the sample I for which the distance
ρ(t(2d)(I), t(2d)) between the corresponding statistical
tuples of order 2d is the smallest possible.

C. Results
Proposition 4. For every distance function ρ and for every
even integer 2P , the corresponding problem of selecting an
E-sample of relative size 1

2P
is NP-hard.

Proposition 5. For every distance function ρ and for every
even integer 2P , the corresponding problem of selecting an
(E, V )-sample of relative size 1

2P
is NP-hard.

Proposition 6. For every distance function ρ, for every inte-
ger d ≥ 1, and for every even integer 2P , the corresponding
problem of selecting a (2d)-th order sample of relative size
1

2P
is NP-hard.

D. Proof of Propositions 4�6
The proof is similar to the proofs of Propositions 1�3.
The main difference is that for each i from 1 to m, we

now have not two but 2P different objects

i,m + i, 2m + i, . . . , k ·m + i, . . . , (2P − 1) ·m + i

with the same value

x2,i = x2,m+i = . . . =

x2,k·m+i = . . . = x2,(2P−1)·m+i = (2P )i.

(And this common value is also different.)
Among these 2P objects with the same value of the second

characteristic x2,., for the �rst half, we have x1,. = si and
for the second half, we have x1,. = −si, i.e.:

x1,i = x1,m+i = . . . = m1,(P−1)·m+i = si;

x1,P ·m+i = x1,(P+1)·m+i = . . . = m1,(2P−1)·m+i = −si.

By using divisibility by (2P )2 (instead of divisibility by 22),
we conclude that the best �tting sample is the one which has
exactly one element of each group. Thus, from E1(I) = E1,
we similarly conclude that the original instance of the subset
problem has a solution � and hence that the new problems
are indeed NP-hard.

VI. CONCLUSIONS

One of the applications of fuzzy techniques is to formalize
the notions of �typical�, �representative�, etc. The main
idea behind fuzzy techniques is that they formalize expert
knowledge expressed by words from natural language.

In this paper, we have shown that if we do not use this
knowledge, i.e., if we only use the data, then selecting the
most representative sample becomes a computationally dif�-
cult (NP-hard) problem. Thus, the need to �nd such samples
in reasonable time justi�es the use of fuzzy techniques.
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