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Abstract�Traditional data processing in science and engi-
neering starts with computing the basic statistical characteris-
tics such as the population mean E and population variance V .
In computing these characteristics, it is usually assumed that
the corresponding data values x1, . . . , xn are known exactly. In
many practical situations, we only know intervals [xi, xi] that
contain the actual (unknown) values of xi or, more generally, a
fuzzy number that describes xi. In this case, different possible
values of xi lead, in general, to different values of E and V . In
such situations, we are interested in producing the intervals of
possible values of E and V � or fuzzy numbers describing E and
V . There exist algorithms for producing such interval and fuzzy
estimates. However, these algorithms are more complex than
the typical data processing formulas and thus, require a larger
amount of computation time. If we have several processors,
then, it is desirable to perform these algorithms in parallel
on several processors, and thus, to speed up computations. In
this paper, we show how the algorithms for estimating variance
under interval and fuzzy uncertainty can be parallelized.

I. COMPUTING STATISTICS IS IMPORTANT

Traditional data processing in science and engineering
starts with computing the basic statistical characteristics such
as the population mean

E =
1
n
·

n∑

i=1

xi

and population variance

V =
1
n
·

n∑

i=1

(xi − E)2.

II. ADDITIONAL PROBLEM

Traditional engineering statistical formulas assume that we
know the exact values xi of the corresponding quantities.
In practice, these values come either from measurements or
from expert estimates. In both cases, we get only approxi-
mations x̃i to the actual (unknown) values xi.

When we use these approximate values x̃i 6= xi to
compute the desired statistical characteristics such as E and
V , we only get approximate valued Ẽ and Ṽ for these
characteristics. It is desirable to estimate the accuracy of
these approximations.
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III. CASE OF MEASUREMENT UNCERTAINTY

Measurements are never 100% accurate. As a result, the
result x̃ of the measurement is, in general, different from
the (unknown) actual value x of the desired quantity. The
difference ∆x

def= x̃−x between the measured and the actual
values is usually called a measurement error.

The manufacturers of a measuring device usually provide
us with an upper bound ∆ for the (absolute value of) possible
errors, i.e., with a bound ∆ for which we guarantee that
|∆x| ≤ ∆. The need for such a bound comes from the
very nature of a measurement process: if no such bound
is provided, this means that the difference between the
(unknown) actual value x and the observed value x̃ can be
as large as possible.

Since the (absolute value of the) measurement error ∆x =
x̃ − x is bounded by the given bound ∆, we can therefore
guarantee that the actual (unknown) value of the desired
quantity belongs to the interval [x̃−∆, x̃ + ∆].

IV. TRADITIONAL PROBABILISTIC APPROACH TO
DESCRIBING MEASUREMENT UNCERTAINTY

In many practical situations, we not only know the interval
[−∆, ∆] of possible values of the measurement error; we
also know the probability of different values ∆x within this
interval [13].

In practice, we can determine the desired probabilities of
different values of ∆x by comparing the results of measuring
with this instrument with the results of measuring the same
quantity by a standard (much more accurate) measuring
instrument. Since the standard measuring instrument is much
more accurate than the one used, the difference between
these two measurement results is practically equal to the
measurement error; thus, the empirical distribution of this
difference is close to the desired probability distribution for
measurement error.

V. INTERVAL APPROACH TO MEASUREMENT
UNCERTAINTY

As we have mentioned, in many practical situations, we do
know the probabilities of different values of the measurement
error. There are two cases, however, when this determination
is not done:
• First is the case of cutting-edge measurements, e.g.,

measurements in fundamental science. When a Hubble
telescope detects the light from a distant galaxy, there is
no �standard� (much more accurate) telescope �oating
nearby that we can use to calibrate the Hubble: the
Hubble telescope is the best we have.



• The second case is the case of measurements on the
shop �oor. In this case, in principle, every sensor can
be thoroughly calibrated, but sensor calibration is so
costly � usually costing ten times more than the sensor
itself � that manufacturers rarely do it.

In both cases, we have no information about the probabilities
of ∆x; the only information we have is the upper bound on
the measurement error.

In this case, after performing a measurement and getting
a measurement result x̃, the only information that we have
about the actual value x of the measured quantity is that it
belongs to the interval x = [x̃−∆, x̃ + ∆]. In this situation,
for each i, we know the interval xi of possible values of xi,
and we need to �nd the ranges E and V of the characteristics
E and V over all possible tuples xi ∈ xi.

VI. CASE OF EXPERT UNCERTAINTY

An expert usually describes his/her uncertainty by using
words from the natural language, like �most probably, the
value of the quantity is between 6 and 7, but it is somewhat
possible to have values between 5 and 8�. To formalize this
knowledge, it is natural to use fuzzy set theory, a formalism
speci�cally designed for describing this type of informal
(�fuzzy�) knowledge [9], [12].

As a result, for every value xi, we have a fuzzy set µi(xi)
which describes the expert's prior knowledge about xi: the
number µi(xi) describes the expert's degree of certainty that
xi is a possible value of the i-th quantity.

An alternative user-friendly way to represent a fuzzy set is
by using its α-cuts {xi |µi(xi) > α} (or {xi |µi(xi) ≥ α}).
For example, the α-cut corresponding to α = 0 is the
set of all the values which are possible at all, the α-cut
corresponding to α = 0.1 is the set of all the values which
are possible with degree of certainty at least 0.1, etc. In
these terms, a fuzzy set can be viewed as a nested family
of intervals [xi(α), xi(α)] corresponding to different level
α.

VII. ESTIMATING STATISTICS UNDER FUZZY
UNCERTAINTY: PRECISE FORMULATION OF THE PROBLEM

In general, we have fuzzy knowledge µi(xi) about each
value xi; we want to �nd the fuzzy set corresponding
to a given characteristic y = C(x1, . . . , xn). Intuitively,
the value y is a reasonable value of the characteristic if
y = f(x1, . . . , xn) for some reasonable values xi, i.e., if
for some values x1, . . . , xn, x1 is reasonable, and x2 is
reasonable, . . . , and y = f(x1 . . . , xn). If we interpret �and�
as min and �for some� (�or�) as max, then we conclude that
the corresponding degree of certainty µ(y) in y is equal to

µ(y) =

max{min(µ1(x1), . . . , µn(xn))|C(x1, . . . , xn) = y}.

VIII. REDUCTION TO THE CASE OF INTERVAL
UNCERTAINTY

It is known that the above formula (called extension
principle) can be reformulated as follows: for each α, the
α-cut y(α) of y is equal to the range of possible values
of C(x1, . . . , xn) when xi ∈ xi(α) for all i. Thus, from
the computational viewpoint, the problem of computing
the statistical characteristic under fuzzy uncertainty can be
reduced to the problem of computing this characteristic under
interval uncertainty; see, e.g., [5]

In view of this reduction, in the following text, we will
consider the case of interval uncertainty.

IX. ESTIMATING STATISTICS UNDER INTERVAL
UNCERTAINTY: A PROBLEM

In the case of interval uncertainty, instead of the true
values x1, . . . , xn, we only know the intervals x1 =
[x1, x1], . . . ,xn = [xn, xn] that contain the (unknown)
true values of the measured quantities. For different val-
ues xi ∈ xi, we get, in general, different values of the
corresponding statistical characteristic C(x1, . . . , xn). Since
all values xi ∈ xi are possible, we conclude that all the
values C(x1, . . . , xn) corresponding to xi ∈ xi are possi-
ble estimates for the corresponding statistical characteristic.
Therefore, for the interval data x1, . . . ,xn, a reasonable
estimate for the corresponding statistical characteristic is the
range

C(x1, . . . ,xn) def= {C(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.
We must therefore modify the existing statistical algorithms
so that they compute, or bound these ranges.

X. ESTIMATING MEAN UNDER INTERVAL UNCERTAINTY

The arithmetic average E is a monotonically increasing
function of each of its n variables x1, . . . , xn, so its smallest
possible value E is attained when each value xi is the
smallest possible (xi = xi) and its largest possible value
is attained when xi = xi for all i. In other words, the range
E of E is equal to [E(x1, . . . , xn), E(x1, . . . , xn)]. In other
words, E =

1
n
· (x1 + . . .+xn) and E =

1
n
· (x1 + . . .+xn).

XI. ESTIMATING VARIANCE UNDER INTERVAL
UNCERTAINTY

It is known that the problem of computing the exact
range V = [V , V ] for the variance V over interval data
xi ∈ [x̃i−∆i, x̃i+∆i] is, in general, NP-hard; see, e.g., [10],
[11]. Speci�cally, there is a O(n · log(n)) time algorithm for
computing V , but computing V is, in general, NP-hard.

In many practical situations, there are ef�cient algorithms
for computing V : e.g., an O(n · log(n)) time algorithm exists
when no two narrowed intervals [x−i , x+

i ] (where x−i
def= x̃i−

∆i

n
and x+

i
def= x̃i +

∆i

n
) are proper subsets of one another,

i.e., when [x−i , x+
i ] 6⊆ (x−j , x+

j ) for all i and j [4].



XII. COMMENT ABOUT THE POSSIBILITY OF
LINEAR-TIME ALGORITHMS

As we will see, in the O(n · log(n)) algorithm, the main
computation time is used on sorting. It is possible to avoid
sorting when estimating variance under interval uncertainty
(see, e.g., [6], [15]), and use instead the known fact that we
can compute the median of a set of n elements in linear time
(see, e.g., [3]). (This use of median is similar to the one from
[2], [7].)

It is worth mentioning, however, that while asymptotically,
the linear time algorithm for computing the median is faster
than sorting, this median computing algorithm is still rather
complex � so, for reasonable size n, sorting is faster than
computing the median � and thus, sorting-based algorithms
are actually faster than median-based ones.

XIII. NEED FOR PARALLELIZATION

Traditional algorithms for computing the population vari-
ance V based on the exact values x1, . . . , xn require linear
time O(n). Algorithms for estimating variance under interval
uncertainty require a larger amount of computation time
� e.g., time O(n · log(n)). How can we speed up these
computations?

If we have several processors, then it is desirable to
perform these algorithms in parallel on several processors,
and thus, speed up computations. In this paper, we show
how the algorithms for estimating variance under interval
and fuzzy uncertainty can be parallelized.

In order to describe how to parallelize these algorithms, let
us describe the existing sequential (non-parallel) algorithms
for estimating the variance under interval uncertainty.

XIV. ALGORITHM FOR COMPUTING V IN THE
NO-PROPER-SUBSET CASE

The algorithm from [4] is as follows:
• First, we sort the values x̃i into an increasing sequence.

Without losing generality, we can assume that

x̃1 ≤ x̃2 ≤ . . . ≤ x̃n.

• Then, for every k from 0 to n, we compute the value
V (k) = M (k) − (E(k))2 of the population variance V
for the vector x(k) = (x1, . . . , xk, xk+1, . . . , xn). (For
k = 0, x(0) = (x1, . . . , xn).)

• Finally, we compute V as the largest of n + 1 values
V (0), . . . , V (n).

To compute the values V (k), �rst, we explicitly compute

M (0) =
1
n
·

n∑

i=1

(xi)2, E(0) =
1
n
·

n∑

i=1

xi, and

V (0) = M (0) − (E(0))2.

Once we know the values M (k) and E(k), we can compute

M (k+1) = M (k) +
1
n
· (xk+1)

2 − 1
n
· (xk+1)2

and
E(k+1) = E(k) +

1
n
· xk+1 −

1
n
· xk+1.

XV. POSSIBILITY OF PARALLELIZATION

For large n, we may want to further speed up computations
if we have several processors working in parallel.

In the general case, all the stages of the above algorithm
can be parallelized by known techniques. In particular, Stage
3 is a particular case of a general pre�x-sum problem, in
which we must compute the values

an, an ∗ an−1, an ∗ an−1 ∗ an−2, . . . ,

for some associative operation ∗ (in our case, ∗ = max).

XVI. CASE OF POTENTIALLY UNLIMITED NUMBER OF
PROCESSORS

If we have a potentially unlimited number of processors,
then we can do the following (see, e.g., [8], for the informa-
tion on how to parallelize the corresponding stages):
• on Stage 1, we can sort the values x̃i in time O(log(n));
• on Stage 2, we can compute the values V (i) (i.e., solve

the pre�x-sum problem) in time O(log(n));
• on Stage 3, we can compute the maximum of V (i) in

time O(log(n)).
As a result, we can check monotonicity in time

O(log(n)) + O(log(n)) + O(log(n)) = O(log(n)).

XVII. CASE OF A FIXED NUMBER OF PROCESSORS

If we have p < n processors, then we can:
• on Stage 1, sort n values in time

O

(
n · log(n)

p
+ log(n)

)
;

see, e.g., [8];
• on Stage 2, compute the values V (i) in time

O

(
n

p
+ log(p)

)
;

see, e.g., [1];
• on Stage 3, compute the maximum of V (i) in time

O

(
n

p
+ log(p)

)
.

Overall, we thus need time

O

(
n · log(n)

p
+ log(n)

)
+ O

(
n

p
+ log(p)

)
+

O

(
n

p
+ log(p)

)
=

O

(
n · log(n)

p
+ log(n) + log(p)

)
.
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