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Abstract�Different models can be used to describe real-life
phenomena: deterministic, probabilistic, fuzzy, models in which
we have interval-valued or fuzzy-valued probabilities, etc. Models
are usually not absolutely accurate. It is therefore important
to know how accurate is a given model. In other words, it is
important to be able to measure a mismatch between the model
and the empirical data. In this paper, we describe an approach of
measuring this mismatch which is based on the notion of utility,
the central notion of utility theory.

We also show that a similar approach can be used to measure
the loss of privacy.

I. FORMULATION OF THE PROBLEM

A. Models are usually approximate
In most areas of science and engineering, we only have

approximate models for the real-world phenomena, i.e., mod-
els which are not 100% accurate. Since the models are
approximate, their predictions are also only approximate.

B. It is desirable to gauge the accuracy of a model
In order to understand how accurate are the models' pre-

dictions, we need to know how accurate are the models
themselves.

An ideal way to gauge the quality of a model is to compare
it with the empirical data, i.e., to validate this model.

C. Simplest case: deterministic phenomena
Let us start with the simplest situation, when we have a

deterministic phenomenon and we have a deterministic model
which describes this phenomenon. In this situation, we can
simply compare the measured value of the desired quantity
with the values predicted by the model.

In such a situation, the difference between the actual and
predicted values is a reasonable measure of a mismatch
between the real-life phenomenon and the model.

D. Real-life situation: non-deterministic phenomena
In real life, many phenomena are non-deterministic. For

such phenomena, we cannot predict the exact values of the
corresponding quantities; at best, we can predict the probabil-
ities of different values of these quantities.

To validate such models, we must therefore compare the
predicted probability distribution with the empirical probabil-
ity distribution. In such situations, it is not completely clear
how we can measure the mismatch between the corresponding
probability distributions, i.e., how we can gauge the validity
of the probabilistic models.

E. Additional complexity and relation to fuzzy techniques
In practice, the situation is even more complex. Based

on a �nite sample of real-life events, we cannot uniquely
determine the corresponding empirical distribution: we can
only provide, with different degrees of con�dence, bounds on
the corresponding probabilities.

In other words, for each event, instead of a single value
of its probability, we get a nested family of con�dence inter-
vals corresponding to different levels of uncertainty. Nested
families are, in effect, equivalent to fuzzy numbers; see, e.g.,
[2], [7], [8], [9], so hopefully, techniques for processing fuzzy
numbers will be helpful in this comparison.

F. What we do in this paper
In this paper, we mainly consider the case of probability

distributions. The last section discusses the possibility of
extending these results to a more general case of interval-
valued probability distributions (p-boxes) and nested (= fuzzy)
families of such interval-valued objects.

We also show that a similar approach can be used to measure
the degree of privacy loss.

Comment. Some of our privacy-related results appeared in [1].

II. OUR MAIN IDEA: UTILITY APPROACH

A. Utility approach: a reminder
In decision making theory, it is proven that under certain

reasonable assumptions, a person's preferences are de�ned by
his or her utility function U(x) which assigns to each possible
outcome x a real number U(x) called utility; see, e.g., [6],
[10].



In many real-life situations, a person's choice s does
not determine the outcome uniquely, we may have differ-
ent outcomes x1, . . . , xn with probabilities, correspondingly,
p1, . . . , pn. For such a choice, we can describe the utility U(s)
associated with this choice as the expected value of the utility
of outcomes:

U(s) = E[U(x)] = p1 · U(x1) + . . . + pn · U(xn).

Among several possible choices, a user selects the one for
which the utility is the largest: a possible choice s is preferred
to a possible choice s′ (denoted s > s′) if and only if

U(s) > U(s′).

In the general case, when we have a (1-dimensional) prob-
ability distribution with the cumulative distribution function
(cdf) F (x), the utility is described by a similar formula

U(s) = E[U(x)] =
∫

U(x) dF (x).

In particular, in the continuous case, when we have a
probability distribution with the probability density (pdf) ρ(x),
the utility is described by a formula

U(s) = E[U(x)] =
∫

U(x) · ρ(x) dx.

B. Application of utility approach to the problem of measuring
a mismatch between probability distributions

Since our preferences are characterized by the utility values,
it is reasonable to measure mismatch by the possible decrease
in utility. Speci�cally, let F1(x) denote the cdf of the model,
and F2(x) denote the (usually unknown) cdf of the actual
distribution. Similarly, in the continuous case, we will denote
the pdf corresponding to the model by ρ1(x) and the actual
pdf by ρ2(x).

In these terms, if we make a decision based on the model
distribution F1(x), then the expect value of utility is

U1 =
∫

U(x) dF1(x).

Since the actual distribution is different, the actual value of
the expected utility is equal to

U2 =
∫

U(x) dF2(x).

If the actual expected utility is smaller than the what we
planned, i.e., if U2 < U1, then we have a loss caused by
the mismatch. It is therefore reasonable to characterize the
mismatch by this loss U1 − U2.

This loss describes the effect of the mismatch on a speci�c
problem characterized by a speci�c utility function U(x).
Usually, a model is used for many different applications, with
many different utility functions. In some applications, the
difference between the two probability distribution may be
irrelevant for our objectives; in this case, there is no loss. In
other situations, this different may lead to a signi�cant loss.

It is reasonable to gauge the mismatch by the worst possible
loss caused by this mismatch.

C. Which functions U(x) should we consider

In different situations, we may have different utility func-
tions U(x) that describe the dependence of a (predicted)
gain on the (unknown) actual value of the corresponding
parameter x.

This prediction only makes sense only if we can predict
U(x) for each situation with a reasonable accuracy, e.g., with
an accuracy ε > 0. Measurements are never 100% accurate,
and measurement of x are not exception. Let us denote by δ
the accuracy with which we measure x, i.e., the upper bound
on the (absolute value of) the difference ∆x

def= x̃−x between
the measured value x̃ and the (unknown) actual value x. Due
to this difference, the estimated value U(x̃) is different from
the ideal prediction U(x). Usually, measurement errors ∆x
are small, so we can expand the prediction inaccuracy

∆U
def= U(x̃)− U(x) = U(x + ∆x)− U(x)

in Taylor series in ∆x and ignore quadratic and higher order
terms in this expansion, leading to ∆U ≈ U ′(x) ·∆x, where
U ′(x) denotes the derivative of the utility function U(x).

Since the largest possible value of ∆x is δ, the largest
possible value for ∆U is thus |U ′(x)| · δ. Since this value
should not exceed ε, we thus conclude that |U ′(x)| · δ ≤ ε,
i.e., that |U ′(x)| ≤ M

def= ε/δ.
Thus, we arrive at the following de�nition.

III. DEFINITION AND THE MAIN RESULT

De�nition 1. Let F1(x) and F2(x) be two probability distri-
butions on a real line, and let M > 0 be a real number. By
the degree of mismatch dM (F1, F2) between the distributions,
we mean the largest possible value of the difference

∫
U(x) dF1(x)−

∫
U(x) dF2(x)

over all possible functions U(x) for which |U ′(x)| ≤ M for
all x.

Proposition 1. For every two distributions,

dM (F1, F2) = M ·
∫
|F1(x)− F2(x)| dx.

Comment. In view of this result, it is reasonable to measure
the mismatch between two probability distributions by the
following L1-metric:

d(F1, F2)
def=

∫
|F1(x)− F2(x)| dx.

This metric was indeed proposed and successfully used in
model validation [4], [5]. The above result shows that this
metric is not only reasonable, it follows from the general
decision theory-motivated utility-based approach.



IV. PROOF OF THE MAIN RESULT

The desired difference ∆U = U1−U2 can be reformulated
as the integral

∆U =
∫

U(x) (dF1(x)− dF2(x)).

Integrating this expression by parts, we conclude that

∆U =
∫

(F1(x)− F2(x)) · U ′(x) dx.

Since |U ′(x)| ≤ M , we conclude that

(F1(x)− F2(x)) · U ′(x) ≤ |(F1(x)− F2(x)) · U ′(x)| =

|F1(x)− F2(x)| · |U ′(x)| ≤ M · |F1(x)− F2(x)|

and thus,

∆U =
∫

(F1(x)− F2(x)) · U ′(x) dx ≤

∫
M · |F1(x)− F2(x)| dx = M ·

∫
|F1(x)− F2(x)| dx.

So, we have ∆U ≤ dM (F1, F2) for all possible utility
functions U(x). Thus, the largest possible value of ∆U cannot
exceed dM (F1, F2).

Let us now show that the largest possible value of ∆U is ac-
tually equal to dM (F1, F2), i.e., the value ∆U = dM (F1, F2)
is attained for some utility function U(x). Indeed, as such a
utility function, we can take

U(x) def=
∫ x

−∞
M · sign(F1(t)− F2(t)) dt,

where sign(u) is de�ned as usual:
• when u > 0, we de�ne sign(u) = +1;
• when u < 0, we de�ne sign(u) = −1;
• when u = 0, we de�ne sign(u) = 0.

For this utility function, U ′(x) = M · sign(F1(x) − F2(x))
and thus, |U ′(x)| ≤ M for all x. On the other hand, for this
function,

∆U =
∫

(F1(x)− F2(x)) · U ′(x) dx =

∫
(F1(x)− F2(x)) ·M · sign(F1(x)− F2(x)) dx.

For each value u, we have u · sign(u) = |u|. Thus,

∆U =
∫

M · |F1(x)− F2(x)| dx,

i.e., indeed, ∆U = dM (F1, F2). The proposition is proven.

V. HOW TO EXTEND THE MEASURE OF MISMATCH TO
P-BOXES AND TO FUZZY-VALUED P-BOXES

A. Extension to p-boxes
In practice, based on the empirical data, we cannot uniquely

determine the corresponding probabilities F (x). Instead, we
can have con�dence intervals [F (x), F (x)] that contain the
(unknown) values of these probabilities; see, e.g., [11], [12].
Such an interval-valued function that assigns, to every real
number x, the corresponding interval [F (x), F (x)] is called a
p-box; see, e.g., [3]. Once we �x the con�dence level, we thus
have a p-box that contains all probability distributions which
are consistent with the given empirical data.

In this situation, when the empirical data is describe by a
p-box, how can we describe to what extent a given probability
model is consistent with the empirical data? If the model F (x)
�ts within the p-box F (F ∈ F), i.e., if F (x) ∈ [F (x), F (x)]
for all x, this means that we have a perfect match.

In general, it is reasonable to de�ne the degree of mismatch
as the smallest possible mismatch between a model F1 and
distributions from a given p-box:

d(F1,F) = min
F2∈F

d(F1, F2).

A model itself is not necessarily formulated in precise prob-
abilistic terms. For example, we can say that according to
our model, we have a normal distribution with the mean
between −0.1 and 0.1. In this case, a model is also naturally
described by a p-box. In such situations, it is reasonable to
de�ne the mismatch between the p-box F1 describing the
model and the p-box F2 describing the empirical distribution
as the smallest possible mismatch between the probability
distributions F1 ∈ F1 and F2 ∈ F2:

d(F1,F2) = min
F1∈F1,F2∈F2

d(F1, F2).

B. Case of fuzzy uncertainty
Instead of �xing a single con�dence level, it is reasonable

to consider con�dence intervals F(α)(x) corresponding to
different con�dence levels α. The resulting nested family of
intervals can be naturally viewed as a fuzzy number for which
these intervals are α-cuts; see, e.g., [2], [7], [8], [9]. Alterna-
tively, the probabilities F (x) may be given by experts and
thus, can be naturally represented as fuzzy numbers. In both
case, it is reasonable to characterize the mismatch between the
corresponding �fuzzy-valued� probability distributions F1 and
F2 as a function that assigns, to every level α, the degree of
mismatch between the corresponding α-cuts:

d(α)(F1,F2) = min
F1∈F

(α)
1 ,F2∈F

(α)
2

d(F1, F2).

VI. HOW TO MEASURE LOSS OF PRIVACY: AN AUXILIARY
PROBLEM

A. Measuring loss of privacy is important
Privacy means, in particular, that we do not disclose all

the information about ourselves. If some of the originally un-
disclosed information is disclosed, some privacy is lost. To



compare different privacy protection schemes, we must be able
to gauge the resulting loss of privacy.
B. Seemingly natural idea: measuring loss of privacy by the
acquired amount of information

Since privacy means that we do not have complete infor-
mation about a person, a seemingly natural idea is to gauge
the loss of privacy by the amount of new information that we
gained about this person.
C. Why information is not always a perfect measure of loss
of privacy

In our opinion, the amount of new information is not always
a good measure of the loss of privacy because it does not
distinguish between:
• crucial information that may seriously affect a person,

and
• irrelevant information � that may not affect a person at

all.
To make a distinction between these two types of information,
let us estimate potential �nancial losses caused by the loss of
privacy.
D. Example when loss of privacy can lead to a �nancial loss

As an example, let us consider how a person's blood
pressure x affects the premium that this person pays for his
or her health insurance.

From the previous experience, insurance companies can
deduce, for each value of blood pressure x, the expected
(average) value of the medical expenses f(x) of all individuals
with this particular value of blood pressure. So, when the
insurance company knows the exact value x of a person's
blood pressure, it can offer this person an insurance rate
F (x) def= f(x) · (1 + α), where α is the general investment
pro�t. Indeed:
• If an insurance company offers higher rates, then its

competitor will be able to offer lower rates and still make
a pro�t.

• On the other hand, if the insurance company is selling
insurance at a lower rate, then it will not earn enough
pro�t, and investors will pull their money out and invest
somewhere else.

To preserve privacy, we only keep the information that
the blood pressure of all individuals from a certain group
is between two bounds L and U , and we do not know
have any additional information about the blood pressure of
different individuals. Under this information, how much will
the insurance company charge to insure people from this
group?

Based on the past experience, the insurance company is able
to deduce the relative frequency of different values x ∈ [L,U ]
� e.g., in the form of the corresponding probability density
ρ(x). In this case, the expected medical expenses of an average
person from this group are equal to

E[f(x)] def=
∫

ρ(x) · f(x) dx.

Thus, the insurance company will insure the person for a
cost of

E[F (x)] =
∫

ρ(x) · F (x) dx.

Let us now assume that for some individual, the privacy
is lost, and for this individual, we know the exact value x0

of his or her blood pressure. For this individual, the company
can now better predict its medical expenses as f(x0) and thus,
offer a new rate F (x0) = f(x0) · (1 + α). When

F (x0) > E[F (x)],

the person whose privacy is lost also experiences a �nancial
loss F (x0)−E[F (x)]. We will use this �nancial loss to gauge
the loss of privacy.

E. Need for a worst-case comparison
In the above example, there is a �nancial loss only if the

person's blood pressure x0 is worse than average. A person
whose blood pressure is lower than average will only bene�t
from reduced insurance rates.

However, in a somewhat different situation, if the person's
blood pressure is smaller (better) than average, this person's
loss or privacy can also lead to a �nancial loss. For example,
an insurance company may, in general, pay for a preventive
medication that lowers the risk of heart attacks � and of
the resulting huge medical expenses. The higher the blood
pressure, the larger the risk of a heart attack. So, if the
insurance company learns that a certain individual has a lower-
than-average blood pressure and thus, a lower-than-average
risk of a heart attack, this risk may not justify the expenses
on the preventive medication. Thus, due to a privacy loss, the
individual will have to pay for this potentially bene�cial med-
ication from his/her own pocket � and thus, also experience a
�nancial loss.

So, to gauge a privacy loss, we must consider not just a
single situation, but several different situations, and gauge the
loss of privacy by the worst-case �nancial loss caused by this
loss of privacy.

F. Which functions F (x) should we consider
Similarly to the main part of the text, we should consider

functions F (x) for which |F ′(x)| ≤ M for some given number
M > 0.

G. Resulting de�nitions
Thus, we arrive at the following de�nition:

De�nition 2. Let P be a class of probability distributions on
a real line, and let M > 0 be a real number. By the amount
of privacy A(P) related to P , we mean the largest possible
value of the difference F (x0)−

∫
ρ(x) · F (x) dx over:

• all possible values x0,
• all possible probability distributions ρ ∈ P , and
• all possible functions F (x) for which |F ′(x)| ≤ M for

all x.



The above de�nition involves taking a maximum over all
distributions ρ ∈ P which are consistent with the known infor-
mation about the group to which a given individual belongs. In
some cases, we know the exact probability distribution, so the
family P consists of only one distribution. In other situations,
we may not know this distribution. For example, we may only
know that the value of x is within the interval [L,U ], and we
do not know the probabilities of different values within this
interval. In this case, the class P consists of all distributions
which are located on this interval (with probability 1).

When we learn new information about this individual, we
thus reduce the group and hence, change from the original
class P to a new class Q. This change, in general, decreases
the amount of privacy.

In particular, when we learn the exact value x0 of the
parameter, then the resulting class of distribution reduces to
a single distribution concentrated on this x0 with probability
1 � for which F (x0) −

∫
ρ(x) · F (x) dx = 0 and thus, the

privacy is 0. In this case, we have a 100% loss of privacy �
from the original value A(P) to 0. In other cases, we may
have a partial loss of privacy.

In general, it is reasonable to de�ne the relative loss of
privacy as a ratio

A(P)−A(Q)
A(P)

. (1)

In other words, it is reasonable to use the following de�nition:

De�nition 3.
• By a privacy loss, we mean a pair 〈P,Q〉 of classes of

probability distributions.
• For each privacy loss 〈P,Q〉, by the measure of a privacy

loss, we mean the ratio (1).

Comment. At �rst glance, it may sound as if these de�nitions
depend on an (unknown) value of the parameter M . However,
it is easy to see that the actual measure of the privacy loss
does not depend on M :
Proposition 2. For each pair 〈P,Q〉, the measure of the
privacy loss is the same for all M > 0.
Proof. To prove this proposition, it is suf�cient to show that
for each M > 0, the measure of privacy loss is the same
for this M and for M0 = 1. Indeed, for each function F (x)
for which |F ′(x)| ≤ M for all x, for the re-scaled function
F0(x) def= F (x)/M , we have |F ′0(x)| ≤ 1 for all x, and

F (x0)−
∫

ρ(x) · F (x) dx =

M ·
(

F0(x0)−
∫

ρ(x) · F0(x) dx

)
. (2)

Vice versa, if |F ′0(x)| ≤ 1 for all x, for the re-scaled function
F (x) def= M · F0(x), we have |F ′(x)| ≤ M for all x,
and (2). Thus, the maximized values corresponding to M
and M0 = 1 different by a factor M . Hence, the resulting
amounts of privacy A(P) and A0(P) corresponding to M

and M0 also differ by a factor M : A(P) = M · A0(P).
Substituting this expression for A(P) (and a similar expression
for A(Q)) into the de�nition (1), we can therefore conclude
that A(P)−A(Q)

A(P)
=

A0(P)−A0(Q)
A0(P)

, i.e., that the measure
of privacy is indeed the same for M and M0 = 1. The
proposition is proven.

H. The new de�nition of privacy loss is in good agreement
with intuition

Let us show that the new de�nition adequately describes the
difference between learning that the parameter is in the lower
half of the original interval and that the parameter if even.

Proposition 3. Let [l, u] ⊆ [L, U ] be intervals, let P be the
class of all probability distributions located on the interval
[L,U ], and let Q be the class of all probability distributions
located on the interval [l, u]. For this pair 〈P,Q〉, the measure
of the privacy loss if equal to 1− u− l

U − L
.

Proof. Due to Proposition 2, for computing the measure of
the privacy loss, it is suf�cient consider the case M = 1. Let
us show that for this M , we have A(P) = U − L.

Let us �rst show that for every x0 ∈ [L,U ], for every
probability distribution ρ(x) on the interval [L,U ], and for
every function F (x) for which |F ′(x)| ≤ 1, the privacy loss
F (x0)−

∫
ρ(x) · F (x) dx does not exceed U − L.

Indeed, since
∫

ρ(x) dx = 1, we have

F (x0) =
∫

ρ(x) · F (x0) dx

and hence,

F (x0)−
∫

ρ(x) · F (x) dx =
∫

ρ(x) (F (x0)− F (x)) dx.

Since |F ′(x)| ≤ 1, we conclude that

|F (x0)− F (x)| ≤ |x0 − x|.
Both x0 and x are within the interval [L,U ], hence |x0−x| ≤
U − L, and |F (x0) − F (x)| ≤ U − L. Thus, the average
value

∫
ρ(x)·(F (x0)−F (x)) dx of this difference also cannot

exceed U − L.
Let us now show that there exists a value x0 ∈ [L,U ],

a probability distribution ρ(x) on the interval [L,U ], and a
function F (x) for which |F ′(x)| ≤ 1, for which the privacy
loss F (x0) −

∫
ρ(x) · F (x) dx is exactly U − L. As such an

example, we take F (x) = x, x0 = U , and ρ(x) located at a
point x = L with probability 1. In this case, the privacy loss
is equal to F (U)− F (L) = U − L.

Similarly, we can prove that A(Q) = u − l, so we get the
desired measure of the privacy loss. The proposition is proven.

Comment. In particular, if we start with an interval [L,U ],
and then we learn that the actual value x is in the lower half
[L, (L + U)/2] of this interval, then we get a 50% privacy
loss.



What about the case when we assume that x is even?
Similarly to the proof of the above proposition, one can prove
that if both L and U are even, and Q is the class of all
distributions ρ(x) which are located, with probability 1, on
even values x, we get A(Q) = A(P). Thus, the even-values
restriction lead to a 0% privacy loss.

Thus, the new de�nition of the privacy loss is indeed in
good agreement with our intuition.
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