
Program Synthesis from
Workflow-Driven Ontologies

Leonardo Salayandia
leonardo@utep.edu

Steve Roach
sroach@utep.edu

Ann Q. Gates

agates@utep.edu

Department of Computer Science
University of Texas at El Paso

El Paso, Texas 79902, USA

 Abstract – An approach that results in the development of
Workflow-Driven Ontologies (WDO) (called the WDO approach)
allows domain scientists to capture process knowledge in the
form of concepts as well as relations between concepts. Program
synthesis techniques can be employed to generate algorithmic
solutions by transforming the process knowledge expressed in the
WDO as concepts and relations to variables and functions and
computing unknown variables from known ones based on the
process knowledge documented by the domain scientist.
Furthermore, the algorithmic solutions that are generated by
program synthesis potentially can support the composition of
services, which result in the creation of executable scientific
workflows.
 The ultimate goal of this work is to provide an end-to-end
solution for scientists beginning with modeling the processes for
creating work products in terminology from the scientist’s own
domains and ending with component-based applications that can
be used to automate processes that can advance their scientific
endeavors. These applications can exploit distributed components
that are supported by current cyber-infrastructure efforts. This
paper discusses extensions to the WDO approach that support
program synthesis. To elucidate this scenario, an example related
to earth sciences is presented.

I. INTRODUCTION

Recent efforts on cyber-infrastructure (CI) development
have resulted in increased availability of resources for
scientists to conduct research in new ways [1]. According to
the National Science Foundation CI Council, cyber-
infrastructure refers to the infrastructure that integrates
“hardware computing, data and networks, digitally-enabled
sensors, observatories and experimental facilities, and an
interoperable suite of software and middleware services and
tools.” As a consequence, scientists now need assistance with
integrating these new technologies into their practices.
Salayandia et al. in [2] describe the Workflow-Driven
Ontologies (WDO) approach that has been developed with the
intention of enabling domain scientists to create and customize
their own applications by composing resources that are
accessible over CI. A WDO consists of an upper-level
ontology that can be extended by domain scientists to capture
process knowledge or knowledge about how scientific tasks
are conducted. The structure of the WDO upper-level ontology
serves as guidance to the scientist in documenting process
knowledge that is amenable to automatic workflow
specification generation. The workflow specifications that are
generated from WDOs are referred to as model-based

workflows (MBW) [3]. The MBW specifications produced
from the WDO approach have a graphical representation that
is an effective tool for communicating process knowledge
among domain scientists [4]. Furthermore, MBW
specifications can also be used as a communication tool
between scientists and technologists to create component-
based applications that implement process knowledge from
computational components that are openly available for
scientific use over CI.

To summarize, the WDO approach supports the scientist’s
ability to create and manipulate models (or ontologies) about
the processes of their domain using domain-specific terms and
to subsequently extract workflow specifications from these
models. This paper describes the application of program
synthesis techniques to generate MBW specifications from the
process knowledge captured in workflow-driven ontologies.

The visionary goal of the National Science Foundation
and other international agencies is to enable new ways of
conducting science through CI [5]. The ultimate goal of the
work described in this paper is to provide an end-to-end
solution for the scientist where the result of the scientist’s
efforts to create a model of a process is not a specification that
a technologist must implement, but rather, an application that
can be generated and executed on the fly and that can be
customized according to the scientist’s specific needs. This
scenario is elucidated through an example from the Earth
sciences community.

The rest of the paper is organized as follows. Section 2
provides an overview of the WDO approach. Section 3
describes the program synthesis technique that has been
chosen for this work. Section 4 explains how probabilistic
interval and fuzzy uncertainty can be propagated via
synthesized data processing programs. Section 5 describes the
generation of workflow specifications by utilizing program
synthesis on process knowledge captured through the WDO
approach. Section 6 presents a scenario related to earth science
to elucidate an end-to-end solution from capturing process
knowledge to executing scientific workflows, and Section 7
presents conclusions and future work.

II. WORKFLOW-DRIVEN ONTOLOGIES

 Our previous work has resulted in the development of the
Workflow-Driven Ontologies (WDO) approach [2]. The

intention of WDO is to facilitate the capture of process
knowledge by scientists directly with terms from their own
domains of expertise. Having well documented process
knowledge has several benefits:

• It helps domain experts communicate and share
operational process knowledge (i.e., how-to knowledge)
with colleagues and students;

• it helps domain experts explain their requirements to
colleagues from other fields, e.g., computer programmers,
who can help build tools automate processes; and

• it helps domain experts find commonalities between their
processes and the processes of other domains that can
lead to improved inter-disciplinary collaboration.
In the WDO approach, process knowledge is captured as

ontologies expressed in the Web Ontology Language (OWL).
OWL provides a formal framework to document ontologies
based on Description Logics [6]. Given the formalisms
provided by OWL, the process knowledge documented
through the WDO approach can be leveraged towards the
automatic generation of workflow specifications that can
potentially be translated to executable scientific workflows.

Fig. 1 Class hierarchy defined in the WDO-upper-level ontology

 The WDO approach is based on the definition of an
upper-level ontology that can be extended by domain
scientists to capture process knowledge. Part of the upper-
level ontology, referred to as the WDO-upper level ontology,
is presented in Figure 1. This ontology presents a basic
categorization of concepts into Information and Method.
Information refers to the data and dataset concepts that are
specific to the domain being addressed. Method refers to the
algorithms, functionality, or actions that are available in the
domain to transform or manipulate Information. In addition to
guiding scientists through the process of identifying and
categorizing information and method concepts, scientists are
guided to identify input and output relations between concepts.
As a result, process knowledge in the WDO approach takes
the form of Information being input into Methods, and the
Methods outputting some transformed Information. Figure 2
presents a compounded workflow specification where some
data concept is input to a method concept and this method
outputs some transformed data represented by a second data
concept, and this basic workflow pattern is repeated until
some desired target data is reached.

As a side effect of applying the WDO approach, the
Method concepts defined in the resulting ontology have a

unique input and output signature. The application of the
WDO approach to capture process knowledge results in
concept and relation descriptions of the form:

Information » Method > Information
The » sign in this pattern means that a Method can have

multiple Information inputs, and the > sign means that a
Method has a single Information output.

Fig. 2 Basic WDO relations used to document process knowledge

This concept and relation form simplifies the process of

automating workflow generation by uniquely identifying the
Information concepts related to a given Method on a workflow
specification. The automatic generation of workflow
specifications from WDO ontologies was initially explored in
[2], and it is formalized here through the application of
established program synthesis techniques.

III. PROGRAM SYNTHESIS

As presented in [7-11], program synthesis tries to solve
problems of the following general form:

• there are some known values x1,…,xn, e.g., values that
have been measured;

• there are some unknown values y1,…,ym that are of
interest; and

• there is a known relation between the known values
and the unknown values, e.g., F(x, y) = 0, where F is
some known expression.

The question is: given this knowledge, i.e., the known
values and the known relations, is it possible to compute the
unknown values, and if possible, how?

To illustrate these types of problems, the triangle example
is presented as discussed in [7, 8].

A triangle is described by its angles A, B, and C, and its
side lengths a, b, and c. The following relations are known:

(1) A + B + C = π, i.e., the sum of the angles is 180º, or π
radians;

(2) a2 + b2 – 2ab(cos C) = c2, i.e., the cosine theorem,
with similar equations for a2 and b2; and

(3) a/(sin A) = b/(sin B) = c/(sin C), i.e., the sine
theorem.

Suppose that the side lengths a, and b and the angle A are
known, and it is necessary to determine the length of side c.
As a result, the knowledge in this example problem is
represented by relations (1), (2), and (3) and the values of a, b,
and A; and the unknown value is c.

A solution to these types of problems was proposed by
Tyugu and Mints [8-11]. The first stage of their approach is an
analysis to determine which quantities are directly
computable. As an example, consider the triangle problem
presented earlier; if A and B are known, then the value of C
can be computed by applying equation (1), as C = π - A - B.
This computability relation is represented by using the
implication notation:

A, B → C.
Similarly, if A and C are known, B can be computed, and if B
and C are known, A can be computed. As a result, the
additional computability relations are obtained: A, C → B and
B, C → A. Additional computability relations follow from
equations (2) and (3).

The second stage of the approach is to determine whether
a given variable of interest is directly or indirectly computable
from known variables, and if so, compute it. The wave
algorithm determines the computable closure of the variable
set. The first step is to add all the variables bound to ground
instances to the set of computable variables, C. Then, find all
the computability equations that have all their condition
variables in C chosen, and the conclusion variable of each is
added to C. This procedure is repeated until nothing new is
added to C, which means that nothing else can be computed
from the initial set of computability relations and the initially
known variables. Since there are finitely many variables, this
process will eventually stop. If the variable of interest is in C,
then it can be computed; otherwise, it cannot. Furthermore,
keeping track of the order in which conclusion variables are
added to C can be leveraged to determine the order in which
the computability relations need to be applied to compute the
variable of interest. Consider the triangle example; if a, b, and
A are initially assigned values, then the first iteration of the
wave algorithm will result in adding variable B to the C set
through a computability relation resulting from equation (3),
i.e., a, b, A → B. For the second iteration, the computability
relation A, B → C from equation (1) can be utilized to add
variable C to the C set. Finally, the computability relation a, b,
C → c from equation (2) will result in the addition of variable
c to the C set, at which point there are no more variables to
add to C and the wave algorithm stops.

As a result, a program can be synthesized to compute c
from a, b, and A as follows: first a computability relation
resulting from the sine theorem, i.e., equation (3), is applied to
compute B from a, b, and A; then a computability relation
obtained from equation (1) is applied to compute C from A
and B, and finally; a computability relation obtained from the
cosine theorem, i.e., equation (2), is applied to compute c from
a, b, and C.

Tyugu and Mints also showed that the computability
relations produced in the first stage can be reformulated in

logical terms. For example, the relation: A, B → C can be
interpreted as the propositional formula A & B → C, where A,
B and C are Boolean variables meaning that the corresponding
quantities are computable from the inputs. In the triangle
example, the corresponding propositional formulae, along
with the known variables represent the knowledge base, and
the goal is to determine whether a given variable of interest is
deducible from the knowledge base.

IV. PROPAGATING PROBABILISTIC, INTERVAL, AND FUZZY
UNCERTAINTY

In practice, the values of the input quantities x1,…,xn come
either from measurement, or from expert estimation. In both
cases, the input quantities are known with uncertainty.

For measured values, the exact probability estimation of
the measurement error is sometimes known. In such cases, the
actual value is known with probabilistic uncertainty [12, 13].

In other cases, only the upper bound ∆ on the
measurement error is known. In such cases, based on the
measurement result X, it can only be concluded that the actual
value of the measured quantity belongs to the interval

[X - ∆, X + ∆].
In other words, in such cases, the value is known with

interval uncertainty [14].
For estimated values, experts often profile their

uncertainty estimates by using imprecise words from natural
language, e.g., “density is about 6.0.” A natural way to
formalize this type of uncertainty is to use fuzzy techniques
[15, 16].

Once the uncertainty in the inputs x1,…,xn is known, as
well as the data processing algorithm transforming these
inputs into the desired outputs y1,...,ym, known uncertainty
propagation techniques can be applied to derive uncertainty in
the results y1,…,ym of data processing [12-18].

V. APPLYING PROGRAM SYNTHESIS TO WDO

As mentioned above, the application of the WDO
approach to capture process knowledge results in concept and
relation descriptions of the form:

Information » Method > Information
More generally, this basic pattern can be mapped to

relations of the form F (A1,…,An) = 0, where F is a function
that corresponds to the Method concept and A1,…,An
correspond to the input and output Information concepts
described in the basic pattern. From this mapping, the Tyugu
and Mints program synthesis techniques can be applied.

Following the two-stage approach described previously,
the first stage determines which quantities are computable
from which. The WDO gives us this analysis directly. For
example, consider the following WDO relation specification:

A, B » F > C

If A and B are known Information concepts, then Information
concept C can be computed, and it is written as the
computability relation: A, B → C. This transformation can be
done for all the process knowledge captured as WDO
relations.

The second stage of the approach is to determine whether
a given variable of interest is computable from known
variables, and if possible, how? This is done by applying the
wave algorithm.

After a variable of interest is determined to be deducible
from the knowledge base, and an ordering of formula
applications has been determined by the wave algorithm, the
formulae are mapped back to their original WDO relations
form, and this ordering of WDO relations can be interpreted as
an MBW for the Information concept of interest. Depending
on the knowledge base used, a possibility is that there exist
multiple orderings of formulae that will lead to the deduction
of the variable of interest. Each of the alternative orderings
will correspond to an alternative MBW specification. The
wave algorithm may be extended to produce alternative
solutions, and these alternative MBW specifications may offer
important advantages when trying to implement executable
workflows over existing components. For example, one
alternative may not have all its corresponding components
implemented or readily available.

VI. THE GRAVITY CONTOUR MAP SCENARIO

 Assume that a geoscientist wants to obtain a Contour Map
of Bouguer Anomaly Gravity Data for a given region of
interest, e.g., see [19]. The scientist starts by obtaining a WDO
that documents process knowledge from the geophysics
domain about how to generate such a map. A graphical
representation of such a WDO is presented in Figure 3.

From this WDO, the following propositional formulae can
be interpreted:

1. SimpleBouguer & RegionOfInterest → Grid
2. Grid → ContourMap

The scientist identifies ContourMap as the intended
information concept desired, and identifies RegionOfInterest
and SimpleBouguer anomaly data as the known information
concepts. The application of the wave algorithm to this
knowledge base will result in the conclusion that ContourMap
indeed can be deduced. Furthermore, keeping track of the
order in which conclusion variables are marked through the
iterations of the wave algorithm will determine an ordering in
which the propositional formulae should be applied to reach
the ContourMap computation.

Fig. 3 WDO process knowledge to produce a Contour Map from Simple

Bouguer Anomaly gravity data

In this case, there is only one possible ordering to

compute the variable of interest, and so, the corresponding
workflow specification will result in the following:

1. Apply the Gridding method using SimpleBouguer
anomaly and RegionOfInterest information as input to
produce Grid information;

2. Apply the Contouring method using the Grid
information produced in the previous step as input to
produce the target ContourMap information.

Notice that in this scenario, both SimpleBouguer and
RegionOfInterest are necessary to produce ContourMap. If
either of these concepts were unknown, the wave algorithm
would determine that the ContourMap could not be produced
from the given knowledge base.

This is a simplified example that is intended to
demonstrate the use of the program synthesis techniques
(originally proposed by Tyugu and Mints) in the WDO
context. In general, the WDO approach is intended to be
leveraged by scientists that are collaborating across multiple
disciplines. Applying this program synthesis technique to
WDOs that document process knowledge from multiple
domains of expertise will hopefully result in the discovery of
MBW specifications that are non-evident for an expert user of
one particular domain.

VII. CONCLUSIONS AND FUTURE WORK

The ultimate goal of this work is to enable new ways of
conducting science through CI by providing an end-to-end
solution for the scientist where the result of the scientist’s
efforts to create a model of a process includes the ability to
generate an application that can be executed automatically.
Although there is still a gap between the MBW specifications
generated by this approach and the executable application that
the scientist desires, this work makes a step towards separating
the scientist user from the technical details of constructing the
application program.

In addition, the work presented here provides the benefit
of being able to deal with cross-disciplinary scenarios, where

complex data-processing specifications can be generated using
process knowledge from multiple scientific domains such as
those supported by CI efforts.

General ontology specifications offer more sophisticated
relations than the input/output WDO relations discussed here.
For example, in OWL, a relation may be declared to be
transitive, bi-directional, or to have a specific cardinality [20].
Furthermore, relations of the type IS_A offer a mechanism to
model concept inheritance that is commonly supported in
ontology specifications, including WDO ontologies. Some of
these additional types of relations may prove useful in
documenting domain process knowledge. Additional work is
required to extend the program synthesis technique described
here to take advantage of additional computability relations
that may be extracted from these types of relations.

There are other program synthesis techniques that are
more sophisticated and powerful. If all of the formulae for
variables of interest can be oriented, rewriting approaches
might be appropriate [21]. If the formulae are not all
orientable, deductive synthesis using resolution [22] or tableau
[23] can provide synthesis using the full expressiveness of first
order logic. A common difficulty with first order logic arises
from the search space explosion. Techniques for procedural
attachment have been developed [24, 25], as have techniques
for automatically generating domain-specific decision
procedures for subsets of domain theories [26]. Applying these
types of techniques to extract workflow specifications from
WDO ontologies is left as future work along with
investigation of more sophisticated ontological relations for
use in the WDO approach. For now, the simplicity of the
propositional-logic based approach proposed by Tyugu and
Mints offers a clean, efficient implementation that maps nicely
to the WDO approach.

Other work discussed in [27] addresses the need to
provide feedback to the end-user, e.g., a scientist, with respect
to the quality of the end-product resulting from a data
processing application. By attaching provenance information
to the end-product about the datasets and functional
components used in its creation, the scientist can have access
to additional information to assist in making an informed
decision about the appropriateness of the end product. Since
the program synthesis technique described here can result in
the extraction of different MBW alternatives from the
documented process knowledge in a WDO, integrating tools
that aid the scientist in the decision process of selecting an
alternative will become an essential component in the
envisioned end-to-end solution to conduct science over CI.

ACKNOWLEDGMENT

 This work is funded in part by the National Science
Foundation (NSF) through the CyberShARE Center of
Excellence, grant HRD-0734825. Additionally, the authors
would like to thank Dr. Vladik Kreinovich for his advice in
this work.

REFERENCES
[1] The Geosciences Network: Building Cyberinfrastructure for the

Geosciences, http://www.geongrid.org, May 2006.
[2] L. Salayandia, P. Pinheiro, A.Q. Gates, and F. Salcedo, “Workflow-driven

ontologies: an earth sciences case study,” Proc. of 2nd Intl. Conf. on e-
Science and Grid Technologies (e-Science 2006), December 4-6, 2006,
Amsterdam, Netherlands.

[3] L. Salayandia, P. Pinheiro, A.Q. Gates, A. Rebellon, “A model-based
workflow approach for scientific applications,” Proc. of 6th OOPSLA
Workshop on Domain-Specific Modeling, October 2006, Portland, OR.

[4] Materials of the Summer Southwest Regional Cyberinfrastructure
Workshop, August 10, 2007, El Paso, Texas, unpublished.

[5] Cyberinfrastructure Council 2007, Cyberinfrastructure Vision for 21st
Century Discovery, http://www.nsf.gov/pubs/2007/nsf0728/nsf0728.pdf

[6] OWL Web Ontology Language, W3C Recommendation, February 2004,
http://www.w3.org/TR/owl-features

[7] D.E. Cooke, V. Kreinovich, and S.A. Starks, “ALPS: A logic for program
synthesis (motivated by fuzzy logic),” Proc. of the FUZZ-IEEE'98 Intl.
Conf. on Fuzzy Systems, Anchorage, Alaska, May 4-9, 1998, Vol. 1, pp.
779-784.

[8] E. Tyugu, Knowledge-based programming, Addition-Wesley,
Wokingham, England, 1988.

[9] E. Tyugu, Algorithms and architectures of artificial intelligence, IOS
Press, Amsterdam, The Netherlands, 2007.

[10]G. Mints and E. Tyugu, “The programming system PRITZ,” Journal of
Symbolic Computations, 1988, Vol. 5, pp. 359-375.

[11]G.E. Mints and E.H. Tyugu, “Propositional logic programming and the
PRITZ system,” Journal of Logic Programming, 1990, Vol. 9, pp. 179-
193.

[12]D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, Chapman & Hall/CRC, Boca Raton, Florida, 2004.

[13]H. M. Wadsworth, (ed.), Handbook of statistical methods for engineers
and scientists, McGraw-Hill Publishing Co., New York, 1990.

[14]L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis,
with Examples in Parameter and State Estimation, Robust Control and
Robotics, Springer-Verlag, London, 2001, ISBN 1-85233-219-0.

[15]G. Klir and B. Yuan, Fuzzy sets and fuzzy logic, Prentice Hall, New
Jersey, 1995.

[16]H. T. Nguyen and E. A. Walker, A First Course in Fuzzy Logic, CRC
Press, Boca Raton, Florida, 2006.

[17]W. Pedrycz, A. Skowron, and V. Kreinovich (eds.), Handbook on
Granular Computing, Wiley (to appear).

[18]C. Hu, R.B. Kearfott, A. Korvin, and V. Kreinovich (eds.), Knowledge
Processing with Interval and Soft Computing, Springer Verlag, Berlin-
Heidelberg-New York (to appear).

[19]C.M.R. Fowler, The Solid Earth, An Introduction to Global Geophysics,
Cambridge University Press, 2004.

[20]M.K. Smith, C. Welty, and D.L. McGuinness, (eds.), OWL Web Ontology
Language Guide, W3C Recommendation, February 10, 2004,
http://www.w3.org/TR/2004/REC-owl-guide-20040210/

[21]F. Baader and T. Nipkow, Term Rewriting and All, That Cambridge
University Press, 1999.

[22]M. Lowry and J. Van Baalen, “Synthesis of Efficient Domain-Specific
Program Synthesis Systems,” Automated Software Engineering, Volume
4, Number 2, Springer, April 1997 , pp. 199-241(42)

[23]Z. Manna and R. Waldinger, The Deductive Foundations of Computer
Programming, Addison-Wesley Professional, 1993.

[24]M. Stickel, “Automated Deduction by Theory Resolution,” In Proc. of 9th
Intl Joint Conf on Artificial Intelligence, IJCAI 85, 1985.

[25]H. Bürckert, “A resolution principle for clauses with constraints,” Lecture
Notes in Computer Science, Volume 449, Springer, 1990.

[26]S. Roach and J. Van Baalen, “Automated Procedure Construction for
Deductive Synthesis,” Journal of Automated Software Engineering,

Springer Science and Business Media, Vol. 12, No. 4, pp 393-414,
October, 2005.

[27]N. Del Rio and P. Pinheiro, “Probe-It! visualization support for
provenance,” In Proc. of the 3rd Intl. Symposium on Visual Computing
(ISVC 2007), Lake Tahoe, NV/CA, November 26-28, 2007.

