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 Abstract – An approach that results in the development of 
Workflow-Driven Ontologies (WDO) (called the WDO approach) 
allows domain scientists to capture process knowledge in the 
form of concepts as well as relations between concepts. Program 
synthesis techniques can be employed to generate algorithmic 
solutions by transforming the process knowledge expressed in the 
WDO as concepts and relations to variables and functions and 
computing unknown variables from known ones based on the 
process knowledge documented by the domain scientist. 
Furthermore, the algorithmic solutions that are generated by 
program synthesis potentially can support the composition of 
services, which result in the creation of executable scientific 
workflows.  
   The ultimate goal of this work is to provide an end-to-end 
solution for scientists beginning with modeling the processes for 
creating work products in terminology from the scientist’s own 
domains and ending with component-based applications that can 
be used to automate processes that can advance their scientific 
endeavors. These applications can exploit distributed components 
that are supported by current cyber-infrastructure efforts. This 
paper discusses extensions to the WDO approach that support 
program synthesis. To elucidate this scenario, an example related 
to earth sciences is presented. 

 

I. INTRODUCTION 

Recent efforts on cyber-infrastructure (CI) development 
have resulted in increased availability of resources for 
scientists to conduct research in new ways [1]. According to 
the National Science Foundation CI Council, cyber-
infrastructure refers to the infrastructure that integrates 
“hardware computing, data and networks, digitally-enabled 
sensors, observatories and experimental facilities, and an 
interoperable suite of software and middleware services and 
tools.” As a consequence, scientists now need assistance with 
integrating these new technologies into their practices. 
Salayandia et al. in [2] describe the Workflow-Driven 
Ontologies (WDO) approach that has been developed with the 
intention of enabling domain scientists to create and customize 
their own applications by composing resources that are 
accessible over CI. A WDO consists of an upper-level 
ontology that can be extended by domain scientists to capture 
process knowledge or knowledge about how scientific tasks 
are conducted. The structure of the WDO upper-level ontology 
serves as guidance to the scientist in documenting process 
knowledge that is amenable to automatic workflow 
specification generation. The workflow specifications that are 
generated from WDOs are referred to as model-based 

workflows (MBW) [3]. The MBW specifications produced 
from the WDO approach have a graphical representation that 
is an effective tool for communicating process knowledge 
among domain scientists [4]. Furthermore, MBW 
specifications can also be used as a communication tool 
between scientists and technologists to create component-
based applications that implement process knowledge from 
computational components that are openly available for 
scientific use over CI. 

To summarize, the WDO approach supports the scientist’s 
ability to create and manipulate models (or ontologies) about 
the processes of their domain using domain-specific terms and 
to subsequently extract workflow specifications from these 
models. This paper describes the application of program 
synthesis techniques to generate MBW specifications from the 
process knowledge captured in workflow-driven ontologies. 

The visionary goal of the National Science Foundation 
and other international agencies is to enable new ways of 
conducting science through CI [5]. The ultimate goal of the 
work described in this paper is to provide an end-to-end 
solution for the scientist where the result of the scientist’s 
efforts to create a model of a process is not a specification that 
a technologist must implement, but rather, an application that 
can be generated and executed on the fly and that can be 
customized according to the scientist’s specific needs. This 
scenario is elucidated through an example from the Earth 
sciences community. 

The rest of the paper is organized as follows. Section 2 
provides an overview of the WDO approach. Section 3 
describes the program synthesis technique that has been 
chosen for this work. Section 4 explains how probabilistic 
interval and fuzzy uncertainty can be propagated via 
synthesized data processing programs. Section 5 describes the 
generation of workflow specifications by utilizing program 
synthesis on process knowledge captured through the WDO 
approach. Section 6 presents a scenario related to earth science 
to elucidate an end-to-end solution from capturing process 
knowledge to executing scientific workflows, and Section 7 
presents conclusions and future work. 

 

II. WORKFLOW-DRIVEN ONTOLOGIES 

 Our previous work has resulted in the development of the 
Workflow-Driven Ontologies (WDO) approach [2]. The 



intention of WDO is to facilitate the capture of process 
knowledge by scientists directly with terms from their own 
domains of expertise. Having well documented process 
knowledge has several benefits: 

• It helps domain experts communicate and share 
operational process knowledge (i.e., how-to knowledge) 
with colleagues and students; 

• it helps domain experts explain their requirements to 
colleagues from other fields, e.g., computer programmers, 
who can help build tools automate processes; and 

• it helps domain experts find commonalities between their 
processes and the processes of other domains that can 
lead to improved inter-disciplinary collaboration. 
In the WDO approach, process knowledge is captured as 

ontologies expressed in the Web Ontology Language (OWL). 
OWL provides a formal framework to document ontologies 
based on Description Logics [6]. Given the formalisms 
provided by OWL, the process knowledge documented 
through the WDO approach can be leveraged towards the 
automatic generation of workflow specifications that can 
potentially be translated to executable scientific workflows.  

 

 
Fig. 1 Class hierarchy defined in the WDO-upper-level ontology 

 

 The WDO approach is based on the definition of an 
upper-level ontology that can be extended by domain 
scientists to capture process knowledge. Part of the upper-
level ontology, referred to as the WDO-upper level ontology, 
is presented in Figure 1. This ontology presents a basic 
categorization of concepts into Information and Method. 
Information refers to the data and dataset concepts that are 
specific to the domain being addressed. Method refers to the 
algorithms, functionality, or actions that are available in the 
domain to transform or manipulate Information. In addition to 
guiding scientists through the process of identifying and 
categorizing information and method concepts, scientists are 
guided to identify input and output relations between concepts. 
As a result, process knowledge in the WDO approach takes 
the form of Information being input into Methods, and the 
Methods outputting some transformed Information. Figure 2 
presents a compounded workflow specification where some 
data concept is input to a method concept and this method 
outputs some transformed data represented by a second data 
concept, and this basic workflow pattern is repeated until 
some desired target data is reached.  

As a side effect of applying the WDO approach, the 
Method concepts defined in the resulting ontology have a 

unique input and output signature. The application of the 
WDO approach to capture process knowledge results in 
concept and relation descriptions of the form:  

Information » Method > Information 
The » sign in this pattern means that a Method can have 

multiple Information inputs, and the > sign means that a 
Method has a single Information output. 

 
Fig. 2 Basic WDO relations used to document process knowledge 

 
This concept and relation form simplifies the process of 

automating workflow generation by uniquely identifying the 
Information concepts related to a given Method on a workflow 
specification. The automatic generation of workflow 
specifications from WDO ontologies was initially explored in 
[2], and it is formalized here through the application of 
established program synthesis techniques. 

 

III. PROGRAM SYNTHESIS 

As presented in [7-11], program synthesis tries to solve 
problems of the following general form: 

• there are some known values x1,…,xn, e.g., values that 
have been measured; 

• there are some unknown values y1,…,ym that are of 
interest; and 

• there is a known relation between the known values 
and the unknown values, e.g., F(x, y) = 0, where F is 
some known expression. 

The question is: given this knowledge, i.e., the known 
values and the known relations, is it possible to compute the 
unknown values, and if possible, how? 

To illustrate these types of problems, the triangle example 
is presented as discussed in [7, 8]. 

A triangle is described by its angles A, B, and C, and its 
side lengths a, b, and c. The following relations are known:  

(1) A + B + C = π, i.e., the sum of the angles is 180º, or π 
radians; 

(2) a2 + b2 – 2ab(cos C) = c2, i.e., the cosine theorem, 
with similar equations for a2 and b2; and 

(3) a/(sin A) = b/(sin B) = c/(sin C), i.e., the sine 
theorem. 



Suppose that the side lengths a, and b and the angle A are 
known, and it is necessary to determine the length of side c. 
As a result, the knowledge in this example problem is 
represented by relations (1), (2), and (3) and the values of a, b, 
and A; and the unknown value is c. 

A solution to these types of problems was proposed by 
Tyugu and Mints [8-11]. The first stage of their approach is an 
analysis to determine which quantities are directly 
computable. As an example, consider the triangle problem 
presented earlier; if A and B are known, then the value of C 
can be computed by applying equation (1), as C = π - A - B. 
This computability relation is represented by using the 
implication notation: 

A, B → C.  
Similarly, if A and C are known, B can be computed, and if B 
and C are known, A can be computed. As a result, the 
additional computability relations are obtained:  A, C → B and 
B, C → A. Additional computability relations follow from 
equations (2) and (3). 

The second stage of the approach is to determine whether 
a given variable of interest is directly or indirectly computable 
from known variables, and if so, compute it. The wave 
algorithm determines the computable closure of the variable 
set. The first step is to add all the variables bound to ground 
instances to the set of computable variables, C. Then, find all 
the computability equations that have all their condition 
variables in C chosen, and the conclusion variable of each is 
added to C. This procedure is repeated until nothing new is 
added to C, which means that nothing else can be computed 
from the initial set of computability relations and the initially 
known variables. Since there are finitely many variables, this 
process will eventually stop. If the variable of interest is in C, 
then it can be computed; otherwise, it cannot. Furthermore, 
keeping track of the order in which conclusion variables are 
added to C can be leveraged to determine the order in which 
the computability relations need to be applied to compute the 
variable of interest. Consider the triangle example; if a, b, and 
A are initially assigned values, then the first iteration of the 
wave algorithm will result in adding variable B to the C set 
through a computability relation resulting from equation (3), 
i.e., a, b, A → B. For the second iteration, the computability 
relation A, B → C from equation (1) can be utilized to add 
variable C to the C set. Finally, the computability relation a, b, 
C → c from equation (2) will result in the addition of variable 
c to the C set, at which point there are no more variables to 
add to C and the wave algorithm stops. 

As a result, a program can be synthesized to compute c 
from a, b, and A as follows: first a computability relation 
resulting from the sine theorem, i.e., equation (3), is applied to 
compute B from a, b, and A; then a computability relation 
obtained from equation (1) is applied to compute C from A 
and B, and finally; a computability relation obtained from the 
cosine theorem, i.e., equation (2), is applied to compute c from 
a, b, and C.  

Tyugu and Mints also showed that the computability 
relations produced in the first stage can be reformulated in 

logical terms. For example, the relation: A, B → C can be 
interpreted as the propositional formula A & B → C, where A, 
B and C are Boolean variables meaning that the corresponding 
quantities are computable from the inputs. In the triangle 
example, the corresponding propositional formulae, along 
with the known variables represent the knowledge base, and 
the goal is to determine whether a given variable of interest is 
deducible from the knowledge base. 

 

IV. PROPAGATING PROBABILISTIC, INTERVAL, AND FUZZY 
UNCERTAINTY 

In practice, the values of the input quantities x1,…,xn come 
either from measurement, or from expert estimation. In both 
cases, the input quantities are known with uncertainty. 

For measured values, the exact probability estimation of 
the measurement error is sometimes known. In such cases, the 
actual value is known with probabilistic uncertainty [12, 13]. 

In other cases, only the upper bound ∆ on the 
measurement error is known. In such cases, based on the 
measurement result X, it can only be concluded that the actual 
value of the measured quantity belongs to the interval  

[X - ∆, X + ∆]. 
In other words, in such cases, the value is known with 

interval uncertainty [14]. 
For estimated values, experts often profile their 

uncertainty estimates by using imprecise words from natural 
language, e.g., “density is about 6.0.” A natural way to 
formalize this type of uncertainty is to use fuzzy techniques 
[15, 16]. 

Once the uncertainty in the inputs x1,…,xn is known, as 
well as the data processing algorithm transforming these 
inputs into the desired outputs y1,...,ym, known uncertainty 
propagation techniques can be applied to derive uncertainty in 
the results y1,…,ym of data processing [12-18]. 

 

V. APPLYING PROGRAM SYNTHESIS TO WDO 

As mentioned above, the application of the WDO 
approach to capture process knowledge results in concept and 
relation descriptions of the form:  

Information » Method > Information 
More generally, this basic pattern can be mapped to 

relations of the form F (A1,…,An) = 0, where F is a function 
that corresponds to the Method concept and A1,…,An 
correspond to the input and output Information concepts 
described in the basic pattern. From this mapping, the Tyugu 
and Mints program synthesis techniques can be applied. 

Following the two-stage approach described previously, 
the first stage determines which quantities are computable 
from which. The WDO gives us this analysis directly. For 
example, consider the following WDO relation specification:  

A, B » F > C 



If A and B are known Information concepts, then Information 
concept C can be computed, and it is written as the 
computability relation: A, B → C. This transformation can be 
done for all the process knowledge captured as WDO 
relations.  

The second stage of the approach is to determine whether 
a given variable of interest is computable from known 
variables, and if possible, how? This is done by applying the 
wave algorithm.  

After a variable of interest is determined to be deducible 
from the knowledge base, and an ordering of formula 
applications has been determined by the wave algorithm, the 
formulae are mapped back to their original WDO relations 
form, and this ordering of WDO relations can be interpreted as 
an MBW for the Information concept of interest. Depending 
on the knowledge base used, a possibility is that there exist 
multiple orderings of formulae that will lead to the deduction 
of the variable of interest. Each of the alternative orderings 
will correspond to an alternative MBW specification. The 
wave algorithm may be extended to produce alternative 
solutions, and these alternative MBW specifications may offer 
important advantages when trying to implement executable 
workflows over existing components. For example, one 
alternative may not have all its corresponding components 
implemented or readily available. 

 

VI. THE GRAVITY CONTOUR MAP SCENARIO 

 Assume that a geoscientist wants to obtain a Contour Map 
of Bouguer Anomaly Gravity Data for a given region of 
interest, e.g., see [19]. The scientist starts by obtaining a WDO 
that documents process knowledge from the geophysics 
domain about how to generate such a map. A graphical 
representation of such a WDO is presented in Figure 3. 

From this WDO, the following propositional formulae can 
be interpreted: 

1. SimpleBouguer & RegionOfInterest → Grid 
2. Grid → ContourMap 

The scientist identifies ContourMap as the intended 
information concept desired, and identifies RegionOfInterest 
and SimpleBouguer anomaly data as the known information 
concepts. The application of the wave algorithm to this 
knowledge base will result in the conclusion that ContourMap 
indeed can be deduced. Furthermore, keeping track of the 
order in which conclusion variables are marked through the 
iterations of the wave algorithm will determine an ordering in 
which the propositional formulae should be applied to reach 
the ContourMap computation. 

 

 
Fig. 3 WDO process knowledge to produce a Contour Map from Simple 

Bouguer Anomaly gravity data 

 
In this case, there is only one possible ordering to 

compute the variable of interest, and so, the corresponding 
workflow specification will result in the following: 

1. Apply the Gridding method using SimpleBouguer 
anomaly and RegionOfInterest information as input to 
produce Grid information; 

2. Apply the Contouring method using the Grid 
information produced in the previous step as input to 
produce the target ContourMap information. 

Notice that in this scenario, both SimpleBouguer and 
RegionOfInterest are necessary to produce ContourMap. If 
either of these concepts were unknown, the wave algorithm 
would determine that the ContourMap could not be produced 
from the given knowledge base. 

This is a simplified example that is intended to 
demonstrate the use of the program synthesis techniques 
(originally proposed by Tyugu and Mints) in the WDO 
context. In general, the WDO approach is intended to be 
leveraged by scientists that are collaborating across multiple 
disciplines. Applying this program synthesis technique to 
WDOs that document process knowledge from multiple 
domains of expertise will hopefully result in the discovery of 
MBW specifications that are non-evident for an expert user of 
one particular domain. 

 

VII. CONCLUSIONS AND FUTURE WORK 

The ultimate goal of this work is to enable new ways of 
conducting science through CI by providing an end-to-end 
solution for the scientist where the result of the scientist’s 
efforts to create a model of a process includes the ability to 
generate an application that can be executed automatically. 
Although there is still a gap between the MBW specifications 
generated by this approach and the executable application that 
the scientist desires, this work makes a step towards separating 
the scientist user from the technical details of constructing the 
application program. 

In addition, the work presented here provides the benefit 
of being able to deal with cross-disciplinary scenarios, where 



complex data-processing specifications can be generated using 
process knowledge from multiple scientific domains such as 
those supported by CI efforts. 

General ontology specifications offer more sophisticated 
relations than the input/output WDO relations discussed here. 
For example, in OWL, a relation may be declared to be 
transitive, bi-directional, or to have a specific cardinality [20]. 
Furthermore, relations of the type IS_A offer a mechanism to 
model concept inheritance that is commonly supported in 
ontology specifications, including WDO ontologies. Some of 
these additional types of relations may prove useful in 
documenting domain process knowledge. Additional work is 
required to extend the program synthesis technique described 
here to take advantage of additional computability relations 
that may be extracted from these types of relations. 

There are other program synthesis techniques that are 
more sophisticated and powerful. If all of the formulae for 
variables of interest can be oriented, rewriting approaches 
might be appropriate [21]. If the formulae are not all 
orientable, deductive synthesis using resolution [22] or tableau 
[23] can provide synthesis using the full expressiveness of first 
order logic. A common difficulty with first order logic arises 
from the search space explosion. Techniques for procedural 
attachment have been developed [24, 25], as have techniques 
for automatically generating domain-specific decision 
procedures for subsets of domain theories [26]. Applying these 
types of techniques to extract workflow specifications from 
WDO ontologies is left as future work along with 
investigation of more sophisticated ontological relations for 
use in the WDO approach. For now, the simplicity of the 
propositional-logic based approach proposed by Tyugu and 
Mints offers a clean, efficient implementation that maps nicely 
to the WDO approach. 

Other work discussed in [27] addresses the need to 
provide feedback to the end-user, e.g., a scientist, with respect 
to the quality of the end-product resulting from a data 
processing application. By attaching provenance information 
to the end-product about the datasets and functional 
components used in its creation, the scientist can have access 
to additional information to assist in making an informed 
decision about the appropriateness of the end product. Since 
the program synthesis technique described here can result in 
the extraction of different MBW alternatives from the 
documented process knowledge in a WDO, integrating tools 
that aid the scientist in the decision process of selecting an 
alternative will become an essential component in the 
envisioned end-to-end solution to conduct science over CI.  
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