
Opportunistic Checkpoint Intervals to Improve System Performance

Sarala Arunagiri∗ John T. Daly† Patricia J. Teller∗ Seetharami Seelam‡ Ron A. Oldfield§

Maria Ruiz Varela∗ Rolf Riesen§

Abstract

The massive scale of current and next-generation massivelyparallel processing (MPP) systems presents significant chal-

lenges related to fault tolerance. For applications that perform periodic checkpoints, the choice of the checkpoint interval,

the period between checkpoints, can have a significant impact on the execution time of the application. Finding the optimal

checkpoint interval that minimizes the wall clock execution time, has been a subject of research over the last decade. Inan

environment where there are concurrent applications competing for access to the network and storage resources, in addi-

tion to application execution times, contention at these shared resources need to be factored into the process of choosing

checkpoint intervals. In this paper, we perform analyticalmodeling of a complementary performance metric - the aggregate

number of checkpoint I/O operations. We then show the existence and characterize a range of checkpoint intervals which

have a potential of improving application and system performance.

1. Introduction

Current Massively Parallel Processing (MPP) systems typically have tens of thousands of processors that are partitioned

into specialized seta of components for computation, storage, and system services [6]. Examples include the Cray XT sys-

tems at Sandia National Laboratories and Oak Ridge NationalLaboratory [3] and the IBM BlueGene/L system at Lawrence

Livermore National Laboratory [18]. Applications that runon these machines include, for example, simulations of environ-

mental, biological, and seismic phenomena that address problems related to key scientific and social issues. Many of these

applications require a large proportion of the MPP system for months at a time to achieve meaningful results.

Checkpoint restart is a common technique to provide fault tolerance for applications running on MPP systems. Check-

pointing can be either application-directed or system-directed. Acheckpoint operationis the process of saving the computa-

∗The University of Texas at El Paso
†Los Alamos National Laboratory
‡IBM TJ Watson Research Center
§Sandia National Laboratories

1

tion state to a stable storage.Checkpoint datais the data that is sufficient to restart the computation, in the event of a failure.

Checkpoint latencyis the amount of time required to write checkpoint data to persistent storage and acheckpoint intervalis

the application execution time between two consecutive checkpoint operations.Checkpoint overheadis the increase in the

execution time of an application due to checkpointing.

Selecting an appropriate checkpoint interval is importantespecially since the storage system is physically separated from

the processors used for execution of the scientific application. If the checkpoint interval is too small, the overhead created

by network and storage transfers of a large number of checkpoints can have a significant impact on performance, especially

when other checkpointing applications share the network and storage resources. Conversely, if the checkpoint interval is

too large, the amount of work lost after a failure can increase the time to solution substantially. Deciding upon the optimal

checkpoint frequency is theoptimal checkpoint intervalproblem, which is well-known. Most solutions attempt to minimize

total execution time (i.e., the application time plus the checkpoint overhead) [20, 4]. In this paper we focus on anotherper-

formance metric, the number of checkpoint I/O operations performed during an application run. It is our thesis that execution

time and the number of checkpoint I/O operations are complementary metrics and both of them need to be considered in

selecting a checkpoint interval. Using analytical modeling, we explore the impact of the choice of checkpoint intervalon the

number of checkpoint I/O operations performed during an application’s execution.

1.1. Motivation and Background

Given a set of parameters of the MPP system and the application, Daly’s model [4] provides a way of computing the

execution time and an approximation of the optimal checkpoint interval. For example, consider a partition of Blue Gene/L

(BG/L) with 1024 nodes with 0.5GB of memory per node, an MTTI of one year per node, and a storage bandwidth of

45GB/s. Consider an application with asolve time, which is the time spent on actual computation cycles towards a final

solution, of 500 hrs and arestart time, which is the time before an application is able to resume real computational work

after a failure, of 10 minutes. Given that each of the 1024 nodes executing the application checkpoints half of its available

memory (i.e., 0.25GB), the amount of checkpoint data generated by the application per checkpoint is 256GB. If we assume

that the application gets the full storage bandwidth of 45GB/s, the checkpoint latency is 5.68 seconds. According to Daly’s

model, the minimum expected execution time of this application is 519.76 hours, corresponding to a checkpoint intervalof

9.8 minutes.

There are situations under which this minimum expected execution time cannot be achieved. Checkpoint operations

consume several resources in addition to the processors that perform checkpoint operation, for e.g., network bandwidth, file

system, storage bandwidth, etc. These resources are sharedamong checkpointing and other I/O operations of concurrently

executing applications in an MPP. Contention at these shared resources can inhibit the applications from attaining theoptimal

execution time, even when they are checkpointing at the optimal checkpoint interval. To illustrate this consider the example

2

application running on BG/L. Now suppose that 64 such applications with similar checkpoint parameters, each executing

on a 1024 node partition of BG/L, are running concurrently (this is possible in BG/L which has 64536 nodes). As stated

before, the optimal checkpoint interval is 9.8 minutes. Thetotal checkpoint data generated by the 64 applications during

each checkpoint cycle is 16384 GB; if serviced at the full bandwidth rate this takes 6.07 minutes of I/O system service time

to write. In the best case scenario the checkpoints of the 64 applications are staggered to ensure that no two applications

perform a checkpoint operation at the same time. This implies that for 6.07 minutes during every checkpoint cycle, whichis

9.8 minutes, the I/O system is busy writing checkpoint data.In essence, the I/O system is busy performing checkpoint write

operations 62% of its time.

If the communication system and the file system can handle data at the specified rate and the other I/O requirements of all

64 applications are small enough that the storage system canservice all of them in less than 38% of its time, and this I/O does

not ever contend with any checkpoint I/O, then all 64 of theseapplications, each having a solution time of 500 hours, can be

concurrently executed to completion(in a statistical sense) , with checkpoints, in 519.76 hours - the expected execution time

according to Daly’s model. However, if any of these conditions are not satisfied then this cannot be attained. For example, if

one or more of these applications are I/O intensive and together their I/O needs cannot be serviced by 38% of the I/O system’s

time, then their performance is bound to deteriorate. In theabsence of I/O performance isolation, the performance of other

applications that share the I/O resources with the I/O-intensive applications is bound to deteriorate and it is unlikely that any

of them will complete their execution in 519.76 hours. The example presented was simplified for the purpose of illustration.

But even if we had partitions of different sizes, similar concerns arise.

The disparity between real execution time and the expected execution time is due to the fact that the execution time

model assumes that the amount of progress made by the application during each checkpoint cycle is equal to the checkpoint

interval. This is indeed the case when we consider a single large application running on an MPP system, for example, an

application running in a capability computing environment. The model helps us predict the execution times accurately for

such cases. However, in computing environments where resource contention between concurrently executing applications

exists, application progress during a checkpoint cycle could be less than the checkpoint interval. As a result of this, execution

time is larger than the expected optimal execution time evenwhen checkpoint interval is the optimal checkpoint interval.

Questions that arise are -

1. Can we develop an analytical model for execution time of periodic checkpointing applications that factors contention

at shared resources? This enables prediction of execution times of such applications.

2. Can we ameliorate resource contention caused by checkpoint I/O operations?

An analytical model as suggested by the first question would need to consider the system configuration and the charac-

teristics of the set of concurrently executing applications to determine the nature and extent of the resource contention that

3

may arise. The complexity of this task makes it a daunting task if not infeasible. We do not attempt to do this. In this paper,

we address the second question. Since we know that checkpoint write operations happen every checkpoint cycle, it seems

reasonable to assume that the resource contention cause by checkpoint writes can be ameliorated by decreasing its frequency.

The tunable checkpoint parameter that achieves this is the checkpoint interval, it can be increased.

Estimating the amount by which the checkpoint interval needs to increase in order to enable the network, file system, and

storage system to be able to handle both checkpoint I/O and other application I/O efficiently, is yet another research problem

that is outside the scope of this paper. However, information presented in this paper might help solve it. For the example

applications running on 64 BG/L partitions, if we are willing to pay the price of a 5% increase in execution time over the

minimum value of 519.76 hours, then the checkpoint intervalcan be increased by a factor of 6.85 which amounts to 585%

increase. Using these new checkpoint intervals, these applications perform checkpoint operations once every 67 minutes as

opposed to the original 9.8 minutes. The fraction of time that the storage system needs to write checkpoint data during every

checkpoint cycle reduces to 9% as opposed to 62%. In this example, the total number of checkpoint I/O operations decreased

from 3120 to 529, which is an 83.68% reduction in the number ofcheckpoints and the corresponding checkpoint data reduced

to 130384 GB, which is 16.32% of the original value, 798927 GB. The expected execution time increases to 545.5 hours, i.e.,

a 5% increase. In summary, increasing the checkpoint interval by a factor of 6.85 increased the execution time by 5% but it

increased the storage systems availability for I/O other than checkpoint I/O by 118%.

Although increasing checkpoint interval decreases the frequency of checkpoint write operations, it also increases the

probability of failure during a checkpoint cycle. A failureresults in a checkpoint read operation during the restart process.

Therefore, at the outset, it is not clear whether increasingcheckpoint interval beyond Daly’s optimal checkpoint interval

always decreases aggregate checkpoint I/O operations. In this paper,

• We study the nature of the variation of the total number of checkpoint I/O operations as a function of checkpoint

intervals in the range0 ≤ τ ≤ M (Section 3). We show the existence and characterize the range of values of

checkpoint intervals that are larger than Daly’s optimal checkpoint interval such that the total number of checkpoint

I/O operations decreases with increasing checkpoint intervals.

• We show that potentially we could increase the checkpoint interval by as much as 12% beyond Daly’s optimal value

without increasing the expected execution time (Section 5.1).

• We provide an expression for computing an increased checkpoint interval with a guarantee that the subsequent increase

in the expected execution time is no more than 5% of the optimal expected execution time (Section 5.2).

• We use parameters of four MPP architectures, SNL’s Red Storm, LLNL’s Blue Gene/L (BG/L), ORNL’s Jaguar, and

4

a theoretical Petaflop system to model the impact of the ideassuggested. The empirical evidence shows that there

are checkpoint intervals that are larger than the optimal checkpoint interval that increase the expected execution time

minimally while decreasing the number of checkpoint I/O operations substantially (Section 6). Thus, we identify and

pave the way for further modeling work that might be of immense value in orchestrating concurrent checkpointing

applications in order to enable good system performance.

As pointed out in Section 9, there are several situations under which increasing the checkpoint interval beyond Daly’s

optimal value could lead to performance benefits. The work presented in this paper is complementary to Daly’s modeling

work on checkpointing. Together, these two models are intended to provide pointers and insights for making an informed

tradeoff between expected execution time and number of checkpoint I/O operations. To the best of our knowledge, at this

time there is no quantitative guidance to facilitate such a trade off.

2. Choice of Checkpoint Interval

Minimizing application execution time is an important consideration in supercomputers. Therefore, our natural choice of

checkpoint interval is the one that minimizes application execution time.

2.1. LANL’s Model of Optimum Checkpoint Interval

The total wall clock time to complete the execution of an application and the approximate optimal checkpoint interval

are given by the following equations [4]. We refer to them as Daly’s execution time model and Daly’s optimal checkpoint

interval model.

T = MeR/M
(

e(τ+δ)/M − 1
) Ts

τ
for δ << Ts (1)

τopt = M
(

1 + ProductLog
(

−e−
δ+M

M

))

(2)

Daly’s approximation toτopt, τdaly is given by

τdaly =















√
2δM

[

1 + 1
3

(

δ
2M

)
1
2 + 1

9

(

δ
2M

)

]

− δ δ < 2M

M δ ≥ 2M

(3)

5

where

Ts = Time spent doing application computation,

τ = Checkpoint interval

δ = Checkpoint latency,

M = Mean time between interruptions (MTTI) of the application,and

R = restart time.
The approximate optimal checkpoint interval has a bounded relative error of 5.9% and relative error of total problem

solution time less than 0.2%. In the rest of our discussion, by default, the reference value of checkpoint interval isτdaly. We

model the performance impact of increasing the checkpoint interval from the reference value to larger values.

3. Number of Checkpoint I/O Operations

The set of I/O operations performed by checkpoint/restart mechanisms contain both reads and writes. In a periodic

checkpointing system we know that checkpoint writes are performed periodically at every checkpoint interval and therefore

the number of checkpoint write operations is given by the solution time of the application divided by the checkpoint interval.

When a failure occurs in a co-ordinated checkpointing system, the last checkpoint data that was written successfully needs

to be read in order to restart the application. Therefore thenumber of checkpoint read operations is given by the expected

number of failures.

The known consequences of increasing checkpoint interval -

• Increase incheckpoint cyclewhich is given by the sum of checkpoint interval and checkpoint latency, assuming that

the checkpoint latency is not hidden.

• Increase in the expected execution time if the original checkpoint interval is greater than the optimal checkpoint inter-

val [4].

• Decrease in the frequency of checkpoint write operations.

• Possible increase in checkpoint read operations which are performed as part of the process of recovery after a failure.

• A change in the total number of checkpoint reads and writes performed during the application run. It is not clear

whether the sum increases or decreases.

We would like to determine the effect of increasing checkpoint interval on the total number of checkpoint I/O operations.

6

Expected number of checkpoint reads= Expected execution time / M

=
MTse

R/M (e
δ+τ
M − 1)

Mτ

=
Tse

R/M (e
δ+τ
M − 1)

τ

Expected number of checkpoint writes= Ts/τ

Expected number of aggregate checkpoint I/O operations, NI/O =
Tse

R/M (e
δ+τ
M − 1)

τ
+ Ts/τ

=
Ts

τ

[

1 + eR/M
(

e
δ+τ
M − 1

)]

Theorem 1. The functionNI/O has a single minimum atτI/O in the range0 ≤ τ ≤ M . It does not have any other stationary

points in this range.τI/O is given by,

τI/O = M
(

1 + ProductLog
(

−e−
δ+M

M + e−
R+δ+M

M

))

(4)

Proof. We now look for stationary points ofNI/O. These are values ofτ at which the first derivative ofNI/O w.r.t τ is zero.

:

dNI/O

dτ = Ts

τ2

[

τ
M e

R
M e

δ+τ
M −

(

e
R
M (e

δ+τ
M − 1)

)

− 1
]

dNI/O

dτ = 0 =⇒

e
R
M e

δ+τ
M

τ
M − e

R
M e

δ+τ
M + e

R
M − 1 = 0 =⇒

e
R
M e

δ+τ
M

(

τ
M − 1

)

= 1 − e
R
M =⇒

e
δ+τ
M

(

τ
M − 1

)

= −
(

1 − e−
R
M

)

=⇒

e
τ
M

(

τ
M − 1

)

= −e−
δ

M

(

1 − e−
R
M

)

=⇒

e(
τ
M

−1) (τ
M − 1

)

= −e−
δ+M

M

(

1 − e−
R
M

)

=⇒
(

τ
M − 1

)

= ProductLog
(

−e−
δ+M

M

(

1 − e−
R
M

))

=⇒

τ
M = 1 + ProductLog

(

−e−
δ+M

M

(

1 − e−
R
M

))

=⇒

τ = M
(

1 + ProductLog
(

−e−
δ+M

M

(

1 − e−
R
M

)))

=⇒

τ = M
(

1 + ProductLog
(

−e−
δ+M

M + e−
R+δ+M

M

))

(5)

7

There is a unique positive value ofτ that satisfies the equation above, let us denote it byτI/O. TheProductLog term in

Equation 8 is negative and its absolute value is less than one. Therefore,τI/O is always less thanM . We use the second

derivative test in order to determine whether the stationary pointτI/0 is a minimum, maximum, or an inflexion point.

We know that

NI/O =
Expected Execution Time

M
+

Ts

τ

=
T

M
+

Ts

τ
dNI/O

dτ
=

1

M

dT

dτ
− Ts

τ2

d2T

dτ2
=

1

M

d2T

dτ2
+ 2

Ts

τ3
(6)

From [4] d2T
dτ2 is known to be positive for all values ofτ in the range0 < τ ≤ M . This makes the right hand side of

Equation 6 and thus
d2NI/O

dτ2 positive for allτ in the range0 < τ ≤ M . Therefore, the stationary pointτI/O is a minimum

with respect to the number of I/O operations.

We now explore the relationship betweenτI/O, andτopt for any given set of checkpoint parameters.

Theorem 2. The value of checkpoint interval that optimizes the number of I/O operations,τI/O is always greater than the

value of the checkpoint interval that optimizes the expected execution time,τopt.

Proof. Recall the expressions forτopt andτI/O;

τopt = M
(

1 + ProductLog
(

−e−
δ+M

M

))

(7)

τI/O = M
(

1 + ProductLog
(

−e−
δ+M

M + e−
R+δ+M

M

))

(8)

Consider arguments to theProductLog function in Equations 7,8. They are both negative and the absolute value of the

argument in Equation 7 is larger than that of Equation 8. SinceProductLog(−1/e) = −1 and sinceProductLog function

is monotonically increasing in the range (− 1
e to 0).

|ProductLog
(

−e−
δ+M

M

)

| > |ProductLog
(

−e−
δ+M

M + e−
R+δ+M

M

)

|

=⇒ τopt < τI/O

Thus, we have established that for checkpoint intervalsτ in the rangeτopt ≤ τ ≤ τI/O, the number of checkpoint I/O

operations decreases with increasing checkpoint intervals as illustrated by Figure 3.

8

Corollary 1. For checkpoint intervals,τ , in the rangeτopt ≤ τ ≤ τI/O, the expected value of frequency of checkpoint I/O

operations decreases with increasing checkpoint intervals.

Proof. From [4], we know that for values of checkpoint intervals,τ , in the rangeτopt ≤ τ ≤ M , the expected execution

time increases with increase in checkpoint interval. SinceτI/O < M , it follows that the expected execution time increases

with increase in checkpoint interval forτ in the rangeτopt ≤ τ ≤ τI/O. This information and Theorem 2 together imply

that for checkpoint intervals,τ , in the rangeτopt ≤ τ ≤ τI/O the expected value of frequency of checkpoint I/O operations

decreases with increasing checkpoint interval.

3.1. Implications of Results in this Section

Corollary 1 is key to promising avenues in performance improvement. For values ofτ in the rangeτopt ≤ τ ≤ τI/O,

both the expected value of frequency of checkpoint I/O operations and the expected value of the number of checkpoint

I/O operations decrease with increase in checkpoint interval, enabling a tradeoff between execution time and number of

checkpoint I/O operations. Another insight provided by themodel is that whileτopt andτI/O are both functions ofδ andM ,

τI/O is a function of the restart time,R, in addition.τI/O decreases with increasing values ofR.

4. Stochastic Simulation to Validate Analytical Model

The goal of these simulations was to validate the analyticalmodel for the number of checkpoint I/O operations. For a

given set of parameters, our aim was to use stochastic simulation to investigate the variation of number of checkpoint I/O

operations with varying checkpoint intervals.

We performed stochastic simulation of a 1000 node system. Weconsidered two sets of parameters. For the first set of

parameters we conducted simulations at 9 different checkpoint intervals and for the second set we considered 7 different

checkpoint intervals. At each checkpoint interval we simulated 100 runs of an application with a solution time of 500 hrs

and collected data on execution times and number of checkpoint I/O operations. The probability of node failures and the

probability of repair of failed nodes were calculated usingrandom numbers. Single component failures were assumed to

have poisson distribution with a mean at Mean Time To Interrupt (MTTI) of the node. Repair times were assumed to have

gamma distribution with a mean of 60 minutes. For each set of parameters, we conducted two kinds of simulations. The

first one was stochastic simulation using a value of checkpoint latency of 5 minutes. The second kind of simulation was a

Monte Carlo simulation where we assume that the checkpoint latency is a random variable that is uniformly distributed over

the interval 4.75 to 5.25 minutes. This accounts for a 5% error in the estimation of checkpoint latency as 5 minutes.

We present results of the first set of parameters in Figures 1 and 2. The solid line in the figure shows the number of

checkpoint I/O operations given by analytical modeling andthe vertical bars give the spread of the values of aggregate

9

Figure 1. Simulation with M=24 hours, δ =5 minutes, Ts = 500 hours, and R= 10 minutes. For these
parameters τopt=117 minutes and τI/O= 1436 minutes.

checkpoint I/O operations for the 100 simulation runs corresponding to each checkpoint interval. The dashed line is themean

value of execution time. Note that, by design, the data points on the x-axis of these figures are not uniformly spaced, i.e., the

first data point is 90 minutes, the second is 117 minutes and this is checkpoint interval that optimizes the execution time, the

third data point is 1325. It is evenly spaced there onwards. The focus on the last 150 minutes starting from 1325 minutes

was because the checkpoint interval that optimizes the number of checkpoint operations, which is 1436 minutes, lies in this

range and we wanted to track changes here more closely. The simulated number of checkpoint I/O operations tracked the

expected number of I/O operations given by the analytical model. The results of Monte Carlo simulation were not visually

very different from the one with fixed checkpoint latency at the outset.

Thus far, using analytical modeling, we have established that using values of checkpoint interval that are in the rangeτopt

to τI/O implies a reduction in the number of aggregate checkpoint I/O operations performed during an application execution.

Next we explore candidate values of checkpoint intervals inthis range that appear to be intuitive choices.

10

Figure 2. Monte Carlo simulation with the same parameters bu t with δ taking random values that are
uniformly distributed in the range 4.75 minutes to 5.25 minu tes

11

5. Potential Target Values for Increased Checkpoint Interval

As mentioned before, our point of reference is always Daly’soptimal checkpoint interval,τdaly. We first attempt to

provide easily computable values of increased checkpoint interval with known bounded increase in expected execution times.

5.1. Exploiting Approximation Error of Daly’s Optimal Chec kpoint Interval

The first question we asked is whetherτdaly is always less thanτopt. Supposeτdaly is always less thanτopt, then,

• Probably, there is no performance benefit in using a value of checkpoint interval less thanτdaly.

• There are checkpoint intervals greater thanτdaly which could be 0 to 12% larger thanτdaly and the corresponding

values of both frequency of checkpoint write operations as well as execution times are smaller in comparison to the

values atτdaly. In Figure 4, this corresponds to values ofτ in the rangeτdaly to τdaly + αopt.

• For checkpoint intervalsτ , such thatτ ≥ τdaly + αopt, the execution time increases and the frequency of checkpoint

write operations decreases.

This lead us to examine whetherτdaly is always less thanτopt. We were able to prove that it is indeed so.

Theorem 3. For any value of MTTI,M , and δ such that0.01 ≤ δ
2M < 1, the value of the optimal checkpoint interval

computed using Equation 3,τdaly, is less than the real optimal checkpoint interval,τopt.

Proof. Proof of the theorem can be found in the appendix.

Therefore,τdaly and τopt relate to each other as depicted in Figure 4. For a given valueof τdaly and the remaining

checkpointing parameters, the value ofαopt can be computed using Lambert W function. Although there aremathematical

packages like MATLAB and Maple that provide the Lambert W function, not all math calculators provide it as an elementary

function. Besides, it was suspected that computing a closedform expression for an approximation ofαopt in terms of

elementary functions of the other parameters could possibly provide additional insights. The following theorem presents a

closed form expression for an approximation ofαopt. The value thus obtained is always greater than the value ofαopt.

Theorem 4.

αopt =

(

2M

τdaly

[

(M − τdaly) − Me−(τdaly+δ)/M
]

)

Proof. Let

T1 = MeR/M (e(τdaly+δ)/M − 1)
Ts

τdaly

and

T2 = MeR/M (e(τdaly+αopt+δ2)/M − 1)
Ts

τdaly + αopt

12

Figure 3. Illustration of variation of Execution Time and th e Number of Checkpoint I/O Operations for
a system with parameters M=24 hours, δ =5 minutes, Ts = 500 hours, and R= 10 minutes

13

43 44 45 46 47 48 49 50 51 52 53
6.44

6.45

6.46

6.47

6.48

6.49

6.5

6.51

6.52

6.53

6.54
x 10

4

Checkpoint Interval (τ)

E
xe

cu
tio

n
T

im
e

 τ
 opt

 τ
 daly

 τ
 daly

 + α
 opt

α
 opt

δ = 96 min
M = 50 min
R = 100 min
Ts = 500 h

Figure 4. The optimal checkpoint interval τdaly less than the real checkpoint interval τopt

SinceT1 = T2,
(

MeR/M (e(τdaly+δ)/M − 1)
Ts

τdaly

)

=

(

MeR/M (e(τdaly+αopt+δ)/M − 1)
Ts

τdaly + αopt

)

Simplifying this expression

τdalye(τdaly+δ)/M (eαopt/M − 1) = αopt(e
(τdaly+δ)/M − 1) (9)

The Taylor series expansion foreαopt/M is

eαopt/M = 1 +
1

1!
· αopt

M
+

1

2!
·
α2

opt

M2
+

1

3!
·
α3

opt

M3
+ . . .

Substituting this series foreαopt/M in Inequality 9 we get

τdalye(τdaly+δ)/M

(

1

1!
· αopt

M
+

1

2!
·
α2

opt

M2
+

1

3!
·
α3

opt

M3
+ . . .

)

=

αopt

(

e(τdaly+δ)/M − 1
)

14

Considering terms up to the quadratic term in the Taylor’s series and ignoring higher order terms and simplifying, we

obtain

αopt =
2M

τdaly

[

(M − τdaly) − Me−(τdaly+δ)/M
]

(10)

In obtaining the expression forαopt in the above theorem, a truncation error is introduced because we consider the first

three terms of the Taylor’s series expansion and ignore the rest of the terms. We prove that the consequent error in the

estimated value ofαopt, is bounded by((0.0024 ∗ αopt) + (0.0048 ∗ M)) [2].

Table 1 shows values ofτdaly andαopt computed for a few pairs of values ofδ andM . The expression for the approx-

imation ofαopt and the data in the table show that the value ofαopt increases asδ approaches2M . For values ofδ close

enough to2M , αopt attains the value of 12%. In today’s MPP systemsδ is still much smaller thanM . However, if the size

of MPP systems increase and values of MTTI/node stay the same, then, the value ofM reduces. In these larger systems,

if the storage bandwidth increases proportionally with thesize of the systems, then, values ofδ can be expected to stay the

same. Considering these two factors, it is not unrealistic to assume that unless there are big strides to improve reliability, δ

can become comparable to2M in future large systems.

Table 1. Values of αopt as a percentage of τdaly

Checkpoint
Latency in
minutes

M in minutes

Optimal
Checkpoint
Interval τdaly in
minutes

αopt as a
percentage of
τdaly

5 10 6.94 1.15
6 3.5 3.10 10.32
10 25 16.19 0.74
20 15 12.98 6.39
45 25 22.18 11.41
70 40 35.44 10.79
96 50 44.43 12.94
120 65 57.71 11.97

Given a checkpoint latency,δ, an MTTI, M , an application with solution time,Ts, and restart timeR, let the minimum

achievable execution time of the application with checkpointing be denoted byEmin Thus, when we increase the checkpoint

interval toτdaly + αopt, the percentage increase can potentially be as large as 12% of τdaly and the new expected execution

time is no larger than1.002 ∗Emin. This follows from the fact that the approximate optimal checkpoint interval,τdaly, has a

bounded relative error of 5.9% and relative error of total problem solution time less than 0.2%.

15

5.2. Using Daly’s and Young’s Model of Checkpointing

As stated earlier, in today’s MPP systems, values ofδ are much smaller thanM and, therefore,αopt is not expected to

be large. Therefore we explore other possible target valuesof checkpoint intervals that yield bounded increase in execution

times. Consider Young’s model of optimal checkpoint interval given byτFO =
√

2δM , [20]. Daly’s model of optimal

checkpoint interval is a better approximation and it is a refinement of Young’s model. Figure 5 depicts these values for a

BG/L. If we increase the checkpoint interval fromτdaly to τFO + αFO, since Young’s model has an upper bound on the

relative error in problem solution time of5%, the expected execution time is guaranteed to be no larger than1.05 ∗ Emin.

SinceτFO + αFO is larger thanτdaly + αopt, this gives us another increment ofτ with a bounded increase in expected

execution time.

Given a checkpoint latency,δ, an MTTI,M , and aτFO, αFO can be computed similar toαopt.

αFO =

(

2M

τFO

[

(M − τFO) − Me−(τFO+δ)/M
]

)

Thus,τdaly + αopt andτFO + αFO give us easily computable values to which the checkpoint interval can be increased

with known bounded increase in expected execution times.

6. Empirical Studies Using Analytical Models

In this section, we present a summary of studies performed byus to evaluate the performance impact of increasing

checkpoint intervals. Using Daly’s execution time model and the model presented in this paper for the number of checkpoint

I/O operations, we model the performance of four MPP architectures- SNL’s Red Storm, ORNL’s Jaguar, LLNL’s Blue

Gene/L (BG/L), and a theoretical Petaflop system, using parameters presented in Table 2.

Table 2. Parameter values for the studied MPPs
Parameter Red Storm Blue Gene/L Jaguar Petaflop

nmax × cores 12, 960× 2 65, 536× 2 11, 590× 2 50, 000× 2
dmax 1GB 0.25GB 2.0GB 2.5GB
Mdev 5 years 5 years 5 years 5 years
βs 50GB/s 45GB/s 45GB/s 500GB/s

A representative application which has a solution time,Ts = 500 hours and a restart time,R = 10 minutes is considered

for all experiments. For each MPP system, assume

• the application runs on all nodes of the system,

• the MTTI of each node is 5 years, and

16

• the application checkpoints half of each processor’s memory during every checkpoint cycle.

This set of assumptions is labeledStandard. We then consider three other variations of the standard assumptions. The first

variation assumes that the application checkpoints 25% of its memory instead of 50%. Then we assume that the MTTI of

each node is 2.5 years instead of 5 years. Finally, we assume that the application runs on 1/8th of the nodes of each system

instead of all the nodes. While computing checkpoint latency in this case, the partition is considered to have 1/8th of the

storage bandwidth available to it. These assumptions covera few common cases.

6.1. Increase Checkpoint Interval toτdaly + αopt

For all examples considered,τdaly approximates the optimal checkpoint interval very closelyand thereforeαopts was

small, less than 5-7%. Therefore the increase in checkpointinterval was insignificant. As mentioned earlier,αopt is likely to

be close to 12% whenδ is close to2M . Considering current trends, in future machines this is a distinct possibility and the

technique can potentially yield better results with such machines.

6.2. Increase checkpoint Interval toτFO + αFO

Consider increasing the checkpointing interval fromτdaly to τFO + αFO, as illustrated in Figure 5. The results are

summarized in Table 3 where entries with greater than 10% increase in the value ofτ are emphasized. We see that there

are three of them and they range in value from 14.7% to 27.2%. However, it is important to note that the increase inτ

is always at least an order of magnitude larger than the increase in expected execution time. We are not sure if this is a

meaningful comparison. However, this was a compelling observation. When the checkpoint interval was increased to a value

of τFO + αFO, although the guarantee offered in terms of the increase in expected execution time was that it is bounded by

5% of Emin, our numbers show that, except the entry for BG/L with MTTI of2.5 years, all others have less than 1 percent

increase in expected execution time.

6.3. Further Increasing Checkpoint Interval - τ5%Emin
and τ10%Ts

Due to the observation that the increase inτ is always at least an order of magnitude larger than the increase in expected

execution time it looks promising to increase values of checkpoint intervals further. We considered increasing it as much as

we can while limiting the increase of expected execution time to 5% of the optimum expected execution time,Emin, and

10% ofTs. The 5% ofEmin bound was chosen because when we decide to increase the checkpoint interval toτFO + αFO

we implicitly expect to have to pay a price of increasing the expected execution to1.05 ∗ Emin. We denote the value of the

checkpoint interval corresponding to an expected execution time of1.05 ∗ Emin by τ5%Emin
.

From conversations with scientists, we gleaned that when anapplication is executed with checkpointing, 10% ofTs is

considered an acceptable checkpoint overhead. We therefore defineτ10%Ts
as the checkpoint interval at which the expected

17

Table 3. For a representative application with Ts = 500 hours and R = 10 minutes, the table gives the
potential increase in τ and the corresponding values of increase in execution time a nd decrease in
number of checkpoints that can be achieved using Young’s mod el of optimal checkpoint interval and
Daly’s model of optimal checkpoint interval.

MPP Systems Conditions
Increase inτ in
terms of % of
τdaly

Increase in
execution time
in terms of % of
Emin

% decrease in
the number of
checkpoint I/O
operations

Red Storm

Standard 4 0.016 3.12

25% of memory checkpointed 2.7 0.0057 2.46

Size of partition is 1/8th ofnmax 1.28 0.0007 1.27

MTTI of a node is 2.5 years 6.08 0.049 4.43

Blue Gene/L

Standard 14.7 0.43 5.99

25% of memory checkpointed 8.8 0.033 5.02

Size of partition is 1/8th ofnmax 3.7 0.02 2.39

MTTI of a node is 2.5 years 27.2 1.81 6.26

Jaguar

Standard 5.65 0.37 3.95

25% of memory checkpointed 3.7 0.0117 2.93

Size of partition is 1/8th ofnmax 1.7 0.001 1.54

MTTI of a node is 2.5 years 8.8 0.12 5.13

Petaflop

Standard 9.14 0.132 5.18

25% of memory checkpointed 5.8 0.041 3.78

Size of partition is 1/8th ofnmax 2.6 0.0042 2.1

MTTI of a node is 2.5 years 15.29 0.047 5.43

execution time is1.1 ∗ Ts. This means that we can increase the value of the checkpoint interval up toτ10%Ts
and still be sure

that the checkpoint overhead is within an acceptable bound of 10% ofTs. The concepts ofτ5%Emin
andτ10%Ts

are illustrated

in Figure 6. Note thatτ10%Ts
is meaningful only ifEmin < 1.1 ∗ Ts.

The results of increasing the checkpoint interval toτ5%Emin
and τ10%Ts

, for the sixteen cases discussed earlier, are

presented in Table 4. The increase in checkpoint interval isin the range of 45% to 95% ofτdaly. In all of these cases, there

was a decrease in the expected number of checkpoint I/O operations . The reduction was in the range of 10.25% to 61.07%.

Note that when a partition comprising of 1/8th of the total number of nodes was considered, we assumed that only 1/8th of

the storage bandwidth was available to the partition. Another possibility is to assume that the entire storage bandwidth is

available to the smaller partition and we consider this next. Table 5 summarizes the results.

Increase in values of checkpoint interval toτ5%Emin
translates to a percentage increase in the range 210% to 450%of

τdaly. In all 16 cases considered, the total number of checkpoint I/O operations decreases and the percentage decrease is

67.7% to 81.8%. Similarly,τ10%Ts
is 140% to 555% larger thanτdaly and the corresponding number of total checkpoint I/O

18

Table 4. Improvement in τ of a representative application with Ts = 500 hours and R = 10 minutes if
an execution time of 1.05 ∗ Emin is acceptable

MPP Systems Conditions

τ5%Emin − τdaly

expressed in
terms of %of
τdaly

% decrease in
the number of
checkpoint I/O
operations

Red Storm

Standard 100 38.94

25% of memory checkpointed 122 46.35

Size of partition is 1/8th ofnmax 195 61.04

MTTI of a node is 2.5years 80 30.48

Blue Gene/L

Standard 55 14.68

25% of memory checkpointed 67 24.24

Size of partition is 1/8th ofnmax 105 39.42

MTTI of a node is 2.5years 47 10.25

Jaguar

Standard 82 32.53

25% of memory checkpointed 102 40.02

Size of partition is 1/8th ofnmax 163 55.63

MTTI of a node is 2.5years 67.5 23.94

Petaflop

Standard 66 22.35

25% of memory checkpointed 83 32.22

Size of partition is 1/8th ofnmax 125 47.22

MTTI of a node is 2.5years 55 12.86

operations are lesser than their counterparts atτdaly by 55% to 82%.

7. Summary

The trends look encouraging. When we increase the checkpoint interval toτFO + αFO, it amounts to an increase of 1.3%

to 27.2% ofτdaly and the corresponding decrease in the number of checkpoint I/O operations is 1.3% to 7.9%. When we

increase the checkpoint interval toτ5%Emin
andτ10%Ts

, it amounts to an increase in the checkpoint interval by 10.25% to

555% ofτdaly. The decrease in the total number of checkpoint I/O operations was in the range of 10.25% to 82%. From the

empirical evidence we have, an important observation is that - The gradient of the execution time versus checkpoint interval

is very small for values of checkpoint interval close to and larger than the optimal checkpoint interval,τopt. From Section 3

we know that in this region there is a range of values ofτ for which the number of checkpoint I/O operations are decreasing

with increasing checkpoint intervals. This fact, in combination with the observation made above, leads us to believe that

this is a good place to look for checkpoint intervals in orderto reduce the total number of checkpoint I/O operations while

increasing the execution time minimally as compared to their values atτopt or τdaly.

19

Table 5. In each of the four MPP systems, consider a partition which is an eighth of the maximum
number of nodes in the system and assume that the full storage bandwidth of the system is available
to this partition. Suppose expected execution times of 1.05 ∗ Emin and 1.1 ∗ Ts are acceptable, the
table shows increase in values of τ for a representative application with Ts = 500 hours and R = 10
minutes

MPP Systems Number of
nodes

(τ5%Emin −
τdaly)
expressed in
terms of
%age ofτdaly

% decrease
in the
number of
checkpoint
I/O
operations

(τ10%Ts
−

τdaly)
expressed in
terms of
%age ofτdaly

% decrease
in the
number of
checkpoint
I/O
operations

Red Storm 1620 450 79.59 555 82.39

Blue Gene/L 8192 210 62.95 NA NA

Jaguar 1448 360 75.46 390 77.12

Petaflop 6250 270 69.27 140 55.54

5 10 15 20
1800

1900

2000

2100

2200

2300

2400

2500

2600

Checkpoint Interval (τ)

E
x
e

c
u

ti
o

n
 T

im
e

 τ
 opt

 = 11.8

 τ
 FO

 = 9.5 τ
 FO

 + α
 FO

 = 15

27% of τ
 opt

BGL
nodes = 64K
MTTI = 2.5 year/node
δ = 6 min
M = 20 min
R = 10 min
Ts = 500 h

α
FO

 = 5.5

Figure 5. Illustration of the numbers computed in Table 3

20

0 50 100 150 200 250 300 350 400 450 500 550
500

510

520

530

540

550

560

570

580

590

600

Checkpoint Interval (τ)

E
xe

cu
tio

n
 T

im
e

 τ
 opt

 = 142

 τ
 10% T

s

 = 376

 τ
 5% E

min

 = 469

165% of τ− opt

230% of τ− opt

Red Storm
nodes = 1080
MTTI = 5 year/node
δ = 4.32 min
M = 2433 min
R = 10 min
Ts = 500 h

E
 min

 = 533

E
 min

 + 5% E
 min

 = 559.5

T
 s

 + 10% T
 s

 = 550

Figure 6. Illustration of the concept of τ5%Emin
and τ10%Ts

These results provide pointers to potential targets when anapplication programmer deems it appropriate to use checkpoint

intervals larger thanτopt. We envisage that there are several situations in high performance computing environments execut-

ing checkpointing applications where it could potentiallybe beneficial to use such checkpoint intervals. Some examples are

-

1. Certain high performance file systems have latency hidingmechanisms due to which the checkpoint latency has a small

value. But as shown in [2]τdaly is an increasing function of checkpoint latency and therefore the optimal checkpoint

interval associated with the improved checkpoint latency is smaller than what would be the case if there was no latency

hiding. This means that checkpoint write data arrives more frequently as an indirect consequence of latency hiding

mechanism. However, since there is some background work that needs to be done by the filesystem in order to provide

latency hiding, it has an I/O bandwidth limitation in terms of the number of I/O operations per unit of time. The

filesystem may not be able to handle checkpoint I/O data that arrives once inτopt +δ period. It might need a little more

time between servicing checkpoint writes and if that is not provided the filesystem may become a bottleneck and the

performance of the application goes down. This disparity occurs because in modeling optimal checkpoint interval, we

assume thatδ is the time taken to write checkpoint data. However, in filesystems with latency hiding mechanisms, at

the end ofδ time the filesystem still needs to do more processing, perhaps metadata processing, before the checkpoint

write operation is taken care of completely.

21

2. When an overlay network is used to hide checkpoint latency, the above mentioned situation arises again but this time

it is the overlay network that could cause the bottleneck.

3. When more than one checkpointing applications are executing concurrently on a large MPP system sharing I/O re-

sources, if a high priority application’s performance is deteriorating due to the large volume of checkpoint I/O of a

low priority application then it might be a good idea to try and increase the checkpoint interval of the low priority

application. This situation and the next one might need a supervisory view of the whole system which may not always

be available, at this point of time.

4. When there are more than one checkpointing applications concurrently executing on a large MPP system, it might be

desirable to ensure that the full I/O bandwidth of the systemis available to every application’s checkpoint write data.

This implies that we need to schedule the checkpoint write operations of these applications in such a way that no two

of them overlap. Conceptually, for periodic checkpointingapplications there are algorithms that could help us do this.

However, in case using the algorithm we determine that it is infeasible to checkpoint all the applications at their optimal

checkpoint intervals, then it is useful to explore increased checkpoint intervals for some of these applications.

5. Combination of any of the above mentioned situations.

8. Background and Related Work

There is a substantial body of literature regarding the optimal checkpoint problem and several models of optimal check-

point intervals have been proposed. Young proposed a first-order model that defines the optimal checkpoint interval in terms

of checkpoint overhead and mean time to interruption (MTTI). Young’s model does not consider failures during checkpoint-

ing and recovery [20]. However, Daly’s extension of Young’smodel, a higher-order approximation, does [4]. In additionto

considering checkpoint overhead and MTTI, the model discussed in [16] includes sustainable I/O bandwidth as a parameter

and uses Markov processes to model the optimal checkpoint interval. The model described in [11] uses useful work, i.e.,

computation that contributes to job completion, to measuresystem performance. The authors claim that Markov models

are not sufficient to model useful work and propose the use of Stochastic Activity Networks (SANs) to model coordinated

checkpointing for large-scale systems. Their model considers synchronization overhead, failures during checkpointing and

recovery, and correlated failures. This model also defines the optimal number of processors that maximize the amount of

total useful work. Vaidya models the checkpointing overhead of a uniprocess application. This model also considers failures

during checkpointing and recovery [19]. To evaluate the performance and scalability of coordinated checkpointing in future

large scale systems, [5] simulates checkpointing on several configurations of a hypothetical Petaflop system. Their simula-

tions consider the node as the unit of failure and assume thatthe probability of node failure is independent of its size, which

is overly optimistic.

22

Checkpointing for computer systems has been a major area of research over the past few decades. There have been a

number of studies on checkpointing based on certain failurecharacteristics [13], including Poisson distributions. Oldfield

el.al., [8] present studies modeling the impact of checkpoints on next-generation systems. Tantawi and Ruschitzka [17]

developed a theoretical framework for performance analysis of checkpointing schemes. In addition to considering arbitrary

failure distributions, they present the concept of an equicost checkpointing strategy, which varies the checkpoint interval

according to a balance between the checkpointing cost and the likelihood of failure. Application-initiated checkpointing is

the dominant approach for most large-scale parallel systems. Agarwal [1] developed application-initiated checkpointing

schemes for BG/L. There are also a number of studies reporting the effect of failures on checkpointing schemes and system

performance. Most of these works assume Poisson failure distributions and fix a checkpointing interval at runtime.

Yet another related area of research is failure distributions of large scale systems. There has been a lot of research

conducted in trying to determine failure distributions of systems. Failure events in large-scale commodity clusters as well as

the BG/L prototype have been shown to be neither independent, identically distributed, Poisson, nor unpredictable [7,10].

[12] presents a study on system performance in the presence of real failure distributions and concludes that Poisson failure

distributions are unrealistic. Similarly, a recent study by Sahoo [15] analyzing the failure data from a large scale cluster

environment and its impact on job scheduling, reports that failures tend to be clustered around a few sets of nodes, rather than

following a particular distribution. In 2004 there was a study on the impact of realistic large scale cluster failure distributions

on checkpointing [10]. Oliner et. al. Oliner et. al.,[9] profess that a realistic failure model for large-scale systemsshould

admit the possibility of critical event prediction. They also state that the idea of using event prediction for pro-active system

management has also been explored [10, 14].

Recently, there has been a lot of research towards finding alternatives for periodic checkpointing techniques [9] and there

have been some promising results. However, until these new techniques reach a level of maturity, periodic checkpointing

techniques will continue to be popular methods of fault tolerance. Besides, a lot of important legacy scientific applications

use periodic checkpointing and therefore issues related toperiodic checkpointing still need to be addressed.

LANL’s (Daly’s) checkpoint model assumes an exponential failure distribution for the duration of the application run,

which might be a few days, weeks, or months. In determining the value of MTTI,M , at the beginning of the application run,

the failure distribution that is deemed right for the system, can be used. The model starts with that value ofM and assumes

that during the application run the failure distribution ofthe system is exponential. This makes the model mathematically

amenable and elegant. Assumption of exponential failure distribution seems reasonable because we had the opportunityto see

a plot of the inter-arrival times of 2050 single node unscheduled interrupts, gathered on two different platforms from LANL

over a period of a year during January 2003 to December 2003. It fits a Weibull distribution with shape factor 0.91/0.97. Since

exponential is shape factor 1.0, it is a pretty close approximation to the real failure distribution. Due to space constraints, we

do not present the plot in this paper.

23

9. Conclusion and Future Work

We are in the process of performing Monte Carlo simulations for varying values of bothM andδ and performing statistical

analysis of the outcomes, rather than visual inspection. Results from these runs could enlighten us about the impact of errors

in estimation of values ofM andδ.

We believe that the work presented in this paper is complementary to Daly’s modeling work on execution time. Both

models do not factor in the deterioration caused by resourcecontention. However, they model the general case which can be

used as a guidance for specific cases. For example, if an application programmer needs to estimate the value of checkpoint

latency and one is aware that the checkpoint latency in likely to be some value betweenδ1 andδ2, whereδ1 < δ2. If this value

is being used to find the optimal checkpoint interval (with respect to the execution time), should the application programmer

pick a value ofδ closer toδ1 or to δ2. Although the answer to this question depends on what performance metrics are being

considered, in general, from insights obtained by analytical modeling we can see that it is safer to pick a value ofδ closer to

δ2. This is because; let us say the application programmer picks a value ofδ close toδ1 then let the corresponding optimal

checkpoint interval beτ1opt. If due to resource contention the I/O bandwidth available to this application decreases, then its

checkpoint latency might increase and the real value might be closer toδ2. The optimal checkpoint interval corresponding to

this new value of checkpoint latency increases toτ1opt. However the application is checkpointing at a checkpoint interval of

τ1opt which is less thanτ2opt. From information gleaned from the analytical models, we know that we stand to lose in terms

of both the execution time and the number of checkpoint operations when we use checkpoint intervals that are smaller than

the optimal checkpoint interval(with respect to executiontime). On the other hand if the application programmer chooses a

value ofδ closer toδ2, then if delta decreases and gets closer toδ1 then the optimal checkpoint interval becomes closer to

τ1opt. This means that the checkpoint interval being used is larger than the optimal value. As a consequence of this the wall

clock execution time of the application increases as compared to its optimal value. However, the total number of checkpoint

operations performed during the application execution decreases. There is a gain in at least one aspect.

In an MPP system where the runtime has a system-wide view of all the applications and has some control over the

checkpoint parameters of concurrent applications, one could tune checkpoint intervals to provide performance differentiation

and performance isolation of concurrent applications. Forexample, the application with highest priority can be run with a

checkpoint interval that is optimal w.r.t execution time and applications with lowest priority can be set to run with a checkpoint

interval that is optimal w.r.t total number of checkpoint I/O operations. The other applications can perhaps use checkpoint

intervals that are between their two optimal values. For periodic checkpointing applications, both the expected wall clock

execution time and the expected number of checkpoint I/O operations are important metrics to be considered in order to make

decisions about checkpoint intervals. This is one of the crucial aspects of co-ordinating checkpointing applicationsrunning

concurrently in order to achieve the goal of system performance.

24

Acknowledgments

• DoE, Office of Science (Grant Number DE-FG02-04ER25622)

• Sandia National Laboratories (Contract Number 579987 (PR 882412))

• AHPCRC (Grant Number W11NF-07-2-2007)

References

[1] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira. Adaptive incremental checkpointing for massively parallel

systems. InProceedings of the 18th Annual International Conference onSupercomputing, pages 277–286, New York,

NY, 2004. ACM Press.

[2] S. Arunagiri, S. Seelam, R. A. Oldfield, M. R. Varela, P. J.Teller, and R. Riesen. Impact of checkpoint latency on

the optimal checkpoint interval and execution time. Technical Report UTEP-CS-07-55, University of Texas at El Paso,

2007.

[3] W. J. Camp and J. L. Tomkins. The red storm computer architecture and its implementation. InThe Conference on

High-Speed Computing: LANL/LLNL/SNL, Salishan Lodge, Glenedon Beach, Oregon, April 2003.

[4] J. Daly. A higher order estimate of the optimum checkpoint interval for restart dumps.Future Generation Computer

Systems, 22:303–312, 2006.

[5] E. N. Elnozahy and J. S. Plank. Checkpointing for peta-scale systems: A look into the future of practical rollback-

recovery.IEEE Transactions on Dependable and Secure Computing, 1(2):97–108, April–June 2004.

[6] D. S. Greenberg, R. Brightwell, L. A. Fisk, A. B. Maccabe,and R. Riesen. A system software architecture for high-end

computing. InProceedings of SC97: High Performance Networking and Computing, pages 1–15, San Jose, California,

November 1997. ACM Press.

[7] Y. Liang, A. Sivasubramaniam, and J. Moreira. Filteringfailure logs for a bluegene/l prototype. InProceedings of the

2005 International Conference on Dependable Systems and Networks (DSN’05), pages 476–485, June 2005.

[8] R. A. Oldfield, S. Arunagiri, P. J. Teller, S. Seelam, R. Riesen, M. R. Varela, and P. C. Roth. Modeling the impact of

checkpoints on next-generation systems. InProceedings of the 24th IEEE Conference on Mass Storage Systems and

Technologies, pages 30–43, San Diego, CA, September 2007.

25

[9] A. J. Oliner, L. Rudolph, and R. K. Sahoo. Cooperative checkpointing: a robust approach to large-scale systems

reliability. In ICS ’06: Proceedings of the 20th annual international conference on Supercomputing, pages 14–23,

Cairns, Queensland, Australia, 2006. ACM Press.

[10] A. J. Oliner, L. Rudolph, and R. K. Sahoo. Cooperative checkpointing theory. InProceedings of IPDPS, Intl. Parallel

and Distributed Processing Symposium, 2006.

[11] K. Pattabiraman, C. Vick, and A. Wood. Modeling coordinated checkpointing for large-scale supercomputers. In

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05), pages 812–821,

Washington, DC, 2005. IEEE Computer Society.

[12] J. S. Plank and W. R. Elwasif. Experimental assessment of workstation failures and their impact on checkpointing

systems. InProceedings of the The Twenty-Eighth Annual InternationalSymposium on Fault-Tolerant Computing,

pages 48 – 57, June 1998.

[13] J. S. Plank and M. G. Thomason. Processor allocation andcheckpoint interval selection in cluster computing systems.

Journal of Parallel and Distributed Computing, 61(11):1570–1590, 2001.

[14] R. K. Sahoo, M. Bae, R. Vilalta, J. Moreira, S. Ma, and M. Gupta. Providing persistent and consistent resources through

event log analysis and predictions for large-scale computing systems. InIn SHAMAN, Workshop, ICSY02, June 2002.

[15] R. K. Sahoo, A. Sivasubramaniam, M. S. Squillante, and Y. Zhang. Failure data analysis of a large-scale heterogeneous

server environment. InProceedings of the International Conference on DependableSystems and Networks (DSN2004),

pages 772–781, June 2004.

[16] R. Subramaniyan, R. S. Studham, and E. Grobelny. Optimization of checkpointing-related I/O for high-performance

parallel and distributed computing. InProceedings of The International Conference on Parallel and Distributed Pro-

cessing Techniques and Applications, pages 937–943, 2006.

[17] A. Tantawi and M. Ruschitzka. Performance analysis of checkpointing strategies.ACM Transactions on Computer

Systems, 110:123–144, May 1984.

[18] T. B. Team. An overview of the BlueGene/L supercomputer. In Proceedings of SC2002: High Performance Networking

and Computing, Baltimore, MD, November 2002.

[19] N. H. Vaidya. Impact of checkpoint latency on overhead ratio of a checkpointing scheme.IEEE Transactions on

Computers, 46(8):942–947, 1997.

[20] J. W. Young. A first order approximation to the optimum checkpoint interval.Communications of the ACM, 17(9):530–

531, 1974.

26

A. Appendix

Theorem 5. For every value of MTTI such thatM > 0 and every value of checkpoint latency,δ, such that (0.01 ≤ δ
2M < 1

), the value of the optimal checkpoint interval, computed using Equation 3, is less than or equal to the real optimal checkpoint

interval.

Proof. For ease of representation in the context of this proof, let us define an ordered pair of values< V 1, V 2 > as avalid

pair if 0.02 ∗ V 1 ≤ V 2 < 2 ∗ V 1 Given a valid pair of values of MTTI,M , and checkpoint latency,δ, < M, δ >, let us

denote the optimal checkpoint interval computed using Equation 3 by τdaly Let τopt represent the real optimal checkpoint

interval. Sinceτdaly < M , it belongs to one of the following partitions;

P1 = {τ : 0 < τ < τopt}

P2 = {τ : τ = τopt}

P3 = {τ : τopt < τ ≤ M}.

43 44 45 46 47 48 49 50 51 52 53
6.44

6.45

6.46

6.47

6.48

6.49

6.5

6.51

6.52

6.53

6.54
x 10

4

Checkpoint Interval (τ)

E
xe

cu
tio

n
T

im
e

 τ
 opt

δ = 96 min
M = 50 min
R = 100 min
Ts = 500 h

 P1 P3

Figure 7. Illustration of a partition

The theorem asserts thatτdaly ∈ {P1 ∪ P2}

27

If τdaly = τopt thenτdaly ∈ {P2} and the theorem holds. Therefore, we only need to prove the theorem forτdaly 6= τopt.

Suppose for a value of MTTI,M , and for a value of checkpoint latency,δ, we exhibit a△t > 0 such that[T (τdaly + △t) < T (τdaly)].

The existence of such a△t, proves thatτdaly /∈ {P3}, which implies thatτdaly ∈ {P1 ∪ P2}. This proves that for that pair

of values of MTTI and checkpoint latency,τdaly ∈ {P1 ∪ P2}. If we can provide a method of computing such a△t for

any given valid pair of values of MTTI and checkpoint latency, < M, δ >, then, that serves as a proof of Theorem 5. This is

indeed the method we use.

In the following lemma, an alternate representation ofτdaly is obtained by a simple transformation ofδ. It simplifies the

proof of the theorem and improves readability.

Lemma 1. If δ is represented as2Ma, where0 ≤ a < 1, then,τdaly = 2M(B − a), whereB =

(√
a + a

3 + a
3
2

9

)

.

Proof. For this theorem, the range of values ofδ of interest is0 < δ < 2M . Consider the equation forτdaly whenδ < 2M ,

τdaly =
√

2δM

[

1 +
1

3

(

δ

2M

)
1
2

+
1

9

(

δ

2M

)

]

− δ.

Substitutingδ = 2Ma in the above equation, we obtain

τdaly =
√

4M2a +
2Ma

3
+

2Ma
3
2

9
− 2Ma

= 2M
√

a +
2Ma

3
+

2Ma
3
2

9
− 2Ma

= 2M

(

√
a +

a

3
+

a
3
2

9

)

− 2Ma

= 2M(B − a) where B =

(

√
a +

a

3
+

a
3
2

9

)

.

Sinceδ = 2Ma, (0.01 ≤ δ
2M < 1) =⇒ (0.01 ≤ a < 1).

Example 1. For values of parameters (M = 1 min, R = 20 min, Ts = 500 hrs), and (0.01 ≤ a < 1), Figures 8 and 9

are plots of
[

T (τdaly) − T (τdaly + 10−5)
]

and
[

log(T (τdaly) − T (τdaly + 10−5))
]

, respectively, as a function ofa. In the

range (0.01 ≤ a < 1), note that the difference is always positive. This demonstrates that whenM = 1 min and for all values

28

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

a

T
(τ

o
p

t)
−

 T
 (

τ o
p

t +
 1

0
−

5
)

M = 1 min
R = 20 min
Ts = 500 h

Figure 8. Exhibiting a △t for M = 1 min

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
8

9

10

11

12

13

14

15

a

lo
g

(T
(τ

o
p

t)
−

 T
 (

τ o
p

t +
 1

0
−

5
))

M = 1 min
R = 20 min
Ts = 500 h

Figure 9. Difference in Execution times plotted on log-lin s cale

of a in the range (0.01 ≤ a < 1),

T (τdaly) > T (τdaly + 10−5).

29

Thus, forM = 1 min and for alla such that (0.01 ≤ a < 1), we have exhibited a△t = 10−5 such that[T (τdaly) > T (τdaly + △t)].

In order to prove the theorem, we still need to exhibit such a△t for every value ofM and everya in the range (0.01 ≤ a < 1).

The following lemma facilitates this.

Lemma 2. For a given value of MTTI,M , let △t satisfy the property that for everyδ such that (0.01 ≤ δ
2M < 1), the

expected execution time corresponding to[τdaly + △t] is less than the expected execution time corresponding toτdaly. For

any other value of MTTI,M ′ = f ∗ M , wheref > 0, △t′ = f ∗ △t satisfies the property that for everyδ such that

(0.01 ≤ δ
2M < 1), the expected execution time corresponding to[τdaly + (△t′)] is less than the expected execution time

corresponding toτdaly.

Proof.

MeR/MTs

(

e(τdaly+δ)/M − 1

τdaly

)

>

MeR/MTs

(

e((τdaly+δ)/M+△t/M) − 1

τdaly + △t

)

sinceMeR/M > 0 andTs > 0
(

e(τdaly+δ)/M − 1

τdaly

)

>

(

e((τdaly+δ)/M+△t/M) − 1

τdaly + △t

)

From Lemma 1,τdaly can be expressed as2M(B − a) and τdaly+δ
M = 2B, wherea andB are defined as in Lemma 1.

(

e(τdaly+δ)/M − 1

τdaly

)

>

(

e((τdaly+δ)/M+△t/M) − 1

τdaly + △t

)

⇔
(

e2B − 1

2M(B − a)

)

>

(

e2B+△t/M) − 1

2M(B − a) + △t

)

⇔
(

e2B − 1

2M(B − a)

)

>

(

e(2B+t1) − 1

2M(B − a) + M ∗ t1

)

wheret1 = (△t/M)

(11)

⇔
(

e2B − 1

2(B − a)

)

>

(

e(2B+t1) − 1

2(B − a) + t1

)

(12)

30

Inequality 12 is equivalent to the condition that(T (τdaly)−T (τdaly +(△t))) > 0 Note that, whether or not Inequality 12

is satisfied, is determined by the values ofa andt1. It can be verified that, if the value of MTTI changes fromM to f ∗ M ,

and if △t is substituted byf ∗ △t, then the condition(T (τdaly) − T (τdaly + (f ∗ △t))) > 0 turns out to be identical to

Inequality 12.

Example 1 demonstrates that whenM = 1 min, a value of△t = 10−5 min satisfies Inequality 12 for all values ofa

in the range0.01 ≤ a < 1. From Lemma 2, given any other value of MTTI,M ′ = f ∗ M , wheref > 0 a value of△t′

that satisfies[T (τdaly) > T (τdaly + △t′)] is given by△t′ = △t ∗ f . SinceM = 1 min, f = M ′/M = M ′, whereM ′ is

expressed in minutes.

Thus, we have presented a method of computing△t with the desired property for everyM > 0 and for everyδ in the

corresponding relevant range. Therefore, as explained before,τdaly ∈ {P1 ∪ P2} is always true.

31

