Opportunistic Checkpoint Intervals to Improve System Performance

Sarala Arunagiti JohnT.Daly Patricia J. Teller ~ Seetharami Seeldm Ron A. Oldfield
Maria Ruiz Varela Rolf Riesenh

Abstract

The massive scale of current and next-generation masgeehllel processing (MPP) systems presents significantcha
lenges related to fault tolerance. For applications thatfpem periodic checkpoints, the choice of the checkpoitgriral,
the period between checkpoints, can have a significant itrgrathe execution time of the application. Finding the ogtim
checkpoint interval that minimizes the wall clock exeautime, has been a subject of research over the last decadm In
environment where there are concurrent applications camgdor access to the network and storage resources, in-addi
tion to application execution times, contention at thesaresth resources need to be factored into the process of chgosi
checkpoint intervals. In this paper, we perform analyticaldeling of a complementary performance metric - the agdesg
number of checkpoint I/O operations. We then show the existand characterize a range of checkpoint intervals which

have a potential of improving application and system perfance.

1. Introduction

Current Massively Parallel Processing (MPP) systems &lgibiave tens of thousands of processors that are pagiion
into specialized seta of components for computation, girand system services [6]. Examples include the Cray XT sys
tems at Sandia National Laboratories and Oak Ridge Natlcaiabratory [3] and the IBM BlueGene/L system at Lawrence
Livermore National Laboratory [18]. Applications that ran these machines include, for example, simulations ofrenvi
mental, biological, and seismic phenomena that addreddemns related to key scientific and social issues. Many afehe
applications require a large proportion of the MPP systenmionths at a time to achieve meaningful results.

Checkpoint restart is a common technique to provide faldtrémce for applications running on MPP systems. Check-

pointing can be either application-directed or systeneated. Acheckpoint operatiors the process of saving the computa-

*The University of Texas at El Paso
Los Alamos National Laboratory
#IBM TJ Watson Research Center
§Sandia National Laboratories

tion state to a stable storagéheckpoint datas the data that is sufficient to restart the computatiorhéndvent of a failure.
Checkpoint latencis the amount of time required to write checkpoint data tsiséent storage andceckpoint intervals
the application execution time between two consecutivekghant operationsCheckpoint overheaisd the increase in the
execution time of an application due to checkpointing.

Selecting an appropriate checkpointinterval is imporéapiecially since the storage system is physically sephfiadm
the processors used for execution of the scientific appdicatf the checkpoint interval is too small, the overheagiated
by network and storage transfers of a large number of chectgoan have a significant impact on performance, espgciall
when other checkpointing applications share the netwodkstarage resources. Conversely, if the checkpoint inkésva
too large, the amount of work lost after a failure can inceeth® time to solution substantially. Deciding upon the ropti
checkpoint frequency is theptimal checkpoint intervgdroblem, which is well-known. Most solutions attempt to imiize
total execution time (i.e., the application time plus thedtpoint overhead) [20, 4]. In this paper we focus on anqgtleer
formance metric, the number of checkpoint I/O operatiomfopmed during an application run. It is our thesis that exen
time and the number of checkpoint I/O operations are comgfgary metrics and both of them need to be considered in
selecting a checkpoint interval. Using analytical modglime explore the impact of the choice of checkpoint inteovathe

number of checkpoint I/O operations performed during ariegion’s execution.

1.1. Motivation and Background

Given a set of parameters of the MPP system and the apphi¢ddaly’s model [4] provides a way of computing the
execution time and an approximation of the optimal cheakipioierval. For example, consider a partition of Blue Géne/
(BG/L) with 1024 nodes with 0.5GB of memory per node, an MTTIlooe year per node, and a storage bandwidth of
45GB/s. Consider an application withsalve time which is the time spent on actual computation cycles towardinal
solution, of 500 hrs and eestart time which is the time before an application is able to resuméaemputational work
after a failure, of 10 minutes. Given that each of the 1024esakecuting the application checkpoints half of its abdda
memory (i.e., 0.25GB), the amount of checkpoint data gaedray the application per checkpoint is 256GB. If we assume
that the application gets the full storage bandwidth of 45GBe checkpoint latency is 5.68 seconds. According ty'Bal
model, the minimum expected execution time of this appbceis 519.76 hours, corresponding to a checkpoint intesfal
9.8 minutes.

There are situations under which this minimum expected i@t time cannot be achieved. Checkpoint operations
consume several resources in addition to the processdngdtfarm checkpoint operation, for e.g., network bandhjdite
system, storage bandwidth, etc. These resources are siramed) checkpointing and other 1/0O operations of conculyent
executing applications in an MPP. Contention at these dhasources can inhibit the applications from attainingoghiémal

execution time, even when they are checkpointing at ther@ttheckpoint interval. To illustrate this consider thample

application running on BG/L. Now suppose that 64 such appbas with similar checkpoint parameters, each executing
on a 1024 node partition of BG/L, are running concurrenthys(is possible in BG/L which has 64536 nodes). As stated
before, the optimal checkpoint interval is 9.8 minutes. Tdtal checkpoint data generated by the 64 applicationsduri
each checkpoint cycle is 16384 GB,; if serviced at the fulldwaidth rate this takes 6.07 minutes of I/O system service tim
to write. In the best case scenario the checkpoints of thepplications are staggered to ensure that no two application
perform a checkpoint operation at the same time. This imphat for 6.07 minutes during every checkpoint cycle, wlich
9.8 minutes, the 1/0 system is busy writing checkpoint datassence, the 1/0 system is busy performing checkpoirewri
operations 62% of its time.

If the communication system and the file system can handéeatdahe specified rate and the other I/0 requirements of alll
64 applications are small enough that the storage systesetaite all of them in less than 38% of its time, and this lI/@slo
not ever contend with any checkpoint I/O, then all 64 of theggglications, each having a solution time of 500 hours, @n b
concurrently executed to completion(in a statistical sgnsvith checkpoints, in 519.76 hours - the expected exegtitne
according to Daly’s model. However, if any of these condisi@re not satisfied then this cannot be attained. For exaifiple
one or more of these applications are 1/O intensive and hegéheir I/O needs cannot be serviced by 38% of the 1/0 system
time, then their performance is bound to deteriorate. Iratbgence of I/O performance isolation, the performancetwdrot
applications that share the I/O resources with the I/Onisitee applications is bound to deteriorate and it is unjilteat any
of them will complete their execution in 519.76 hours. Tharaple presented was simplified for the purpose of illusirati
But even if we had patrtitions of different sizes, similar cems arise.

The disparity between real execution time and the expecteduion time is due to the fact that the execution time
model assumes that the amount of progress made by the afplidaring each checkpoint cycle is equal to the checkpoint
interval. This is indeed the case when we consider a singye lapplication running on an MPP system, for example, an
application running in a capability computing environmehhe model helps us predict the execution times accurately f
such cases. However, in computing environments where res@ontention between concurrently executing applioatio
exists, application progress during a checkpoint cycldédctba less than the checkpointinterval. As a result of thiscation
time is larger than the expected optimal execution time suleen checkpoint interval is the optimal checkpoint intérva

Questions that arise are -

1. Can we develop an analytical model for execution time oiogéc checkpointing applications that factors contemtio

at shared resources? This enables prediction of execirties bf such applications.
2. Can we ameliorate resource contention caused by chetlf@ioperations?

An analytical model as suggested by the first question woedtirto consider the system configuration and the charac-

teristics of the set of concurrently executing applicatitm determine the nature and extent of the resource cooiethtat

may arise. The complexity of this task makes it a dauntinkj ifasot infeasible. We do not attempt to do this. In this paper
we address the second question. Since we know that chet¢kpdi@ operations happen every checkpoint cycle, it seems
reasonable to assume that the resource contention caubedkpoint writes can be ameliorated by decreasing its &agu
The tunable checkpoint parameter that achieves this istbekpoint interval, it can be increased.

Estimating the amount by which the checkpoint interval sgedncrease in order to enable the network, file system, and
storage system to be able to handle both checkpoint I/O dreat application I/O efficiently, is yet another researchytem
that is outside the scope of this paper. However, informapieesented in this paper might help solve it. For the example
applications running on 64 BG/L partitions, if we are willitio pay the price of a 5% increase in execution time over the
minimum value of 519.76 hours, then the checkpoint intecaal be increased by a factor of 6.85 which amounts to 585%
increase. Using these new checkpoint intervals, thesécagiphs perform checkpoint operations once every 67 mgat
opposed to the original 9.8 minutes. The fraction of time tha storage system needs to write checkpoint data duriery ev
checkpoint cycle reduces to 9% as opposed to 62%. In thisgheathe total number of checkpoint I/O operations decrease
from 3120 to 529, which is an 83.68% reduction in the numbehetkpoints and the corresponding checkpoint data reduced
to 130384 GB, which is 16.32% of the original value, 798927 GlBe expected execution time increases to 545.5 hours, i.e.
a 5% increase. In summary, increasing the checkpoint iatésva factor of 6.85 increased the execution time by 5% but it
increased the storage systems availability for I/O othanitheckpoint I/O by 118%.

Although increasing checkpoint interval decreases thquieacy of checkpoint write operations, it also increases th
probability of failure during a checkpoint cycle. A failuresults in a checkpoint read operation during the restaitgss.
Therefore, at the outset, it is not clear whether increashmrkpoint interval beyond Daly’s optimal checkpoint med

always decreases aggregate checkpoint /0O operationsisipaper,

e We study the nature of the variation of the total number ofc&peint 1/0 operations as a function of checkpoint
intervals in the rang® < 7 < M (Section 3). We show the existence and characterize theerahgalues of
checkpoint intervals that are larger than Daly’s optimaaitpoint interval such that the total number of checkpoint

I/0O operations decreases with increasing checkpointhiater

e We show that potentially we could increase the checkpotetrual by as much as 12% beyond Daly’s optimal value

without increasing the expected execution time (Sectih 5.

e \We provide an expression for computing an increased chéakipterval with a guarantee that the subsequent increase

in the expected execution time is no more than 5% of the opexj@ected execution time (Section 5.2).

e We use parameters of four MPP architectures, SNL's Red StoriL's Blue Gene/L (BG/L), ORNL's Jaguar, and

a theoretical Petaflop system to model the impact of the idaggested. The empirical evidence shows that there
are checkpoint intervals that are larger than the optimatkpoint interval that increase the expected executioa tim
minimally while decreasing the number of checkpoint I/O @piens substantially (Section 6). Thus, we identify and
pave the way for further modeling work that might be of immeralue in orchestrating concurrent checkpointing

applications in order to enable good system performance.

As pointed out in Section 9, there are several situationeundhich increasing the checkpoint interval beyond Daly’s
optimal value could lead to performance benefits. The wodsgmted in this paper is complementary to Daly’s modeling
work on checkpointing. Together, these two models are dedrto provide pointers and insights for making an informed
tradeoff between expected execution time and number ofkgloéat 1/0 operations. To the best of our knowledge, at this

time there is no quantitative guidance to facilitate suctads off.

2. Choice of Checkpoint Interval

Minimizing application execution time is an important cmesation in supercomputers. Therefore, our natural ehofc

checkpointinterval is the one that minimizes applicatiraceition time.
2.1. LANL's Model of Optimum Checkpoint Interval

The total wall clock time to complete the execution of an aalon and the approximate optimal checkpoint interval
are given by the following equations [4]. We refer to them adyf3 execution time model and Daly’s optimal checkpoint

interval model.

T

T = MeR/M (e(”‘”/M - 1) = for § << T, 1)
T

Topt = M (1 + ProductLog (—e_ évl)) (2

Daly’s approximation ta-,., T4ayiS given by

VI 1+ 4 (5) + 8 (5)] -6 o <2m
Tdaly
M 5> 2M

3)

where

T, = Time spent doing application computation,

7 = Checkpointinterval

1) = Checkpoint latency,

M = Mean time between interruptions (MTTI) of the applicatiangd
R = restarttime.

The approximate optimal checkpoint interval has a bouneétive error of 5.9% and relative error of total problem
solution time less than 0.2%. In the rest of our discussigmdfault, the reference value of checkpoint intervaljg,. We

model the performance impact of increasing the checkpoiatval from the reference value to larger values.

3. Number of Checkpoint I/O Operations

The set of I1/0 operations performed by checkpoint/restathmnisms contain both reads and writes. In a periodic
checkpointing system we know that checkpoint writes aréopered periodically at every checkpoint interval and there
the number of checkpoint write operations is given by thetsmh time of the application divided by the checkpoint .
When a failure occurs in a co-ordinated checkpointing sgstbe last checkpoint data that was written successfulddae
to be read in order to restart the application. Thereforentiraber of checkpoint read operations is given by the exdecte
number of failures.

The known consequences of increasing checkpoint interval -

e Increase ircheckpoint cyclevhich is given by the sum of checkpoint interval and chechkplaitency, assuming that

the checkpoint latency is not hidden.

e Increase in the expected execution time if the original khemt interval is greater than the optimal checkpointiinte

val [4].
e Decrease in the frequency of checkpoint write operations.
e Possible increase in checkpoint read operations whichexrfenmed as part of the process of recovery after a failure.

e A change in the total number of checkpoint reads and writeBopaed during the application run. It is not clear

whether the sum increases or decreases.

We would like to determine the effect of increasing chechpumiterval on the total number of checkpoint I/O operations

Expected number of checkpointreads: Expected executiontime /M
S+T1

MTel/M (e — 1)
Mt
TSeR/M(eJIV -1)

T

Expected number of checkpoint writes= Ty /7

. : ToefM (e ar— 1)
Expected number of aggregate checkpoint I/O operati¥pgs, = +T,/7
T

_ L [1 + eR/M (e‘sztf - 1)}
.

Theorem 1. The functionV; o has a single minimum at;,; in the ranged < = < M. It does not have any other stationary

points in this ranger; ¢ is given by,
170 =M (1 + ProductLog (—67% e)) 4)

Proof. We now look for stationary points a¥; . These are values efat which the first derivative aN; o w.r.t 7 is zero.

dNijo T, [+ R 5ir R, 54T
—L7 =5 | fpeMem — eM(e M —1) -1

dNrjo _
= =0 =

R 84T R S+4T R
eMe M %—eMe_M +em —1=0 =

et e i (ﬁ—l)—l—eM —
e%(%—l):—(l—eﬁ%) =
e (](4—1):—6 %(1—87%) —

(ﬁ — 1) = ProductLog (—87% (1 — e*%)) —

S+ M

17 = 1+ ProductLog (—e_ M (1 — e_%)) —

T=M (1 + ProductLog (—e’% (1 — e’%))) ==

T=M (1 + ProductLog (—e‘ﬁ_fM +e” R+1€4+M)) (5)

There is a unique positive value ofthat satisfies the equation above, let us denote it;py. The ProductLog term in
Equation 8 is negative and its absolute value is less than Therefore,r;, is always less than/. We use the second
derivative test in order to determine whether the statippaintr; , is a minimum, maximum, or an inflexion point.

We know that

Expected Execution Time T
Nijo = +—=

M T
T T,
= WM T
dNyo 1dT T,
& Md
d*T 1 d?T T
T Mar TS ©)

From [4] T is known to be positive for all values ofin the ranged < 7 < M . This makes the right hand side of

p=

2
Equation 6 and thug%positive for all7 in the range) < 7 < M. Therefore, the stationary point,o is @ minimum

with respect to the number of I/O operations. O
We now explore the relationship betwegn,o, andr,,,; for any given set of checkpoint parameters.

Theorem 2. The value of checkpoint interval that optimizes the numb#Qpoperations; o is always greater than the

value of the checkpoint interval that optimizes the exgketecution timer,:.

Proof. Recall the expressions fes,; andr;,o;

Topt = M (1 + ProductLog (—67%)) @)

10 = M (1 + ProductLog (—e_%—fM +e” Rﬁfﬂw)) (8)

Consider arguments to throduct Log function in Equations 7,8. They are both negative and thelatesvalue of the
argument in Equation 7 is larger than that of Equation 8. &ificoduct Log(—1/e) = —1 and sinceProduct Log function

is monotonically increasing in the rangeg to 0).

_5+M + M R+5+M) |
1

| ProductLog (—e Y) | > |ProductLog (—e_éM +e
— Topt < TI/0
O

Thus, we have established that for checkpoint intervaiis the ranger,,; < 7 < 77,0, the number of checkpoint I/0

operations decreases with increasing checkpoint inteaalllustrated by Figure 3.

Corollary 1. For checkpoint intervalsz, in the ranger,,; < 7 < 77,0, the expected value of frequency of checkpoint I/0

operations decreases with increasing checkpoint intetval

Proof. From [4], we know that for values of checkpoint intervats,in the ranger,,; < 7 < M, the expected execution
time increases with increase in checkpoint interval. Singg < M, it follows that the expected execution time increases
with increase in checkpoint interval farin the ranger,,; < 7 < 77,0. This information and Theorem 2 together imply
that for checkpoint intervals;, in the ranger,,; < 7 < 77,0 the expected value of frequency of checkpoint I/O operation

decreases with increasing checkpoint interval. O
3.1. Implications of Results in this Section

Corollary 1 is key to promising avenues in performance inpnoent. For values of in the ranger,,; < 7 < 77,0,
both the expected value of frequency of checkpoint I/O djmra and the expected value of the number of checkpoint
I/O operations decrease with increase in checkpoint iateenabling a tradeoff between execution time and number of
checkpoint I/0 operations. Another insight provided bynedel is that whiler,,; andr;,o are both functions of and M,

71,0 is a function of the restart time?, in addition.7;,o decreases with increasing valuesaf

4. Stochastic Simulation to Validate Analytical Model

The goal of these simulations was to validate the analytieadel for the number of checkpoint I/O operations. For a
given set of parameters, our aim was to use stochastic sionl® investigate the variation of number of checkpoi@ I/
operations with varying checkpoint intervals.

We performed stochastic simulation of a 1000 node systemcafisidered two sets of parameters. For the first set of
parameters we conducted simulations at 9 different cheokptervals and for the second set we considered 7 difteren
checkpoint intervals. At each checkpoint interval we siaedl 100 runs of an application with a solution time of 500 hrs
and collected data on execution times and number of cheekfg@ operations. The probability of node failures and the
probability of repair of failed nodes were calculated usiagdom numbers. Single component failures were assumed to
have poisson distribution with a mean at Mean Time To In@r(MTTI) of the node. Repair times were assumed to have
gamma distribution with a mean of 60 minutes. For each setadmpeters, we conducted two kinds of simulations. The
first one was stochastic simulation using a value of checkpaiency of 5 minutes. The second kind of simulation was a
Monte Carlo simulation where we assume that the checkpatienty is a random variable that is uniformly distributedrov
the interval 4.75 to 5.25 minutes. This accounts for a 5%rénrthe estimation of checkpoint latency as 5 minutes.

We present results of the first set of parameters in Figurasd1?a The solid line in the figure shows the number of

checkpoint I/O operations given by analytical modeling éimel vertical bars give the spread of the values of aggregate

Set 1

400 50000

350 F——‘I'——I""—_._—_.__-. — —® 145000
2 /
o / 1 40000
® 300 - Y »
3 —&— Aggregate number of nheckpoint /O + 35000 g
o operations £
Q 250 A —ll— Execution Time 4 30000 £
= £
£ 5
2 200 1 1 25000 €
ﬁ -
£ 1 20000 S
o 150 A =
(2] (3]
s 1 15000 2
o 100 w
S I 1+ 10000
< | | I)i |

| | 1 1 | | l I 1 5000
0 0

90 117 1325 1350 1375 1400 1425 1450 1475
Checkpoint interval in minutes

Figure 1. Simulation with M=24 hours, § =5 minutes, T, = 500 hours, and R= 10 minutes. For these
parameters 7,,;=117 minutes and 7;,0= 1436 minutes.

checkpoint I/0 operations for the 100 simulation runs cgwoading to each checkpointinterval. The dashed line igdsn
value of execution time. Note that, by design, the data paintthe x-axis of these figures are not uniformly spacedthe.
first data point is 90 minutes, the second is 117 minutes aadstibheckpoint interval that optimizes the execution tithe
third data point is 1325. It is evenly spaced there onward® fécus on the last 150 minutes starting from 1325 minutes
was because the checkpoint interval that optimizes the euofticheckpoint operations, which is 1436 minutes, liehis t
range and we wanted to track changes here more closely. rh#ased number of checkpoint I/O operations tracked the
expected number of I/O operations given by the analyticadehoThe results of Monte Carlo simulation were not visually
very different from the one with fixed checkpoint latencyta butset.

Thus far, using analytical modeling, we have establishatiubing values of checkpoint interval that are in the range
to 77,0 implies a reduction in the number of aggregate checkpdiholgerations performed during an application execution.

Next we explore candidate values of checkpoint intervathimrange that appear to be intuitive choices.

10

Monte Carlo Set 1

400 50000
— e =l — — 1
i 350 ._____.__—-——.—_ - _ — = 45000
5 4 1 40000
= /
® 300 - y
3 —&— Aggregate number of nheckpoint /O + 35000
o - — operations
g 250 A —ll— Execution Time 4 30000
£
8 200 1 25000
=
3
£ 450 | 1 20000
2
S + 15000
o 100
S 1+ 10000
g L1 o1 1 1 71
I T 1T T T T 1 {sm0
0 0

90 117 1325 1350 1375 1400 1425 1450 1475
Checkpoint interval in minutes

Figure 2. Monte Carlo simulation with the same parameters bu t with § taking random values that are
uniformly distributed in the range 4.75 minutes to 5.25 minu tes

11

Execution time in minutes

5. Potential Target Values for Increased Checkpoint Intenal

As mentioned before, our point of reference is always Dabyfimal checkpoint intervalrg,;,. We first attempt to

provide easily computable values of increased checkpatetval with known bounded increase in expected executioest
5.1. Exploiting Approximation Error of Daly’s Optimal Chec kpoint Interval

The first question we asked is whethgy;, is always less than,,;. Suppose ., is always less than,,:, then,
o Probably, there is no performance benefit in using a valudetkpoint interval less thary,,, .

e There are checkpoint intervals greater thag, which could be 0 to 12% larger thamn,;, and the corresponding
values of both frequency of checkpoint write operations al as execution times are smaller in comparison to the

values atry,;,. In Figure 4, this corresponds to valuesrah the rangergqi, t0 Tgaiy + Qopt-

o For checkpoint intervals, such thatr > 7441, + aopt, the execution time increases and the frequency of chewkpoi

write operations decreases.

This lead us to examine whethey,;, is always less than,,:. We were able to prove that it is indeed so.

Theorem 3. For any value of MTTI M, and§ such that0.01 < 2;]‘” < 1, the value of the optimal checkpoint interval

computed using Equation 3,4, is less than the real optimal checkpoint interval,,.

Proof. Proof of the theorem can be found in the appendix. O

Therefore, 7441y andr,,; relate to each other as depicted in Figure 4. For a given waflug,;, and the remaining
checkpointing parameters, the valuecgf,, can be computed using Lambert W function. Although theravemthematical
packages like MATLAB and Maple that provide the Lambert Wdtion, not all math calculators provide it as an elementary
function. Besides, it was suspected that computing a clémed expression for an approximation of,. in terms of
elementary functions of the other parameters could pgspitdvide additional insights. The following theorem pretsea

closed form expression for an approximatiorngf,. The value thus obtained is always greater than the valug,pf

Theorem 4.

2M

Qopt = |:(]\/[— Tdaly) — Me_(Tdaly+6)/M:|

Tdaly ’

Proof. Let
Ty = Mel/M (e(anyt0)/M _ 1) T
Tdaly
and
T

T, = MeR/IW(e(Tda1y+Otopt+52)/M -1
Tdaly + Qopt

12

lllustration of the two optimal checkpoint intervals under

consideration

150 \
\ —— Number of

© 105 Checkpoint 1/0 T
S ; Operations_.
® .\ e — Execution Time | 1
8 The optimal checkpoint interval wrt
O 100 execution time is 117 minutes
o AN -
=
3 75 4
3 T
< A —
O A
; 50 The optimal checkpoint interval wrt
£ number of checkpoint /O operations| T
Z o5 is 1436 minute

0 < 3

0 295 590 885 1180 1475

Figure 3. lllustration of variation of Execution Time and th

Checkpoint Interval in minutes

a system with parameters M =24 hours, § =5 minutes, T, =500 hours, and R= 10 minutes

13

80000

70000

60000

50000

40000

30000

20000

10000

e Number of Checkpoint I/O Operations for

Execution Time in minutes

x 10"
6.54

6.53
6.52
6.51

6.5

6.49 \
<

Execution Time

6.46 - b
5=96 min
M =50 min
6.45 R =100 min 4
Ts =500 h
6.44 1 1 1 1 1 1 1 1 1
43 44 45 46 47 48 49 50 51 52 53

Figure 4. The optimal checkpoint interval

SinceT; = Ty,

Checkpoint Interval (1)

Tdaly 1€SS than the real checkpoint interval

(saer ot 1y 22)
Tdaly

(MeR/M(e(rdazy+aom+5)/1\4 ~1)

Simplifying this expression

Tdaly€

The Taylor series expansion fetert/M is

e‘%pt/M =1 + —

(Tdaty+96)/M (eaopt/lﬂ _ 1)

Ts)
Tdaly + Qopt

_ aopt(e(Tdaly+5)/M —-1)

M
Substituting this series far*-»*/M in Inequality 9 we get

1 «
wtgt8) /M t
Tdalye(Td 1y+96)/ (ﬂ . Zopt

Qopt (6

14

(Tdaty+6)/M _ 1)

1 Qopt 1 agpt 1 agpt
21 M2 3l M3
1 agpt 1 agpt _
TR VERE TR VERR

Topt

(9)

Considering terms up to the quadratic term in the Taylorgeseand ignoring higher order terms and simplifying, we
obtain
2M

Tdaly

(M — Taqary) — Me™ (Taatyt0)/M (10)

Qopt =
O

In obtaining the expression far,,: in the above theorem, a truncation error is introduced bsxae consider the first
three terms of the Taylor’s series expansion and ignoredbeaf the terms. We prove that the consequent error in the
estimated value ok, is bounded by(0.0024 * cvsp;) + (0.0048 « M)) [2].

Table 1 shows values of,;,, anda,,: computed for a few pairs of values éfand A/. The expression for the approx-
imation of o, and the data in the table show that the valuewgy; increases aé approacheg&)M . For values ob close
enough t2M, a,,: attains the value of 12%. In today’s MPP systefis still much smaller thad/. However, if the size
of MPP systems increase and values of MTTI/node stay the ,stue, the value ofi/ reduces. In these larger systems,
if the storage bandwidth increases proportionally withgtze of the systems, then, valuesiodan be expected to stay the
same. Considering these two factors, it is not unrealistassume that unless there are big strides to improve Hitljabi

can become comparable2d/ in future large systems.

Table 1. Values of «,,: as a percentage of 7441y

Checkpoint Cc)ﬁgg(aloim Qopt @S &
Latency in M in minutes P .| percentage of
. Interval 7441, in
minutes . Tdaly
minutes
5 10 6.94 1.15
6 3.5 3.10 10.32
10 25 16.19 0.74
20 15 12.98 6.39
45 25 22.18 11.41
70 40 35.44 10.79
96 50 44.43 12.94
120 65 57.71 11.97

Given a checkpoint latency, an MTTI, M, an application with solution timé;, and restart time&, let the minimum
achievable execution time of the application with checkfing be denoted by,,.;,, Thus, when we increase the checkpoint
interval to441, + opt, the percentage increase can potentially be as large as 2% ¢pand the new expected execution
time is no larger tham.002 * E,,;,,. This follows from the fact that the approximate optimal dkgoint interval,r44.,,, has a

bounded relative error of 5.9% and relative error of totaljem solution time less than 0.2%.

15

5.2. Using Daly’s and Young’s Model of Checkpointing

As stated earlier, in today’s MPP systems, valueg afe much smaller thaf/ and, thereforeg,,: iS not expected to
be large. Therefore we explore other possible target valfieseckpoint intervals that yield bounded increase in etien
times. Consider Young's model of optimal checkpoint ingrngiven byrro = v/20M, [20]. Daly’s model of optimal
checkpoint interval is a better approximation and it is anefient of Young’s model. Figure 5 depicts these values for a
BG/L. If we increase the checkpoint interval from,;, t0 7ro + aro, since Young’s model has an upper bound on the
relative error in problem solution time &%, the expected execution time is guaranteed to be no largariths * E,,;,.
SinceTro + aro is larger thanrge, + aope, this gives us another increment oiwith a bounded increase in expected
execution time.

Given a checkpoint latency, an MTTI, M, and arro, apo can be computed similar t@,,, .
2M
aro = (2L [(01 = o) - de-Cror0))

Thus, 741y + aopt @aNd7Tro + aro give us easily computable values to which the checkpoietyal can be increased

with known bounded increase in expected execution times.

6. Empirical Studies Using Analytical Models

In this section, we present a summary of studies performedsbio evaluate the performance impact of increasing
checkpoint intervals. Using Daly’s execution time modead &me model presented in this paper for the number of cheokpoi
I/O operations, we model the performance of four MPP archites- SNL's Red Storm, ORNL's Jaguar, LLNL's Blue

Gene/L (BG/L), and a theoretical Petaflop system, usingmeters presented in Table 2.

Table 2. Parameter values for the studied MPPs

Parameter | Red Storm | Blue Gene/L Jaguar Petaflop
Nmaz X cores | 12,960 x 2 | 65,536 x 2 11,590 x 2 | 50,000 x 2
dmaz 1GB 0.25GB 2.0GB 2.5GB
M gey 5years 5 years 5 years 5 years
B 50GB/s 45GB/s 45GB/s 500GB/s

A representative application which has a solution tiffie= 500 hours and a restarttime = 10 minutesis considered

for all experiments. For each MPP system, assume
o the application runs on all nodes of the system,

e the MTTI of each node is 5 years, and

16

o the application checkpoints half of each processor’s mgmoring every checkpoint cycle.

This set of assumptions is label&tandard We then consider three other variations of the standatchgstsons. The first
variation assumes that the application checkpoints 25%safiemory instead of 50%. Then we assume that the MTTI of
each node is 2.5 years instead of 5 years. Finally, we asswahéne application runs on 1/8th of the nodes of each system
instead of all the nodes. While computing checkpoint lagenchis case, the partition is considered to have 1/8th ef th

storage bandwidth available to it. These assumptions @f@r common cases.
6.1. Increase Checkpoint Interval torqi, + copt

For all examples considered,,;,, approximates the optimal checkpoint interval very closaty thereforey,,.s was
small, less than 5-7%. Therefore the increase in checkpugrval was insignificant. As mentioned earlier,: is likely to
be close to 12% whed is close to2 M. Considering current trends, in future machines this isstirdit possibility and the

technique can potentially yield better results with suclthnaes.
6.2. Increase checkpoint Interval torro + aro

Consider increasing the checkpointing interval freg;, to 770 + aro, as illustrated in Figure 5. The results are
summarized in Table 3 where entries with greater than 10%e#&se in the value of are emphasized. We see that there
are three of them and they range in value from 14.7% to 27.2%weher, it is important to note that the increaserin
is always at least an order of magnitude larger than the a&serén expected execution time. We are not sure if this is a
meaningful comparison. However, this was a compelling nlad®n. When the checkpoint interval was increased to aeval
of Tro + aro, although the guarantee offered in terms of the increasegaaed execution time was that it is bounded by
5% of E,,.;n, our numbers show that, except the entry for BG/L with MTTR®B years, all others have less than 1 percent

increase in expected execution time.
6.3. Further Increasing Checkpoint Interval - 7545, .. and moy 7,

Due to the observation that the increase iis always at least an order of magnitude larger than the &iseren expected
execution time it looks promising to increase values of &pemt intervals further. We considered increasing it asimas
we can while limiting the increase of expected executioretim 5% of the optimum expected execution tin&&,;,, and
10% of T;. The 5% ofE,,,;,, bound was chosen because when we decide to increase th@ohadkterval torgo + aro
we implicitly expect to have to pay a price of increasing tkpexted execution td.05 x F,,;,. We denote the value of the
checkpoint interval corresponding to an expected exegtitioe 0f1.05 * E,,:n, by 7595, -
From conversations with scientists, we gleaned that wheapatication is executed with checkpointing, 10%1afis

considered an acceptable checkpoint overhead. We themédiner; oo, as the checkpoint interval at which the expected

17

Table 3. For a representative application with T, = 500 hours and R = 10 minutes, the table gives the
potential increase in 7 and the corresponding values of increase in execution time a nd decrease in
number of checkpoints that can be achieved using Young’s mod el of optimal checkpoint interval and
Daly’'s model of optimal checkpoint interval.

nereaseintin | LR e | the number of
MPP Systems Conditions tTerms of % of in terms of % of | checkpoint I/O
daly Eoin operations
Standard 4 0.016 3.12
0 .
Red Storm ?5 % of me-r.nor}/ checkpointed 2.7 0.0057 2.46
Size of patrtition is 1/8th ofi,, 4. 1.28 0.0007 1.27
MTTI of a node is 2.5 years 6.08 0.049 4.43
Standard 14.7 0.43 5.99
0 .
Blue Gene/L ?5 % of me_r.nor}/ checkpointed 8.8 0.033 5.02
Size of partition is 1/8th ofi,;, 4. 3.7 0.02 2.39
MTTI of a node is 2.5 years 27.2 1.81 6.26
Standard 5.65 0.37 3.95
Jaquar 25% of memory checkpointed 3.7 0.0117 2.93
g Size of partition is 1/8th ofi,;, 4. 1.7 0.001 1.54
MTTI of a node is 2.5 years 8.8 0.12 5.13
Standard 9.14 0.132 5.18
25% of memory checkpointed 5.8 0.041 3.78
Petaflop] o
Size of partition is 1/8th ofi,,, 4. 2.6 0.0042 2.1
MTTI of a node is 2.5 years 15.29 0.047 5.43

execution time id.1 * T,. This means that we can increase the value of the checkpt@mval up tor; g, and still be sure

that the checkpoint overhead is within an acceptable botih@% of7;. The concepts ofsy g, ., andr gy, are illustrated

min

in Figure 6. Note thaty gy, is meaningful only ifE,,;, < 1.1 % T.

The results of increasing the checkpoint intervalrie,z . and g7, , for the sixteen cases discussed earlier, are

presented in Table 4. The increase in checkpoint intenialtise range of 45% to 95% of;,;,. In all of these cases, there
was a decrease in the expected number of checkpoint /O toigpesa The reduction was in the range of 10.25% to 61.07%.
Note that when a partition comprising of 1/8th of the totainer of nodes was considered, we assumed that only 1/8th of
the storage bandwidth was available to the partition. Aeoffossibility is to assume that the entire storage bandiwsdt
available to the smaller partition and we consider this néxble 5 summarizes the results.

Increase in values of checkpoint intervaltg, s, . translates to a percentage increase in the range 210% to 450%

Tdaly- IN all 16 cases considered, the total number of checkpfhbperations decreases and the percentage decrease is

67.7% to 81.8%. Similarlyy gy, is 140% to 555% larger thary,;,, and the corresponding number of total checkpoint I/O

18

Table 4. Improvement in 7 of a representative application with 7, = 500 hours and R = 10 minutes if
an execution time of 1.05 x E,,;,, iS acceptable

Ts%Emin — Tdaly | % decreasein
. expressed in the number of
MPP Systems Conditions terms of %of checkpoint /0
Tdaly operations
Standard 100 38.94
0 .
Red Storm ?5/0 of me-r.nor?/ checkpointed 122 46.35
Size of partition is 1/8th ofi,;, 4. 195 61.04
MTTI of a node is 2.5years 80 30.48
Standard 55 14.68
0 .
Blue Gene/L ?5 0% of me_r.nor?/ checkpointed 67 24.24
Size of partition is 1/8th ofi,;, 4. 105 39.42
MTTI of a node is 2.5years 47 10.25
Standard 82 32.53
Jaguar 25% of memory checkpointed 102 40.02
Size of partition is 1/8th of,;, 4, 163 55.63
MTTI of a node is 2.5years 67.5 23.94
Standard 66 22.35
25% of memory checkpointed 83 32.22
Petaflop] T
Size of partition is 1/8th ofi,;, 4. 125 47.22
MTTI of a node is 2.5years 55 12.86

operations are lesser than their counterpartsaj by 55% to 82%.

7. Summary

The trends look encouraging. When we increase the chedkipténval torro + aro, it amounts to an increase of 1.3%
to 27.2% ofr4,,, and the corresponding decrease in the number of checkg@irdderations is 1.3% to 7.9%. When we

increase the checkpoint interval tgy, g . andr gy, , it amounts to an increase in the checkpoint interval by 3% 20

555% ofrq41,. The decrease in the total number of checkpoint I/O operatigas in the range of 10.25% to 82%. From the
empirical evidence we have, an important observation is-tfihe gradient of the execution time versus checkpointvate
is very small for values of checkpoint interval close to amdjér than the optimal checkpoint interval,.. From Section 3
we know that in this region there is a range of values &r which the number of checkpoint I/O operations are desirgp
with increasing checkpoint intervals. This fact, in cordiion with the observation made above, leads us to belieate th

this is a good place to look for checkpoint intervals in ortereduce the total number of checkpoint I/O operationsevhil

increasing the execution time minimally as compared ta tedues atr,; Or Tgaiy.

19

Table 5. In each of the four MPP systems, consider a partition which is an eighth of the maximum
number of nodes in the system and assume that the full storage bandwidth of the system is available

to this partition. Suppose expected execution times of 1.05 * E,:, and 1.1 x T are acceptable, the
table shows increase in values of 7 for a representative application with 75 = 500 hours and R = 10
minutes

(- % decrease (_ % decrease
TT5%’§"”” in the Tﬁo%)Ts in the
daly daly
MPP Systems Number of expressed in number Qf expressed in number Qf
nodes checkpoint checkpoint
terms of /0 terms of /O
Vage ofray operations v0age of7iay operations
Red Storm 1620 450 79.59 555 82.39
Blue Gene/L 8192 210 62.95 NA NA
Jaguar 1448 360 75.46 390 77.12
Petaflop 6250 270 69.27 140 55.54
2600 x T
BGL
des = 64K
25001 rA}IOTﬁsz 25yeariode |
d=6min
2400 R=10mn 1
Ts=500h

Execution Time
NN ~n
no w
o o
o o
T T

N

=

o

(=]
T

20001

=118

T
opt
1900]

F 27% of T Opli)l
I
15

Checkpoint Interval (1)

1800 ‘
5

10 20

Figure 5. lllustration of the numbers computed in Table 3

20

600

Red Storm
nodes = 1080
590 MTTI = 5 year/node
8=4.32 min

M = 2433 min

R =10 min

580 Ts=500h

E _+5%E =5595
min min

3

o2}

o
T

T_+10%T_=550
s s

Execution Time
[4)]
a
o
T

=376

4y

B

o
T

E =533
min

530 b
T =142
opt

520 165% of - opt - T

510

230% of 1- opt - ‘

500 1 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500 550
Checkpoint Interval ()

Figure 6. lllustration of the concept of 75,5, . and 7o,

These results provide pointers to potential targets wheapglfication programmer deems it appropriate to use chéekpo
intervals larger tham,,;. We envisage that there are several situations in high peeioce computing environments execut-

ing checkpointing applications where it could potentidl/beneficial to use such checkpoint intervals. Some exaapée

1. Certain high performance file systems have latency higieghanisms due to which the checkpoint latency has a small
value. But as shown in [2}4,, is an increasing function of checkpoint latency and theeetbe optimal checkpoint
interval associated with the improved checkpoint latesgmaller than what would be the case if there was no latency
hiding. This means that checkpoint write data arrives mogguently as an indirect consequence of latency hiding
mechanism. However, since there is some background workdeals to be done by the filesystem in order to provide
latency hiding, it has an 1/O bandwidth limitation in termfistbe number of I/O operations per unit of time. The
filesystem may not be able to handle checkpoint I/O data thisea once inr,,; + ¢ period. It might need a little more
time between servicing checkpoint writes and if that is mowjed the filesystem may become a bottleneck and the
performance of the application goes down. This disparituog because in modeling optimal checkpoint interval, we
assume thai is the time taken to write checkpoint data. However, in fisgggns with latency hiding mechanisms, at
the end of time the filesystem still needs to do more processing, perhegiadata processing, before the checkpoint

write operation is taken care of completely.

21

2. When an overlay network is used to hide checkpoint lateiheyabove mentioned situation arises again but this time

it is the overlay network that could cause the bottleneck.

3. When more than one checkpointing applications are ekxggabncurrently on a large MPP system sharing 1/O re-
sources, if a high priority application’s performance igad®rating due to the large volume of checkpoint I/O of a
low priority application then it might be a good idea to trydaimcrease the checkpoint interval of the low priority
application. This situation and the next one might need asugory view of the whole system which may not always

be available, at this point of time.

4. When there are more than one checkpointing applicationswrently executing on a large MPP system, it might be
desirable to ensure that the full I/O bandwidth of the syseavailable to every application’s checkpoint write data.
This implies that we need to schedule the checkpoint writratpons of these applications in such a way that no two
of them overlap. Conceptually, for periodic checkpointapgplications there are algorithms that could help us do this
However, in case using the algorithm we determine thatiitfesasible to checkpoint all the applications at their opdim

checkpointintervals, then it is useful to explore increbsigeckpoint intervals for some of these applications.

5. Combination of any of the above mentioned situations.

8. Background and Related Work

There is a substantial body of literature regarding thenoglticheckpoint problem and several models of optimal check-
point intervals have been proposed. Young proposed a fidgronodel that defines the optimal checkpoint interval imte
of checkpoint overhead and mean time to interruption (MTYdung’s model does not consider failures during checkipoin
ing and recovery [20]. However, Daly’s extension of Youngiedel, a higher-order approximation, does [4]. In additmn
considering checkpoint overhead and MTTI, the model diseds$n [16] includes sustainable I/O bandwidth as a paramete
and uses Markov processes to model the optimal checkpdérival. The model described in [11] uses useful work, i.e.,
computation that contributes to job completion, to measystem performance. The authors claim that Markov models
are not sufficient to model useful work and propose the useaaxftfastic Activity Networks (SANs) to model coordinated
checkpointing for large-scale systems. Their model carsidynchronization overhead, failures during checkpuagrand
recovery, and correlated failures. This model also defihesoptimal number of processors that maximize the amount of
total useful work. Vaidya models the checkpointing ovetheBa uniprocess application. This model also considehgrézs
during checkpointing and recovery [19]. To evaluate thégrerance and scalability of coordinated checkpointinguitufe
large scale systems, [5] simulates checkpointing on skgendigurations of a hypothetical Petaflop system. Theinusam
tions consider the node as the unit of failure and assumehairobability of node failure is independent of its siz&jat

is overly optimistic.

22

Checkpointing for computer systems has been a major arezsefirch over the past few decades. There have been a
number of studies on checkpointing based on certain fadhegacteristics [13], including Poisson distributionddfteld
el.al., [8] present studies modeling the impact of cheakizoon next-generation systems. Tantawi and Ruschitzka [17
developed a theoretical framework for performance anslgscheckpointing schemes. In addition to consideringtityi
failure distributions, they present the concept of an esgticheckpointing strategy, which varies the checkpoitgriral
according to a balance between the checkpointing cost anlikiidihood of failure. Application-initiated checkpding is
the dominant approach for most large-scale parallel systefdgarwal [1] developed application-initiated checkiiimig
schemes for BG/L. There are also a number of studies regdttmeffect of failures on checkpointing schemes and system
performance. Most of these works assume Poisson failunédiSons and fix a checkpointing interval at runtime.

Yet another related area of research is failure distrilmstiof large scale systems. There has been a lot of research

conducted in trying to determine failure distributions pétems. Failure events in large-scale commodity clustergedl as
the BG/L prototype have been shown to be neither indepenimttically distributed, Poisson, nor unpredictable]d].
[12] presents a study on system performance in the presémealdailure distributions and concludes that Poissolufai
distributions are unrealistic. Similarly, a recent study3ahoo [15] analyzing the failure data from a large scalstelu
environmentand its impact on job scheduling, reports tilitres tend to be clustered around a few sets of nodesy thtme
following a particular distribution. In 2004 there was adstwn the impact of realistic large scale cluster failurérdistions
on checkpointing [10]. Oliner et. al. Oliner et. al.,[9] pess that a realistic failure model for large-scale systshwild
admit the possibility of critical event prediction. Thegalstate that the idea of using event prediction for proradystem
management has also been explored [10, 14].

Recently, there has been a lot of research towards findiagaltives for periodic checkpointing techniques [9] aret¢h
have been some promising results. However, until these eelantques reach a level of maturity, periodic checkpogntin
techniques will continue to be popular methods of faultrahee. Besides, a lot of important legacy scientific apfibces
use periodic checkpointing and therefore issues relatpdriodic checkpointing still need to be addressed.

LANL's (Daly’s) checkpoint model assumes an exponentidufa distribution for the duration of the application run,
which might be a few days, weeks, or months. In determinieg/llue of MTTI,M, at the beginning of the application run,
the failure distribution that is deemed right for the systean be used. The model starts with that valu@¢fotnd assumes
that during the application run the failure distributiontbé system is exponential. This makes the model mathertigtica
amenable and elegant. Assumption of exponential failwgteidution seems reasonable because we had the oppottuség
a plot of the inter-arrival times of 2050 single node unsched interrupts, gathered on two different platforms froANL
over a period of a year during January 2003 to December 206t3. & Weibull distribution with shape factor 0.91/0.97n&
exponential is shape factor 1.0, it is a pretty close appnation to the real failure distribution. Due to space caists, we

do not present the plot in this paper.

23

9. Conclusion and Future Work

We are in the process of performing Monte Carlo simulationsérying values of both/ andd and performing statistical
analysis of the outcomes, rather than visual inspectiosulRefrom these runs could enlighten us about the impaatrofs
in estimation of values al/ andJ.

We believe that the work presented in this paper is compléamgto Daly’s modeling work on execution time. Both
models do not factor in the deterioration caused by resatoogention. However, they model the general case which ean b
used as a guidance for specific cases. For example, if arcapiph programmer needs to estimate the value of checkpoint
latency and one is aware that the checkpoint latency inikebe some value betweén andé2, wherej1l < §2. If this value
is being used to find the optimal checkpoint interval (witbpect to the execution time), should the application pnognar
pick a value ofy closer tod1 or to §2. Although the answer to this question depends on what pagnce metrics are being
considered, in general, from insights obtained by analytitodeling we can see that it is safer to pick a valué dbser to
02. This is because; let us say the application programmesgickalue o close tos1 then let the corresponding optimal
checkpoint interval be1,,,. If due to resource contention the 1/0 bandwidth availablthis application decreases, then its
checkpoint latency might increase and the real value migltldiser tay2. The optimal checkpoint interval corresponding to
this new value of checkpoint latency increaseslg,;. However the application is checkpointing at a checkpaiterival of
T1opt Which is less tham2,,,. From information gleaned from the analytical models, wevikthat we stand to lose in terms
of both the execution time and the number of checkpoint dfpgrawhen we use checkpoint intervals that are smaller than
the optimal checkpoint interval(with respect to executiome). On the other hand if the application programmer cke@s
value ofé closer tod2, then if delta decreases and gets closetltthen the optimal checkpoint interval becomes closer to
T1opt.- This means that the checkpoint interval being used is tdahge the optimal value. As a consequence of this the wall
clock execution time of the application increases as costpar its optimal value. However, the total number of cheakipo
operations performed during the application executiomekeses. There is a gain in at least one aspect.

In an MPP system where the runtime has a system-wide viewl dhalapplications and has some control over the
checkpoint parameters of concurrent applications, onkld¢ane checkpoint intervals to provide performance défeiation
and performance isolation of concurrent applications. éx@mple, the application with highest priority can be ruthva
checkpointinterval that is optimal w.r.t execution timelapplications with lowest priority can be set to run with ackpoint
interval that is optimal w.r.t total number of checkpoir®lbperations. The other applications can perhaps use chietkp
intervals that are between their two optimal values. Foiggér checkpointing applications, both the expected whltk
execution time and the expected number of checkpoint I/@atipes are important metrics to be considered in order tcema
decisions about checkpoint intervals. This is one of theiafuspects of co-ordinating checkpointing applicatinmming

concurrently in order to achieve the goal of system perforcea

24

Acknowledgments

e DoE, Office of Science (Grant Number DE-FG02-04ER25622)

e Sandia National Laboratories (Contract Number 579987 (8R! 82))

e AHPCRC (Grant Number W11NF-07-2-2007)

References

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira. Adapincremental checkpointing for massively parallel
systems. IrProceedings of the 18th Annual International Conferenc&apercomputingpages 277—-286, New York,

NY, 2004. ACM Press.

S. Arunagiri, S. Seelam, R. A. Oldfield, M. R. Varela, PTéller, and R. Riesen. Impact of checkpoint latency on
the optimal checkpoint interval and execution time. TecahReport UTEP-CS-07-55, University of Texas at El Paso,

2007.

W. J. Camp and J. L. Tomkins. The red storm computer agchire and its implementation. fhe Conference on

High-Speed Computing: LANL/LLNL/SNgalishan Lodge, Glenedon Beach, Oregon, April 2003.

J. Daly. A higher order estimate of the optimum checkpaiterval for restart dumpsiFuture Generation Computer

Systems22:303-312, 2006.

E. N. Elnozahy and J. S. Plank. Checkpointing for pet@essystems: A look into the future of practical rollback-

recovery.|[EEE Transactions on Dependable and Secure Compyti¢®):97-108, April-June 2004.

D. S. Greenberg, R. Brightwell, L. A. Fisk, A. B. Maccalamd R. Riesen. A system software architecture for high-end
computing. InProceedings of SC97: High Performance Networking and Cdimgupages 1-15, San Jose, California,
November 1997. ACM Press.

Y. Liang, A. Sivasubramaniam, and J. Moreira. Filterfagure logs for a bluegene/l prototype. Rroceedings of the

2005 International Conference on Dependable Systems atvaoNes (DSN’05)pages 476—-485, June 2005.

R. A. Oldfield, S. Arunagiri, P. J. Teller, S. Seelam, Refn, M. R. Varela, and P. C. Roth. Modeling the impact of
checkpoints on next-generation systems.Ptoceedings of the 24th IEEE Conference on Mass StoragerBysind

Technologiespages 30-43, San Diego, CA, September 2007.

25

[9] A. J. Oliner, L. Rudolph, and R. K. Sahoo. Cooperativeakpminting: a robust approach to large-scale systems
reliability. In ICS '06: Proceedings of the 20th annual international coefee on Supercomputingages 14-23,

Cairns, Queensland, Australia, 2006. ACM Press.

[10] A. J. Oliner, L. Rudolph, and R. K. Sahoo. Cooperativeakpointing theory. IfProceedings of IPDPS, Intl. Parallel

and Distributed Processing Symposi2006.

[11] K. Pattabiraman, C. Vick, and A. Wood. Modeling coomtied checkpointing for large-scale supercomputers. In
Proceedings of the 2005 International Conference on DegbledSystems and Networks (DSN’'0pages 812-821,
Washington, DC, 2005. IEEE Computer Society.

[12] J. S. Plank and W. R. Elwasif. Experimental assessmentodkstation failures and their impact on checkpointing
systems. InProceedings of the The Twenty-Eighth Annual Internatidyahposium on Fault-Tolerant Computjng
pages 48 — 57, June 1998.

[13] J. S. Plank and M. G. Thomason. Processor allocatiorchadkpoint interval selection in cluster computing system

Journal of Parallel and Distributed Computing1(11):1570-1590, 2001.

[14] R. K. Sahoo, M. Bae, R. Vilalta, J. Moreira, S. Ma, and Miga. Providing persistent and consistent resourcesghrou

event log analysis and predictions for large-scale comgugystems. Itin SHAMAN, Workshop, ICSYQRune 2002.

[15] R. K. Sahoo, A. Sivasubramaniam, M. S. Squillante, andhéang. Failure data analysis of a large-scale heterogsneo
server environment. IRroceedings of the International Conference on Dependapstems and Networks (DSN2004)

pages 772-781, June 2004.

[16] R. Subramaniyan, R. S. Studham, and E. Grobelny. Optititin of checkpointing-related 1/O for high-performance
parallel and distributed computing. Rroceedings of The International Conference on Parallad &nstributed Pro-

cessing Techniques and Applicatippages 937-943, 2006.

[17] A. Tantawi and M. Ruschitzka. Performance analysisteakpointing strategiesACM Transactions on Computer

Systems110:123-144, May 1984.

[18] T.B. Team. An overview of the BlueGene/L supercomputeProceedings of SC2002: High Performance Networking

and ComputingBaltimore, MD, November 2002.

[19] N. H. Vaidya. Impact of checkpoint latency on overheatla of a checkpointing schemdEEE Transactions on

Computers46(8):942-947, 1997.

[20] J. W. Young. A first order approximation to the optimuneckpoint interval Communications of the ACM7(9):530—
531, 1974.

26

A. Appendix

Theorem 5. For every value of MTTI such that > 0 and every value of checkpoint latenéysuch that (.01 < % <1
), the value of the optimal checkpointinterval, computedgiEquation 3, is less than or equal to the real optimal clpedkt

interval.

Proof. For ease of representation in the context of this proof,dedefine an ordered pair of valuesV’1, V2 > as avalid
pair if 0.02 « V1 < V2 < 2% V1 Given a valid pair of values of MTTI}, and checkpoint latency, < M, >, let us
denote the optimal checkpoint interval computed using Bqu& by 744, Let 7,,; represent the real optimal checkpoint

interval. Sinceryq, < M, it belongs to one of the following partitions;

Pl = {7:0<7 <7op}
P2 = {7:7="op}
P3 = {7:7pu <7< M}
x10°
6.54 T T
3 =96 min
M =50 min
653~ R =100 min 7
Ts =500 h
652 |
6511
65
[
£
=
<
S 649t
3
&
w
6.48-
6.471
6.46- |
6.45 4
P1 P3
6.44 L L L L L L L L L
43 a4 45 46 47 48 49 50 51 52 53

Checkpoint Interval (1)

Figure 7. lllustration of a partition

The theorem asserts that,;, € {P1U P2}

27

If Taaly = Topt thenTa,, € {P2} and the theorem holds. Therefore, we only need to prove #wéim forry,i, # Topt-

Suppose for a value of MTTI/, and for a value of checkpoint latendywe exhibitaAt > 0 such thafT (7441 + At) < T(Tdaiy)]-
The existence of suchat, proves thaty,;, ¢ {P3}, which implies that,;, € {P1 U P2}. This proves that for that pair

of values of MTTI and checkpoint latency,;, € {P1 U P2}. If we can provide a method of computing suck\a for

any given valid pair of values of MTTI and checkpoint latencyM, § >, then, that serves as a proof of Theorem 5. This is

indeed the method we use.

In the following lemma, an alternate representatiorrQji, is obtained by a simple transformation &f It simplifies the

proof of the theorem and improves readability.

3
Lemma 1. If § is represented a8M a, where0 < a < 1, then,ryq;y, = 2M (B — a), whereB = (\/E + 5+ %)

Proof. For this theorem, the range of valuesiasf interest is) < § < 2M. Consider the equation fot,;,, whend < 20,

1_1’_1 i %4_1 i Y
3 \2M 9 \2M '

Substitutingy = 2M a in the above equation, we obtain

Tdaly = 25M

2M 2Maz

Tdaly = VA4M?Z?a+ 3a+ 9a2—2Ma
oMa 2Ma?

= 2M+a+ 3a+ 9a2—2Ma

3
- 2M<\/5+§+%>—2Ma

3
= 2M(B — a) where B = <\/E+§+%>.

Sinced = 2Ma, (0.01 < 5% <1) = (0.01<a<1).

Example 1. For values of parameters\{ = 1min, R = 20min, Ts = 500 hrs), and (.01 < a < 1), Figures 8 and 9
are plots of[T'(74aty) — T'(Taaty + 107°)] and [log(T (Taaty) — T (Taary + 107°))], respectively, as a function ef In the

range (.01 < a < 1), note that the difference is always positive. This dematest that whed/ = 1 min and for all values

28

6
35

—5,
opt +10°)

) -T(

151

T(T

(opt

05

Figure 8. Exhibitinga At for M = 1min

5.
Dpt) -T (r(th +10°))

log(T(t

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 9. Difference in Execution times plotted on log-lin s cale

ofa in the range (.01 < a < 1),

T(Tdaly) > T(Tdaly + 1075).

29

Thus, forM = 1min and for alla such that@.01 < a < 1), we have exhibited &t = 1075 such thafT (4a1y) > T (Taary + At))].
In order to prove the theorem, we still need to exhibit suéktdor every value of\f and every: in the range@.01 < a < 1).

The following lemma facilitates this.

Lemma 2. For a given value of MTTIM, let At satisfy the property that for evedysuch that (.01 < % < 1), the

expected execution time correspondingg,, + At] is less than the expected execution time corresponding,ig. For
any other value of MTTIM' = f « M, wheref > 0, At' = f x /At satisfies the property that for evedysuch that
(0.01 < % < 1), the expected execution time correspondingrig:, + (At')] is less than the expected execution time

corresponding tagq,-

Proof.

(Taaty+6)/M _ 1
MeB/MT, (L> >

Tdaly
e((Taary+6)/M+AL/M) _ 1)

Tdaly + VAN

MeR/I\ITS (

sinceM e ™ > 0 andT, > 0

(e(rdaly-a-&)/M _ 1) (e((Tdaly-l-(;)/Al-i-At/]W) _ 1)
>
Tdaly + At

Tdaly

From Lemma 17,,;, can be expressed a3/ (B — a) and%f‘s = 2B, wherea andB are defined as in Lemma 1.

(e(fdazy+5)/M — 1) N <e((7da1y+5)/M+At/M) - 1)

Tdaly Tdaly + At

623 -1 ezB+At/M) -1
< (2M(B - a)) ~ (2M(B —a)+ At)

eQB -1 e(QB+t1) -1
< (2M(B—a)) ” <2M(B—a)+M*t1)

wheret, = (At/M)

(11)

e?B 1 e(@2B+t1) _ 1
- (2(B—a)) ~ (2(B—a)+t1) (12)

30

Inequality 12 is equivalent to the condition tH&t(74a1y) — T (Taary + (At))) > 0 Note that, whether or not Inequality 12
is satisfied, is determined by the valuesiadndt;. It can be verified that, if the value of MTTI changes frdmto f x M,
and if At is substituted byf «+ At, then the conditiofT'(7qaiy) — T (Taary + (f * At))) > 0 turns out to be identical to
Inequality 12.
|

Example 1 demonstrates that wh&h = 1min, a value ofAt = 10~° min satisfies Inequality 12 for all values af
in the range).01 < a < 1. From Lemma 2, given any other value of MTTW' = f x« M, wheref > 0 a value ofA¢
that satisfie$T (Tqaiy) > T (Taary + At')] is given byAt’ = At = f. SinceM = 1min, f = M'/M = M’, whereM’ is

expressed in minutes.

Thus, we have presented a method of computhigwith the desired property for evely/ > 0 and for everys in the

corresponding relevant range. Therefore, as explaineddef;,;,, € {P1U P2} is always true.

31

