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Abstract—In many practical situations, there exist regulatory
thresholds: e.g., a concentration of certain chemicals in the car
exhaust cannot exceed a certain level, etc. In this paper, we
describe how to make accept/reject decisions under measurement
or expert uncertainty in case of regulatory and expert-based
thresholds – where the threshold does not come from a detailed
statistical analysis.

I. HYPOTHESIS TESTING: A GENERAL PROBLEM

In many practical situations, it is desirable to check whether
a given object (or situation) satisfies a given property. For
example, we may want to check whether a patient has flu,
whether a building or a bridge is structurally stable, etc.

In statistics, this problem is called hypothesis testing: we
have a hypothesis – that a patient is healthy, that a building is
structurally stable – and we want to test this hypothesis based
on the available data. This hypothesis is usually called a null
hypothesis, meaning that:
• if this hypothesis is satisfied then no (“null”) action is

required,
• while if this hypothesis is not satisfied, then we need to

undertake some action: cure a patient, reinforce (or even
evacuate) the structurally unstable building, etc.

II. HYPOTHESIS TESTING: IDEAL CASE OF COMPLETE
KNOWLEDGE

Let us start with the idealized situation in which we have
a complete knowledge about the object. In other words, we
assume that we know the exact values of all the quantities
x1, . . . , xn that characterize this object.

Since these quantities represent the complete knowledge
about the object, this knowledge should be sufficient to de-
termine whether the object satisfies the desired property. In
other words,
• for some tuples x = (x1, . . . , xn) the corresponding

objects satisfy the desired property, while

• for some other tuples x, the corresponding object does
not satisfy the desired property.

Thus, the set X of all possible values of the tuple x can be
divided into two subsets:

• the acceptance region consisting of all the tuples that
satisfy the desired property; this region will be denoted
by A; and

• the rejection region consisting of all the tuples that do not
satisfy the desired property; this region will be denoted
by R.

Thus, once we know the tuple x characterizing the given
object, we:

• accept the hypothesis if x ∈ A, and
• reject the hypothesis if x ∈ R (i.e., if x 6∈ A).

III. HYPOTHESIS TESTING: REALISTIC CASE OF
INCOMPLETE KNOWLEDGE

In practice, we usually only have an incomplete knowledge
about an object: we only know the values of some of the pa-
rameters characterizing this objects, and even these values we
only know approximately. Based on this partial information,
we cannot always tell whether an object satisfies the given
property, but there may be two objects which both lead to the
same information such that one object satisfies the property
and another one does not.

For example, if the property can be described as a restriction
x1 +x2 ≤ x0 on the sum of the two quantities x1 and x2, and
we only know the value of the first quantity x1, then:

• for some values x1 (namely, for the values for which
x2 ≤ x0 − x1) we will have x1 + x2 ≤ x0 and thus, the
hypothesis is satisfied;

• on the other hand, for some other values x1 (namely,
for the values for which x2 > x0 − x1) we will have
x1 + x2 > x0 and thus, the hypothesis is not satisfied.



In such situations, no matter what decision we make, this
decision may turn to be erroneous. In general, there can be
two types of errors:
• it is possible that the object actually satisfies the desired

property, but we erroneously classify it as not satisfying
the given null hypothesis; this error is called a false
positive, or Type I error;

• it is also possible that the object actually does not satisfy
the desired property, but we erroneously classify it as
satisfying the given null hypothesis; this error is called a
false negative, or Type II error.

IV. TRADITIONAL STATISTICAL APPROACH TO
HYPOTHESIS TESTING

In the traditional statistical approach to hypothesis testing
(see, e.g., [25]), we assume that we know the probability
distribution of objects that satisfy the given hypothesis, and
we are given the allowed probability p0 of Type I error. In
this situation, we select the accept and reject regions in such
a way as to minimize the probability of Type II error.

For example, in a 1-D case, when we only know the
value x1 of a single quantity, the probability distribution is
usually assumed to be Gaussian, with known mean a and
know standard deviation σ. Usually, the anomalous situations
correspond to too high (sometimes too low) values of this
quantity: e.g., in medicine, the blood pressure is too high, or
the cholesterol level, or the body temperature. In this case, we
select the accept region as the set of all the values x1 for which
x1 ≤ x0 for some threshold x0, and we select this threshold
in such a way that the probability of exceeding this threshold
is exactly p0. For example:
• for p0 = 0.05 = 5%, we take x = a + 2σ;
• for p0 = 0.0005 = 0.05%, we take x = a + 3σ.

This traditional approach minimizes the probability of Type II
errors. However, to find out what exactly is the probability of
Type II error, we must also know the probability distribution
of all the objects that do not satisfy the given hypothesis.
This knowledge is also sometimes assumed in the traditional
approach to hypothesis testing.

V. LIMITATIONS OF THE TRADITIONAL STATISTICAL
APPROACH TO DECISION MAKING AND THE RELATED

NOTION OF UTILITY

Theoretically, the traditional approach is optimal. Theoret-
ically, the traditional statistical approach to decision making is
optimal – provided that we know the probability distribution of
all the objects satisfying the given hypothesis and the threshold
probability p0.

Analysis of the assumptions behind the traditional sta-
tistical approach. In practice, we may not know the exact
probability distribution, but the more “normal” (hypothesis-
satisfying) objects we observe, the more accurately we can
reconstruct this distribution.

The need to know the threshold probability p0 is more
serious, since there is no easy way to determine it empirically.

From the common sense viewpoint, different values of p0

correspond to different consequences of Type I errors.

Example. For example, in mass screening for breast cancer,
hypothesis acceptance means that we consider the patient in
good health and do not perform any further tests on this
person. On the other hand, the rejection of null-hypothesis
mean, in practice, that further, more expensive and more
accurate tests need to be performed. In the ideal world, we
should perform these additional tests on everyone, to minimize
the probability of undetected breast cancer. In practice, our
resources are limited, so we limit these additional tests to
those patients for whom, based on the first screening, there
is a reasonable possibility that these patients may have breast
cancer.

In general, we must find the threshold probability p0

from preferences. In general, the threshold probability is
determined by the user possibilities and preferences. Thus, in
practice, we must learn how to determine the threshold prob-
ability p0 based on the user preferences. This determination is
beyond the traditional statistical approach to hypothesis testing
– an approach that assumes that this threshold probability p0 is
given. To determine p0 from preferences, we must learn how
to describe these preferences.

How to describe preferences: general idea. The possibility
to describe preferences in precise terms comes from the
fact that a decision maker can always decide which of the
two alternatives is better (preferable). Thus, if we provide a
continuous scale of alternatives, from a very bad to a very
good one, then for each alternative in the middle, there should
be an alternative on this scale which is, to this decision maker,
equivalent to the given one.

How to describe preferences: specific ideas. Such a scale can
be easy constructed as follows. We select two alternatives:
• a very negative alternative A0; e.g., an alternative in

which the decision maker loses all his money (and/or
loses his health as well), and

• a very positive alternative A1; e.g., an alternative in which
the decision maker wins several million dollars.

Now, for every value p ∈ [0, 1], we can consider a lottery in
which we get A1 with probability p and A0 with the remaining
probability 1− p. This probability will be denoted by L(p).

For p = 1, the probability of the unfavorable outcome
A0 is 0, so the lottery L(1) simply means the very positive
alternative A1. Similarly, for p = 0, the probability of the
favorable outcome A1 is 0, so the lottery L(0) simply means
the very negative alternative A0. The larger the probability p,
the more preferable the lottery L(p). Thus, the corresponding
lotteries L(p) form a continuous 1-D scale ranging from the
very negative alternative A0 to the very positive alternative A1.

The resulting notion of utility. Practical alternatives are
usually better than L(0) = A0 but worse than L(1) = A1:
L(0) < A < L(1). Thus, for each practical alternative A,
there exists a probability p ∈ (0, 1) for which the lottery L(p)



is, to this decision maker, equivalent to A: L(p) ∼ A. This
“equivalent” probability p is called the utility of the alternative
A and denoted by u(A).
How can we actually find the value of this utility u(A)?
We cannot just compare A with different lotteries L(p) and
wait until we get a lottery for which L(p) ∼ A: there
are many different probability values, so such a comparison
would require an impractically long time. However, there is an
alternative efficient way of determining u(A) which is based
on the following bisection procedure.

The main idea of this procedure is to produce narrower and
narrower intervals containing the desired value u(A). In the
beginning, we only know that u(A) ∈ [0, 1], i.e., we know that
u(A) ∈ [u, u] with u = 0 and u = 1. Let us assume that at
some iteration of this procedure, we know that u(A) ∈ [u, u],
i.e., that L(u) ≤ A ≤ L(u). To get a narrower interval, let

us take the midpoint m
def=

u + u

2
of the existing interval and

compare L(m) with A.
• If A is better than L(m) (L(m) ≤ A), this means that

m ≤ u(A) and thus, that the utility u(A) belongs to the
upper half-interval [m,u].

• If A is worse than L(m) (A ≤ L(m)), this means that
u(A) ≤ m and thus, that the utility u(A) belongs to the
lower half-interval [u, m].

In both cases, we get a new interval containing u(A) whose
width is the half of the width of the interval [u, u]. We start
with an interval of width 1. Thus, after k iterations, we get an
interval [u, u] of width 2−k that contains u(A). In this case,
both endpoints u and u are 2−k-approximations to u(A). In
particular:
• to obtain u(A) with accuracy 1% = 0.01, it is sufficient

to perform 7 iterations: since 2−7 = 1/128 < 0.01;
• to obtain u(A) with accuracy 0.1% = 0.001, it is

sufficient to perform 10 iterations: since

2−10 = 1/1024 < 0.001;

• to obtain u(A) with accuracy 10−4% = 10−6, it is
sufficient to perform 20 iterations: since

2−20 = 1/(1024)2 < 10−6.

The numerical value of the utility depends on the choice
of extreme alternatives A0 and A1. In our definition, the
numerical value of the utility depends on the selection of the
alternatives A0 and A1: e.g., A0 is the alternative whose utility
is 0 and A1 is the alternative whose utility is 1. What if we use
a different set of alternatives, e.g., A′0 < A0 and A′1 > A1?

Let A be an arbitrary alternative between A0 and A1, and
let u(A) be its utility with respect to A0 and A1. In other
words, we assume that A is equivalent to the lottery in which
we have
• A1 with probability u(A) and
• A0 with probability 1− p.

In the scale defined by the new alternatives A′0 and A′1, let
u′(A0), u′(A1), and u′(A) denote the utilities of A0, A1, and
A. This means, in particular, that

• A0 is equivalent to the lottery in which we get A′1 with
probability u′(A0) and A′0 with probability 1 − u′(A0);
and

• A1 is equivalent to the lottery in which we get A′1 with
probability u′(A1) and A′0 with probability 1− u′(A1).

Thus, the alternative A is equivalent to the compound lottery,
in which
• first, we select A1 or A0 with probabilities u(A) and

1− u(A), and then
• depending on the first selection, we select A′1 with

probability u′(A1) or u′(A0) – and A′0 with the remaining
probability.

As the result of this compound lottery, we get either A′0 or
A′1. The probability p of getting A′1 in this compound lottery
can be computed by using the formula of full probability

p = u(A) · u′(A1) + (1− u(A)) · u′(A0) =

u(A) · (u′(A1)− u′(A0)) + u′(A0).

So, the alternative A is equivalent to a lottery in which we get
A′1 with probability p and A′0 with the remaining probability
1−p. By definition of utility, this means that the utility u′(A)
of the alternative A in the scale defined by A′0 and A′1 is equal
to this value p:

u′(A) = u(A) · (u′(A1)− u′(A0)) + u′(A0).

So, changing the scale means a linear re-scaling of the utility
values:

u(A) → u′(A) = a · u(A) + b

for some a = u′(A1)− u′(A0) > 0 and b = u′(A0).
Vice versa, for every a > 0 and b, one can find appropriate

events A′0 and A′1 for which the re-scaling has exactly these
values a and b. In other words, utility is defined modulo an
arbitrary (increasing) linear transformation.

Utility of an action: a derivation of the expected utility
formula. What if an action leads to alternatives a1, . . . , am

with probabilities p1, . . . , pm? Suppose that we know the
utility ui = u(ai) of each of the alternatives a1, . . . , am.
By definition of the utility, this means that for each i, the
alternative ai is equivalent to the lottery L(ui) in which we
get A1 with probability ui and ai with probability 1 − ui.
Thus, the results of the action are equivalent to the “compound
lottery” in which, with the probability pi, we select a lottery
L(ui). In this compound lottery, the results are either A1 or
A0. The probability p of getting A1 in this compound lottery
can be computed by using the formula for full probability:

p = p1 · u1 + . . . + pm · um.

Thus, the action is equivalent to a lottery in which we get
A1 with probability p and A0 with the remaining probability
1− p. By definition of utility, this means that the utility u of
the action in question is equal to

u = p1 · u1 + . . . + pm · um.



In statistics, the right-hand of this formula is known as the
expected value. Thus, we can conclude that the utility of
each action with different possible alternatives is equal to the
expected value of the utility; see, e.g., [11], [16], [24].

VI. PREVIOUS WORK: WHAT IF THE OBJECT’S
CHARACTERISTICS ARE ONLY KNOWN WITH

UNCERTAINTY

In the traditional statistical approach – and in its utility-
based extension – it is usually assumed that
• we know the probability distribution for all the objects

that satisfy the given property exact values of the param-
eters, and

• we know the exact value of the characteristic(s) that
describe a given object.

As we have mentioned, in practice, we only have a partial
knowledge about the corresponding probability distribution,
but the more objects we observe, the more accurately we can
determine this distribution. Thus, in many practical situations,
it is reasonable to ignore the corresponding approximation er-
ror and assume that we know the exact probability distribution.

The value characterizing an object usually comes from
measurement and/or from expert estimates and is therefore
also only known with uncertainty. However, no matter how
many objects we have observed, this uncertainty does not
decrease. Thus, it is less reasonable to ignore this uncertainty.

In our survey paper [13], we described how the traditional
statistical approach (and its utility-based extension) can be
modified if we take this uncertainty into account; see also [1],
[3], [4], [6], [14], [15], [17], [18], [19]. The results depend on
what we know about the corresponding uncertainty.

VII. TYPES OF UNCERTAINTY: PROBABILISTIC,
INTERVAL, FUZZY

Uncertainty means that the estimate x̃ that we obtained from
measurements or from experts is, in general, different from the
actual (unknown) value x of the estimated quantity. In other
words, uncertainty means that, in general, we have a non-zero
approximation error ∆x

def= x̃− x.
In the ideal case, we know the probabilities of different

possible values of approximation error ∆x. This is an as-
sumption behind the traditional textbook approach to handling
measurement errors. The corresponding situation is called
probabilistic uncertainty; see, e.g., [23].

In many practical cases, however, we do not know the prob-
abilities, we only know the upper bound ∆ on the (absolute
value of) the approximation error: |∆x| ≤ ∆. In this case,
based on the approximate value x̃, we can conclude that the
actual (unknown) value of the quantity x is somewhere in the
interval x def= [x̃ − ∆, x̃ + ∆] [23]. This situation is called
interval uncertainty [8], [9].

In addition to the guaranteed (no uncertainty) bound ∆
on the approximation error ∆x, experts can usually provide
us with smaller bounds corresponding to different degrees of
uncertainty. In this case, instead of a single interval x, we

have different intervals corresponding to different levels of
uncertainty.

We can gauge the expert’s uncertainty as a number α
between 0 and 1 (0 means no uncertainty at all). So, we have
intervals x(α) corresponding to different levels of uncertainty.

The narrower the interval, the less we are certain about
this interval. So, for each α < α′, the interval x(α′) is a
subinterval of the interval x(α). In this sense, we have a nested
family of intervals. This family of intervals can be alternatively
described if for each value x, we describe the largest value
of uncertainty α for which x ∈ x(α); the function µ that
maps a value x into this largest value is called a membership
function, or a fuzzy set; see, e.g., [12], [21], [22]. Vice versa,
once we have a fuzzy set µ(x), we can determine the intervals
x(α) as α-cuts {x : µ(x) ≥ α}. This situation is called fuzzy
uncertainty.

VIII. A NEW IMPORTANT CASE OF HYPOTHESIS
TESTING: TESTING WHETHER AN OBJECT SATISFIES

GIVEN REGULATIONS

In the previous text, we considered situations when we
know the probability distribution of objects that satisfy the null
hypothesis. There is a practically important case of hypothesis
testing when we do not know these probabilities: the cases of
regulatory thresholds.

In many practical situations, we are given regulatory thresh-
olds such as “the speed limit is 75 miles”, “the length of the
machine axis has to be between 13.2 m and 13.21 m”, or “a
concentration of certain chemicals in the car exhaust cannot
exceed a certain level”, etc.

In general, we have:

• the acceptance region A consisting of all the values that
satisfy given regulations, and

• the rejection region R consisting of all the values that do
not satisfy the regulations.

Our objective is to check whether the given object satisfies
the corresponding regulations, i.e., whether it belongs to the
acceptance region A or to rejection region R.

IX. IDEAL CASE: WE KNOW THE EXACT VALUE OF THE
TESTED QUANTITY

When we know the exact value x of the regulated quantity,
then testing the corresponding regulation is easy: we just check
whether this value x belongs to the acceptance region A.

For example, in case of a single regulatory inequality, we
simply compare the value x with a threshold x0:

• if the actual value x is within the required bounds, i.e.,
if x ≤ x0, then we conclude that the regulations are
satisfied;

• on the other hand, if the actual value exceed the desired
threshold, i.e., if x > x0, then the corresponding regula-
tion is violated.



X. PRACTICAL SITUATION: WE ONLY KNOW THE
APPROXIMATE VALUE OF THE TESTED QUANTITY

In practice, the situation is more complicated. The values of
the desired quantities come from measurements or from expert
estimates. The estimate x̃ obtained from a measurement or
from an expert estimate is never absolutely accurate. In other
words, the estimate x̃ is, in general, somewhat different from
the actual (unknown) value x of the desired quantity. It is
therefore necessary to be able, given this estimate x̃, to tell
• whether the actual (unknown) value x is acceptable

(below the threshold), or
• whether the actual (unknown) value x is not acceptable

(above the threshold).
This is the problem that we will be handling in the present
paper.

The main difficulty in solving the above problem is that
our estimate x̃ about the desired quantity x is not absolutely
accurate. So, to formulate the regulatory case of the hypoth-
esis testing problem in exact terms, we must describe what
information we have about the accuracy of our estimate. Thus,
we need to consider cases of probabilistic, interval, or fuzzy
uncertainty.

XI. CASE OF PROBABILISTIC UNCERTAINTY

What is probabilistic uncertainty: reminder. In the case
of probabilistic uncertainty, we assume that we know the
probability distribution of the approximation error ∆x.

How to describe probabilistic uncertainty. A probability
distribution is usually characterized
• either by a probability density function ρ(t),
• or by a cumulative distribution function (cdf) F (t) def=

Prob(∆x ≤ t).

Under probabilistic uncertainty, we are not 100% certain
about the validity of the hypothesis. In general, for each
estimate x̃ of the quantity x, it is possible that the actual
(unknown) value x = x̃ − ∆x belongs to the acceptance
region A, and it is also possible that the value x belongs to
the rejection region.

Estimating probability of satisfying the hypothesis: general
case. Since we know the probabilities of different possible
values of the approximation error ∆x = x̃−x, we can compute
the probability pA that the actual value x is acceptable as the
overall probability that x ∈ A, i.e., as

pA =
∫

A

ρ(x̃− x) dx.

The probability pR that the object does not satisfy the hypoth-
esis is thus equal to

pR = 1− pA.

Estimating probability of satisfying the hypothesis: impor-
tant practical cases. In particular, if the acceptance region
is determined by a threshold, i.e., if A = {x : x ≤ x0},

then pA is the probability that x ≤ x0, i.e., in terms of
the approximation error ∆x = x̃ − x, the probability that
∆x ≥ x̃ − x0. The probability of ∆x being ≤ x̃ − x0 is, by
definition, equal to F (x̃ − x0). Thus, the probability of the
opposite event is equal to

pA = 1− F (x̃− x0).

(We consider the case when the probability distribution has a
density; in this case, the probability that ∆x is exactly equal
to x̃− x0 is 0.)

If the acceptance region is determined by a lower threshold
l0, i.e., if A = {x : x ≥ l0}, then, similarly, pA is the
probability that l0 ≤ x, i.e., in terms of ∆x = x̃ − x, the
probability that ∆x ≤ x̃ − l0. The probability of ∆x being
≤ x̃− l0 is, by definition, equal to F (x̃− l0). Thus, we have

pA = F (x̃− l0).

If the acceptance region is an interval

A = {x : l0 ≤ x ≤ x0},
then pA is the probability that l0 ≤ x ≤ x0, i.e., in terms of
∆x = x̃ − x, the probability that x̃ − x0 ≤ ∆x ≤ x̃ − l0.
This probability can be computed as the difference between
the probability that ∆x ≤ x̃ − l0 and the probability that
∆x ≤ x̃− x0, i.e., as

pA = F (x̃− l0)− F (x̃− x0).

Relation to Type I and Type II errors. If we classify the
object with estimated value x̃ as satisfying the hypothesis,
then the probability pR that it actually does not satisfy the
regulations is the probability of the Type II error.

Similarly, if we classify the object with estimated value x̃
as not satisfying the hypothesis, then the probability pA that
it actually does satisfy the regulations is the probability of the
Type I error.

How to decide whether the hypothesis is satisfied: utility
approach. In order to decide whether to classify the object as
satisfying or not satisfying, we must know the consequences
of each type of error. As we have already mentioned, these
consequences can be described in terms of utilities; then we
should make a decision that leads to the largest value of
expected utility.

So, to make a decision, we must know the utilities corre-
sponding to all possible situations:
• the utility u++ of the situation in which the actual value

is acceptable, and we (correctly) classify it as acceptable;
• the utility u+− of the situation in which the actual

value is acceptable, but we (incorrectly) classify it as not
acceptable;

• the utility u−+ of the situation in which the actual
value is not acceptable, but we (incorrectly) classify it
as acceptable;



• the utility u−− of the situation in which the actual value
is not acceptable, and we (correctly) classify it as not
acceptable.

Correct decisions are preferable to incorrect ones, so we
should have u++ > u+− and u−− > u−+.

The actual object with the estimated value x̃ is acceptable
with probability pA and not acceptable with the probability
pR = 1−pA. Hence, the expected utility uA of the acceptance
decision is

uA = pA · u++ + (1− pA) · u−+,

and the expected utility uR of the rejection decision is

uR = pA · u+− + (1− pA) · u−−.

We thus select the acceptance decision when uA ≥ uR, i.e.,
when

pA · u++ + (1− pA) · u−+ ≥ pA · u+− + (1− pA) · u−−.

Moving terms proportional to pA to the left and all other terms
to the right, we conclude that

pA · (u++ − u−+ − u+− + u−−) ≥ u−− − u−+.

Since u++ > u+− and u−− > u−+, we have

u++ − u−+ − u+− + u−− =

(u++ − u+−) + (u−− − u−+) > 0.

Dividing both sides of the above inequality by this positive
number, we get the following final criterion.
Resulting criterion: general case. We accept the hypothesis
if

pA ≥ p(0),

where
p(0) def=

u−− − u−+

u++ − u−+ − u+− + u−−
.

Resulting criterion: important practical cases. If the accep-
tance region is determined by a threshold A = {x : x ≤ x0},
then pA = 1 − F (x̃ − x0) and thus, the above inequality is
equivalent to F (x̃−x0) ≤ 1−p(0). Since the cdf F (t) is an in-
creasing function, this is equivalent to x̃−x0 ≤ F−1(1−p(0)),
where F−1 denotes the inverse function to cdf. Thus, in this
case, we accept the hypothesis if

x̃ ≤ x0 + F−1(1− p(0)).

It is worth mentioning that if F−1(1−p(0)) > 0 and x0 < x̃ <
x0 + F−1(1− p(0)), then, based on the fact that the estimate
x̃ exceeds x0, one may be tempted to classify this object as
unacceptable; however, due to the uncertainty, the actual value
x may be different, in particular, it may be smaller than x0. To
avoid the corresponding Type I errors, we classify this object
as acceptable.

Similarly, if the acceptance region is determined by a lower
threshold A = {x : x ≥ l0}, then pA = F (x̃ − l0) and
thus, the above inequality is equivalent to F (x̃ − l0) ≥ p(0).

Since the cdf F (t) is an increasing function, this is equivalent
to x̃ − l0 ≥ F−1(p(0)). Thus, in this case, we accept the
hypothesis if

x̃ ≥ l0 + F−1(p(0)).

Here, similarly, if F−1(p(0)) > 0 and l0 < x̃ < l0+F−1(p(0)),
then, based on the fact that the estimate x̃ exceeds l0, one may
be tempted to classify this object as acceptable; however, due
to the uncertainty, the actual value x may be different, in par-
ticular, it may be smaller than l0. To avoid the corresponding
Type II errors, we classify this object as unacceptable.

If the acceptance region is an interval

A = {x : l0 ≤ x ≤ x0},

then pA = F (x̃− l0)− F (x̃− x0) and thus, the criterion for
concluding that the object with estimate x̃ satisfies the given
hypothesis is

F (x̃− l0)− F (x̃− x0) ≥ p(0).

Illustrative example. As an illustrative example, let us con-
sider car testing for exhaust pollution. We need to check that
the level of each potential pollutant (hydrocarbons, carbon
monoxide, nitrogen oxide) does not exceed the maximum
permissible level x0. The accuracy of this testing is about 15-
20%. In the probabilistic approach, it is therefore reasonable
to assume that the measurement error x̃ − x is normally
distributed with 0 mean and standard deviation σ = 0.175x0.
We need to decide whether to accept the hypothesis that the
car is not polluting (then we will issue, to this car, an annual
state certification allowing it to drive), or to conclude that the
exhaust pollution is (probably) excessive and therefore, the car
exhaust system must be re-tuned before the car is allowed on
the road.

In the El Paso region of the State of Texas, the average cost
of a car exhaust tuning is about $60. The cost of a polluting
car to to the environment can be estimated based on the fact
that the State of Texas offers a $3000 voucher to every driver
who wants to trade in an older more polluting car for a newer
better model (and whose income is below a certain threshold).
So, in this case, the cost of a “reject” decision is simply the
cost of tuning u−− = u+− = −60, the cost of an “accept”
decision for a polluting car is u−+ = −3000, and the cost
of an “accept” decision for a non-polluting car is u++ = 0.
In this case, p(0) = 2940/3000 ≈ 0.98, so F−1(1 − p(0)) =
F−1(0.02) ≈ −2.3σ = −2.3 · 0.175x0 ≈ −0.4x0. Thus, we
should decide that the car passed the inspection if x̃ ≤ x0 +
(−0.4x0) = 0.6x0.

Please note that here, the acceptance threshold is very low,
0.6 of the nominal value. The reason for this lowness is that
the cost of a Type I error is very small in comparison with
the cost of a Type II error; as a result, we tend to err on the
side of requiring good cars to be re-tuned.



XII. CASE OF INTERVAL UNCERTAINTY

Description of the situation. As we have mentioned earlier,
in many practical situations, we do not know the probabilities
of different values of the approximation error ∆x, we only
know the upper bound on this error. In this situation, the only
information that we have about the (unknown) actual value
x of the desired quantity is that this value x belongs to the
interval x = [x, x].

Under such interval uncertainty, we must decide whether to
accept or to reject the null hypothesis.

Simple cases. There are two cases, when the classification
under interval uncertainty is easy:
• If x ∩ A = ∅, this means that all possible values of x

belong to the rejection region R. In this case, we know
that the corresponding object belongs to the rejection
region (i.e., does not satisfy the null hypothesis).

• If x ∩ R = ∅, this means that all possible values of x
belong to the acceptance region A. In this case, we know
that the corresponding object belongs to the acceptance
region (i.e., satisfies the null hypothesis).

Remaining case: description. The remaining case is when
the interval x of possible values of x contains both values
which are acceptable and values which are not acceptable.

Remaining case: utility. To make a decision, we must con-
sider utility associated with both acceptance and rejection
decisions.

In the remaining case, the utility depends on whether the
actual value is acceptable or not.
• If we make an acceptance decision, then the utility is u++

if the object is actually acceptable and u−+ (< u++) if
the object is not acceptable.

• If we make a rejection decision, then the utility is u−−
if the object is actually not acceptable and u+− (< u−−)
if the object is acceptable.

In both cases, instead of a single value u of utility, we have
a pair {u, u} of possible values. How can we then make
decisions based on this pair?

Main idea underlying utility theory: reminder. The main
idea behind utility theory is that to gauge the quality of each
situation, we describe it by a single utility value. In line with
this general idea, to gauge the quality of a situation described
by a pair {u, u}, we should find a utility value u which is (in
some reasonable sense) equivalent to this pair.

Additional idea: invariance. Our objective is to develop a
mapping e(u, u) that maps every pair {u, u} into a single
equivalent value u = e(u, u). What properties should this
mapping have?

As we have mentioned, the numerical values of the utility
depend on the choice of the two extreme alternatives A0 and
A1. Different choices of these two extreme alternatives lead to
different scales for representing utility. Different scales u(A)
and u′(A) are related to each other by a linear transformations
u′(A) = a · u(A) + b for some a > 0 and b.

It is therefore reasonable to require that the desired mapping
does not change under such re-scalings. Let us formulate this
property in precise terms. Suppose that we start in the original
scale. In this case, we have a pair {u, u}. Based on this pair,
we find the equivalent value u = e(u, u).

Suppose now that we use a different scale to represent the
same situation, a scale which is related to the original one
by a linear transformation u′(A) = a · u(A) + b. In this new
scale, the elements u and u of the pair take new numerical
values u′ = a · u + b and u′ = a · u + b. When we apply the
combination function e to these new values u′ and u′, we get
an equivalent value u′ = e(u′, u′), i.e.,

u′ = e(a · u + b, a · u + b).

It is reasonable to require that this new value represent the
exact same equivalent utility u as before, but expressed in the
new scale, i.e., that u′ = a · u + b for u = e(u, u).

Substituting the expressions u′ = e(a · u + b, a · u + b) and
u = e(u, u) into the formula u′ = a · u + b, we conclude that
for every u < u, a > 0, and b, we have

e(a · u + b, a · u + b) = a · e(u, u) + b.

Let us show that this natural invariance condition leads to a
very specific expression for the combination function u.
Consequences of invariance. Let us pick one possible pair,
e.g., a pair {0, 1}. This means that the actual utility of a situ-
ation can be either 0 and 1, depending on the circumstances.

Let us denote the utility value e(0, 1) equivalent to this pair
by α. From the common sense viewpoint, this value should
be between 0 and 1: α ∈ [0, 1].

Let {u−, u+} be an arbitrary non-degenerate pair. One can
easily check that this pair can be obtained from the pair
[0, 1] by an appropriate linear re-scaling: namely, from the
conditions that {a · 0 + b, a · 1 + b} = {u−, u+} we conclude
that a · 0 + b = b = u−. Then, from a · 1 + b = a + b = u+,
we conclude that a = u+ − b = u+ − u−. For the resulting
values u = 0, u = 1, a = u+ − u−, and b = u−, the above
invariance implies that e(u−, u+) = (u+ − u−) · α + u−. By
combining terms proportional to u− and to u+, we conclude
that

u = α · u+ + (1− α) · u−.

This is exactly the formula originally proposed by the Nobelist
by L. Hurwicz [7]. So, we arrive at the following solution to
the problem of hypothesis testing under interval uncertainty:
Hurwicz-type solution to hypothesis testing under interval
uncertainty. We characterize this situation (decision) by a
single equivalent utility value

u = α · u + (1− α) · u,

and we select a decision for which the equivalent value u is
the largest [7].

Specifically, we classify the object as satisfying the hypoth-
esis if

α · u++ + (1− α) · u−+ ≥ α · u−− + (1− α) · u+−,



and classify the object as not satisfying the hypothesis if

α · u++ + (1− α) · u−+ < α · u−− + (1− α) · u+−.

In other words, we classify the object as satisfying the
hypothesis if

α · (u++ − u−+ − u+− + u−−) ≥ u−− − u−+,

i.e.,
α ≥ p(0),

where
p(0) =

u−− − u−+

u++ − u−+ − u+− + u−−
.

How do we select α: Hurwicz’s interpretation. The above
approach requires that we fix the value of the parameter α.
This parameter must be selected in such a way as to best
represent the user’s preferences. To help with this selection,
L. Hurwicz provided the following reasonable interpretation
of this parameter.

Let us recall that in case of the interval uncertainty, we do
not know the exact value of the utility characterizing each
decision, we only know the pair {u, u} of possible values of
this utility.
• In the most optimistic case, we get the largest possible

value u of this utility.
• In the most pessimistic case, we get the smallest possible

value u of this utility.
It turns out that these cases are directly related to the choice

of the parameter α:
• When α = 1, this means the equivalent utility value is

equal to u = u. In other words, we judge each decision
by it most optimistic outcome.

• When α = 1, this means the equivalent utility value is
equal to u = u. In other words, we judge each decision
by it most pessimistic outcome.

• When 0 < α < 1, this means the equivalent utility value
u is strictly in between the pessimistic value u and the
optimistic value u.

In view of this relation, the general Hurwicz criterion
for decision making under interval uncertainty is also called
optimism-pessimism criterion – because to make a decision,
it uses a linear combination of the optimistic and pessimistic
estimates.

In case of regulatory and expert-based thresholds, after fix-
ing the parameter α, we have a clear algorithm for hypothesis
testing.

Illustrative example. Let us illustrate the above approach
on the above example of pollution testing for a car exhaust.
In the interval approach, it is reasonable to interpret the
reported 15-20% measurement accuracy as the 0.2x0 upper
bound the (absolute value of) the measurement error. In other
words, when the measurement result is x̃, we assume that
the actual pollution level can take any value from the interval
[x̃− 0.2x0, x̃ + 0.2x0].

In this case, if x̃ + 0.2x0 ≤ x0, i.e., if x̃ ≤ 0.8x0, then
we are absolutely sure that the actual pollution value is below
the maximum allowed level x0 and thus, the car should be
certified as driveable.

Similarly, if x̃0 − 0.2x0 > x0, i.e., if x̃ > 1.2x0, then we
are absolutely sure that the actual pollution value is above
the maximum allowed level x0 and thus, the car should be
re-tuned.

In the remaining cases, when 0.8x0 < x̃ ≤ 1.2x0, we must
use the Hurwicz-type solution. In this example, the utility
values related to different solutions lead to p(0) ≈ 0.98. Thus,
unless we are extremely optimistic (α > 0.98), we should
reject the hypothesis and request the car to be re-tuned.
Limitations of Hurwicz approach. One disadvantage of
this approach is the fact that (after fixing the parameter α)
wherever the interval x is located, as long as even a minimal
part of the interval is inside the acceptance region and even
a minimal part of the interval is inside the rejection region,
we have the exact same decision. In other words, we have the
same decision when most of the interval is in the acceptance
region and when most of the interval x is in the rejection
region.
An alternative approach. An alternative approach is to
assume that there exists a probability distribution inside the
interval. A reasonable assumption is that the distribution inside
the interval x is uniform [14], [18], because it is the maximum
entropy distribution among all continuous distributions which
are supported in the interval, see, e.g., [10]. In this case, the
probability to be within the acceptance region is equal to the
ratio

p =
|x ∩A|
|x| ,

where |x| denotes the width of the interval x.
Then, we can use the criterion derived for the probabilistic

case, and accept the null hypothesis if this probability exceeds
the above-derived threshold p(0): p ≥ p(0).
Illustrative example. In the car exhaust example, if we have
x̃ = 0.801x0, this meas that the actual value x of the pollution
can be anywhere between 0.601x0 and 1.001x0. Our objective
is to make sure that x ≤ x0. In the interval [0.601x0, 1.001x0],
only a tiny portion is above x0, so we should expect this car to
pass the test. However, according to the above Hurwicz-type
solution, this car should be re-tuned.

Let us check that the alternative idea indeed leads to
more intuitively plausible decision. Indeed, in this approach,
the width |x| of the interval x = [0.601x0, 1.001x0] is
equal to 0.4x0, while the width |x ∩ A| of the intersection
x ∩ A = [0.601x0, 1.001x0] ∩ [0, x0] = [0.601x0, x0] is

equal to 0.399x0. Thus, the ratio p =
|x ∩A|
|x| is equal to

p = 0.399/0.4 = 0.9975. Since p0 = 0.98, we have p ≥ 0.98,
thus, we do consider this car to be acceptable.



XIII. CASE OF FUZZY UNCERTAINTY

A fuzzy set is a natural next step after an interval:
reminder. As we have mentioned earlier, a natural way to
view a fuzzy set is to view it as a natural generalization of the
notion of an interval – namely, as a nested family of intervals.
Because of this view, in order to solve a hypothesis testing
problem under fuzzy uncertainty, it is reasonable
• to recall how this problem is solved under interval uncer-

tainty, and
• to generalize to the case of fuzzy uncertainty.

Case of interval uncertainty: reminder. For interval uncer-
tainty, we described the probability pA that a quantity de-
scribed by the interval X = x is acceptable as the conditional
probability that, given a random value from this interval X , we
get an element from the accept region A. Then, we concluded
that a value described by an interval X is acceptable if pA

exceeds the threshold p(0).
Formally, the corresponding conditional probability can be

described as pA = P (A∩X |X). By definition of conditional
probability, we can describe this probability as

pA =
P (A ∩X)

P (X)
.

In the interval case, to get the probabilities, we assumed that
the values x are uniformly distributed on the interval X . In
order to extend this idea to the fuzzy case, we must extend this
assumption to the fuzzy case. For that extension, it is useful to
recall the known relationship between fuzzy and probabilities.

Known relationship between fuzzy and probabilities: a
reasonable way to gauge the degree of certainty. In our
description of fuzzy uncertainty, we did not specify how to
gauge the degree of uncertainty – and, correspondingly, how
to gauge the values µ(x) of the membership function. There
exist many such gauging schemes; see, e.g., [12], [22].

One reasonable way to do it is to poll experts and to select,
as µ(x), the proportion of experts who believe that the value
x is indeed possible. In this case, µ(x) is a probability that a
randomly selected expert believes that the value x is possible.

Relation with random sets. The above description can be
reformulated in more mathematical term. Every expert has a
set of values that this experts considers possible. We consider
the experts to be equally probable, so these sets are equally
probable.

Thus, we have, in effect, a probability distribution on
the class of all possible sets. Similarly to the fact that the
probability distribution on the set of all possible numbers is
called a random number, the probability distribution on the
class of all possible sets is called a random set. Thus, a
membership function µ(x) can be interpreted as the probability
that a given element x belongs to the random set.

This interpretation of fuzzy sets as random sets has been
known and used for several decades; see, e.g., [20] and
references therein.

Another relationship between fuzzy and probabilities: an
alternative way of gauging the degree of certainty. Another
alternative – also in terms of probabilities – is to select, as
µ(x), the subjective probability that x is possible.

In general, a subjective probability ps(E) of an event E
can be determined in a way which is similar to utility: as a
probability p for which the lottery L(p) is equivalent to the
“lottery” L(E) in which we have A1 if E and A0 otherwise.
In this particular case, as the event E, we can take, e.g., the
event that the majority of experts consider x to be possible.
Estimating probability that a random element belongs to
a fuzzy set. In the interval case, we considered a probability
distribution (uniform) on the set of all the numbers – i.e., a
random number. In the interval case, the interval itself was
“deterministic”, so we defined the probability P (X) as the
probability that a random element belongs to this deterministic
interval X .

A fuzzy set means, in effect, that instead of a deterministic
set, we have a random set, i.e., that we have a probability
measure on the class of all possible sets. Thus, it is reasonable
to describe the probability P (X) as the probability that a
random element x belongs to the corresponding random set.
Due to the formula of full probability, this probability can be
described as the integral P (X) =

∫
PX(x ∈ S) · ρ(x) dx,

where
• PX(x ∈ S) is the probability that a given element x

belongs to the corresponding random set, and
• ρ(x) is the probability density corresponding to randomly

selecting an element.
According to the above random set interpretation of a fuzzy
set, the probability PX(x ∈ S) that a given element x belongs
to the randomly selected set is equal to the corresponding value
of the membership function µX(x). We also know that the
distribution ρ(x) is uniform, so the corresponding probability
density is constant: ρ(x) = c for some constant c. Thus, the
desired probability has the form P (X) = c · ∫ µX(x) dx.

For a “crisp” (deterministic) 1-D set, e.g. for the interval
X , the integral

∫
µX(x) dx is simply equal to the width of

the corresponding interval. Because of this, in the general 1-D
case, the integral

∫
µX(x) dx is known in fuzzy sets as its

length of the corresponding fuzzy set. The corresponding 2-D
integral is known as an area, 3-D as a volume, and in general,
as a measure of the fuzzy set etc.; see, e.g., [12]. Thus, the
probability P (X) is proportional to the measure of the fuzzy
set X .

Similarly, the probability P (A ∩X) is proportional to the
measure of the intersection fuzzy set A ∩X , i.e.,

P (A ∩X) = c ·
∫

µA∩X(x) dx.

Therefore, the desired ratio pA =
P (A ∩X)

P (X)
is equal to

pA =
∫

µA∩X(x) dx∫
µX(x) dx

.



Conclusion. Our conclusion is that
• we accept the null hypothesis for the object characterized

by the fuzzy set X is the above-computed probability pA

exceeds the threshold p(0), and
• we reject the null hypothesis if pA < p(0).

This idea can be naturally extended to fuzzy regulations. In
the above text, we considered crisp regulations such as x ≤ x0.
In this case, the accept and the reject regions are crisp sets.

In practice, sometimes, we have fuzzy regulations, such
as “the speed should be about 100 km/h or less”. For such
regulations, the accept region A is also fuzzy. The above
formulas can be applied to this case as well.
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