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Abstract—Subsethood A ⊆ B and set equality A = B are
among the basic notions of set theory. For traditional (“crisp”)
sets, every element a either belongs to a set A or it does not
belong to A, and for every two sets A and B, either A ⊆ B
or A 6⊆ B. To describe commonsense and expert reasoning, it is
advantageous to use fuzzy sets in which for each element a, there
is a degree µA(a) ∈ [0, 1] to which a belongs to this set. For fuzzy
sets A and B, it is reasonable to define a degree of subsethood
d⊆(A, B) and degree of equality (degree of similarity) d=(A, B).
In practice, it is often difficult to assign a definite membership
degree µA(a) to each element a; it is more realistic to expect that
an expert describes an interval [µ

A
(a), µA(a)] of possible values of

this degree. The resulting interval-valued fuzzy set can be viewed
as a class of all possible fuzzy sets µA(a) ∈ [µ

A
(a), µA(a)].

For interval-valued fuzzy sets A and B, it is therefore
reasonable to define the degree of subsethood d⊆(A,B) as the
range of possible values of d⊆(A, B) for all A ∈ A and B ∈ B –
and similarly, we can define the degree of similarity d=(A,B).
So far, no general algorithms were known for computing these
ranges. In this paper, we describe such general algorithms. The
newly proposed algorithms are reasonably fast: for fuzzy subsets
of an n-element universal set, these algorithms compute the
ranges in time O(n · log(n)).

I. FORMULATION OF THE PROBLEM

Subsethood and set equality are important notions of set
theory. In traditional set theory, among the basic notions are
the notions of set equality and subsethood:
• two sets A and B are equal if they contain exactly the

same elements, and
• a set A is a subset of the set B if every element of the

set A also belongs to B.
Because of this importance, it is desirable to generalize these
notions to fuzzy sets.

In fuzzy set theory, it is reasonable to talk about degrees
of subsethood and equality (similarity). In traditional set
theory, for every two sets A and B, either A is a subset of
B, or A is not a subset of B. Similarly, either the two sets A
and B are equal or these two sets are different.

The main idea behind fuzzy logic is that for fuzzy, imprecise
concepts, everything is a matter of degree; see, e.g., [3], [9].

Thus, for two fuzzy sets A and B, it is reasonable to define
degree of subsethood and degree of similarity.

How to describe degree of subsethood: main idea. In fuzzy
logic and fuzzy set theory, there is no built-in notion of degree
of subsethood or degree of equality (similarity) between the
sets. Instead, the standard descriptions of fuzzy logic and fuzzy
set theory start with the notions of union and intersection.

The simplest way to describe the union of the two sets
is to take the maximum of the corresponding membership
functions: µA∪B(x) = max(µA(x), µB(x)). Similarly, the
simplest way to describe the intersection of the two sets is
to take the minimum of the corresponding membership func-
tions: µA∩B(x) = min(µA(x), µB(x)). Thus, to describe the
degrees of subsethood and equality (similarity), it is reasonable
to express the notions of subsethood and set equality in terms
of union and intersection. This expression is well known in
set theory: it is known that
• in general, A ∩B ⊆ A, and
• A ⊆ B if and only if A ∩B = A.

So, for crisp finite sets, to check whether A is a subset of B,
we can consider the ratio

|A ∩B|
|A| ,

where |A| denotes the number of elements in a set A:
• in general, this ratio is between 0 and 1, and
• this ratio is equal to 1 if and only if A is a subset of B.

The smaller the ratio, the more there are elements from A
which are not part of the intersection A ∩ B, and thus, not
part of the set B. Thus, for crisp sets, this ratio can be viewed
as a reasonable measure of degree to which A is a subset of B.

A similar definition can be used to define degree of subset-
hood of two fuzzy sets. Specifically, for finite fuzzy sets, we
can use a natural fuzzy extension of the notion of cardinality:
|A| def=

∑
µA(x). Let us describe the resulting formulas.

Since we only consider finite fuzzy sets, we can therefore
consider a finite universe of discourse. Without losing gener-
ality, we can denote the elements of the universe of discourse



by their numbers 1, 2, . . . , n. The values of the membership
function corresponding to the fuzzy set A can be therefore
denoted by a1, . . . , an. Similarly, the values of the membership
function corresponding to the fuzzy set B can be denoted by
b1, . . . , bn. In these notations,
• the membership function corresponding to the intersec-

tion A ∩B has the values min(a1, b1), . . . , min(an, bn),

• the cardinality |A| of the fuzzy set A is equal to
n∑

i=1

ai,

and
• the cardinality |A∩B| of the intersection A∩B is equal

to
n∑

i=1

min(ai, bi).

Thus, the degree of subsethood of fuzzy sets A and B can be
defined as the ratio

d⊆(A,B) =

n∑
i=1

min(ai, bi)

n∑
i=1

ai

.

Comment. An alternative (probabilistic) justification of this
formula is given in the Appendix.

How to describe degree of equality (similarity). It is known
that
• in general, A ∩B ⊆ A ∪B, and
• A = B if and only if A ∩B = A ∪B.

So, for crisp finite sets, to check whether A is equal to B, we
can consider the ratio

|A ∩B|
|A ∪B| .

• In general, this ratio is between 0 and 1, and
• this ratio is equal to 1 if and only if A is a subset of B.

The smaller the ratio, the more there are elements from A∪B
which are not part of the intersection A∩B, and thus, elements
from one of the sets A and B which do not belong to the other
of these two sets. Thus, for crisp sets, this ratio can be viewed
as a reasonable measure of degree to which A is equal to B.

A similar definition can be used to define degree of equality
(similarity) of two fuzzy sets A and B:

d=(A,B) =

n∑
i=1

min(ai, bi)

n∑
i=1

max(ai, bi)
.

There exist many alternative ways of describing degrees
of subsethood and similarity. The above expressions are the
simplest and probably most frequently used. However, there
exist other expressions for the similar degrees; see, e.g., [1],
[3], [9]. For example, an alternative way to describe the degree
of subsethood is based on the fact that
• in general, B is a subset of the union A ∪B, and
• the set B is equal to the union A∪B if and only if A is

a subset of B.

Thus, as an alternative degree of subsethood, we can take a
ratio

|B|
|A ∪B| =

n∑
i=1

bi

n∑
i=1

max(ai, bi)
.

Need for interval-valued (and more general type-2) fuzzy
sets. In the above text, we consider the situation in which the
values ai and bi of the membership function are numbers from
the interval [0, 1]. Is this the most adequate description?

The main objective of fuzzy logic is to describe uncertain
(“fuzzy”) knowledge, when an expert cannot describe his or
her knowledge by an exact value or by a precise set of possible
values. Instead, the expert describes this knowledge by using
words from natural language. Fuzzy logic provides a procedure
for formalizing these words into a computer-understandable
form – as fuzzy sets.

In the traditional approach to fuzzy logic, the expert’s
degree of certainty in a statement – such as the value µA(x)
describing that the value x satisfies the property A (e.g.,
“small”) – is characterized by a number from the interval [0, 1].
However, we are considering situations in which an expert is
unable to describe his or her knowledge in precise terms. It is
not very reasonable to expect that in this situation, the same
expert will be able to meaningfully express his or her degree
of certainty by a precise number. It is much more reasonable
to assume that the expert will describe these degrees also by
words from natural language.

Thus, for every x, a natural representation of the degree
µ(x) is not a number, but rather a new fuzzy set. Such
situations, in which to every value x we assign a fuzzy set
µ(x), are called type-2 fuzzy sets.

Successes of type-2 fuzzy sets. Type-2 fuzzy sets are actively
used in practice; see, e.g., [5], [6]. Since type-2 fuzzy sets
provide a more adequate representation of expert knowledge, it
is not surprising that such sets lead to a higher quality control,
higher quality clustering, etc., in comparison with the more
traditional type-1 sets.

It is therefore desirable to extend the above formulas for the
degrees of subsethood and similarity to type-2 fuzzy sets.

The main obstacle to using type-2 fuzzy sets. If type-2 fuzzy
sets are more adequate, why are not they used more? The main
reason why their use is limited is that the transition from type-
1 to type-2 fuzzy sets leads to an increase in computation time.
Indeed, to describe a traditional (type-1) membership function
function, it is sufficient to describe, for each value x, a single
number µ(x). In contrast, to describe a type-2 set, for each
value x, we must describe the entire membership function –
which needs several parameters to describe. Since we need
more numbers just to store such information, we need more
computational time to process all the numbers representing
these sets.

Interval-valued fuzzy sets. In line with this reasoning, the
most widely used type-2 fuzzy sets are the ones which require



the smallest number of parameters to store. We are talking
about interval-valued fuzzy numbers, in which for each x, the
degree of certainty µ(x) is an interval [µ(x), µ(x)]. To store
each interval, we need exactly two numbers – the smallest
possible increase over the single number needed to store the
type-1 value µ(x).

It is therefore desirable to extend the above definitions to
interval-valued fuzzy sets and to come up with algorithms
(ideally, efficient algorithms) for computing the corresponding
degrees. This problem was formulated in [7].

Comment. It is worth mentioning that once we have efficient
algorithms for interval-valued fuzzy sets, these algorithms can
be naturally extended to efficient algorithms for arbitrary type-
2 fuzzy sets [4].

Let us describe the corresponding computational problems
in precise mathematical terms.

Computing the degree of subsethood: precise formulation
of the problem. For each i from 1 to n, we know the intervals
[ai, ai] and [bi, bi] of possible membership degrees. For each
combination of values ai ∈ [ai, ai] and bi ∈ [bi, bi], we can
compute the subsethood degree

d⊆ =

n∑
i=1

min(ai, bi)

n∑
i=1

ai

.

The objective is to find the range [d⊆, d⊆] of possible values
of the above subsethood degree, i.e.,
• to compute the smallest possible value d⊆ of the sub-

sethood degree d⊆ when ai ∈ [ai, ai] and bi ∈ [bi, bi];
and

• to compute the largest possible value d⊆ of the subset-
hood degree d⊆ when ai ∈ [ai, ai] and bi ∈ [bi, bi].

Computing the degree of equality (similarity): precise
formulation of the problem. For each i from 1 to n, we
know the intervals [ai, ai] and [bi, bi] of possible membership
degrees. For each combination of values ai ∈ [ai, ai] and
bi ∈ [bi, bi], we can compute the similarity degree

d= =

n∑
i=1

min(ai, bi)

n∑
i=1

max(ai, bi)
.

The objective is to find the range [d=, d=] of possible values
of the above similarity degree, i.e.,
• to compute the smallest possible value d= of the similar-

ity degree d= when ai ∈ [ai, ai] and bi ∈ [bi, bi]; and
• to compute the largest possible value d⊆ of the similarity

degree d= when ai ∈ [ai, ai] and bi ∈ [bi, bi].

What we plan to do in this paper. In this paper, we design
fast algorithms for computing the desired bounds d⊆, d⊆, d=,
and d=.

II. COMPUTING d⊆: ANALYSIS OF THE PROBLEM

First observation: minimum of d⊆ is attained when bi = bi.
First, let us notice that for every i, the degree of subsethood
is a (non-strictly) increasing function of bi. Thus, its smallest
possible value is attained when each of the n variables bi

attains its smallest possible value bi. So, to find the smallest
possible value d⊆ of the degree of subsethood d⊆, it is
sufficient to consider the values bi = bi. In other words, it
is sufficient to find the minimum of the ratio

r =

n∑
i=1

min(ai, bi)

n∑
i=1

ai

when ai ∈ [ai, ai].

Second observation: minimum of d⊆ is attained for some
ai ∈ [ai, ai]. When at least one of the lower bounds ai is
positive, the ratio r is a continuous function on a compact set

[a1, a1]× . . .× [an, an].

Thus, the minimum of this function are attained at some values
ai ∈ [ai, ai].

The degenerate case when a1 = . . . = an = 0 can be
obtained as a limit case of the genetic situation. Thus, without
losing generality, we can consider the case when one of the
values ai is positive and thus, the minimum d⊆ is attained.

Two possible cases. Let us consider the values ai for which
this minimum is attained. For each i, there are two possible
cases:
• the case when ai ≤ bi and thus, min(ai, bi) = ai, and
• the case when bi ≤ ai and thus, min(ai, bi) = bi.

Let us consider these two cases one by one.

Case when ai ≤ bi. In this case, both the numerator and
the denominator of the ratio r contain the term ai. Thus, the
dependence of the ratio r on ai takes the form

r =
ai + mi

ai + Mi
,

where mi
def=

∑
j 6=i

min(aj , bj) and Mi
def=

∑
j 6=i

aj . Since

min(aj , bj) ≤ aj for all j, we have mi ≤ Mi. Thus, the
ratio can be reformulated as follows:

r = 1− Mi −mi

ai + Mi
.

When ai increases, the sum ai +Mi also increases, hence the

ratio
Mi −mi

ai + Mi
decreases, and the difference r = 1−Mi −mi

ai + Mi
increases. So, the ratio r attains its smallest value when ai is
the smallest, i.e., when ai = ai.

Case when bi ≤ ai. In this case, only the denominator of the
ratio r contains ai. Specifically, the dependence of r on ai

takes the form
r =

m

ai + Mi
,



where Mi is the same sum as above, and

m
def=

n∑

j=1

min(aj , bj)

does not depend on ai, since m = bi + mi. This expression
for r clearly decreases with ai. Thus, in this case, the smallest
possible value of r is attained when ai attains the largest
possible value, i.e., when ai = ai.

Comparing the two cases. From the analysis of the above
two cases, we conclude that for each i, we have two cases:
• either ai = ai and ai ≤ bi,
• or ai = ai and bi ≤ ai.
If ai < bi, then we cannot have the second case, and thus,

the minimum is attained when ai = ai.
If bi < ai, then we cannot have the first case and thus, the

minimum is attained when ai = ai.
In the remaining cases, when ai ≤ bi ≤ ai, in principle,

both cases ai = ai and ai = ai are possible. Which of these
two cases minimizes the ratio r? E.g., when does the value
ai = ai lead to the minimum? Since we have already shown
that there are only two possible values ai for which the ratio
attains its minimum, the minimum is attained at ai = ai if and
only if replacing ai = ai with ai = ai increases the ratio r.

The original ratio is equal to r =
m

M
, where the sum m is

defined above, and M
def=

n∑
j=1

aj . When we replace ai ≤ bi

with ai ≥ bi, then in the numerator, the i-th term min(ai, bi)
changes from ai to bi. Thus, instead of the original value m,
the numerator gets the new value m + (bi − ai).

In the denominator, the term ai is replaced by a new term
ai. Thus, instead of the original value M , the denominator gets
the new value M + (ai − ai). Hence, instead of the original
ratio

m

M
, we get the new ratio

m + (bi − ai)
M + (ai − ai)

.

This new ratio is larger than the original one when

m

M
<

m + (bi − ai)
M + (ai − ai)

.

Multiplying both sides by both (positive) denominators and
canceling a term m ·M which is common to both sides of the
resulting inequality, we conclude that

m · (ai − ai) < M · (bi − ai).

Dividing both sides of this inequality by positive values ai−ai

and M , we conclude that

m

M
<

bi − ai

ai − ai

.

This is the condition under which the minimum is attained for
ai = ai; if this inequality is not satisfied, then the minimum
is attained for ai = ai.

Towards an algorithm for computing d⊆. If we know the
optimal value d⊆ of the ratio r = m/M , then for each i, we
can determine whether the minimum is attained for ai = ai

or for ai = ai. In reality, we do not need to know the exact
value of the ratio r, we just need to know where it is located

in comparison with n ratios ri
def=

bi − ai

ai − ai

. For each of n + 1

possible locations, we compute the corresponding values ai,
and then find the location for which the ratio is the smallest
possible.

Specifically, we analyze the values ai one by one, and divide
the corresponding indices into three groups:
• The group I− consists of all the indices i for which

ai < bi.

For this group, as we have shown, the minimum is
attained when ai = ai; in this case, min(ai, bi) = ai.

• The group I+ consists of all the indices i for which

bi < ai.

For this group, as we have shown, the minimum is
attained when ai = ai; in this case, min(ai, bi) = bi.

The remaining indices i (i.e., all the indices for which bi ∈
[ai, ai]) form the third group I . For all i ∈ I , we compute the
ratios

ri
def=

bi − ai

ai − ai

.

We then sort the indices i ∈ I in the increasing order of this
ratio. Let k denote the number of elements in the group I;
it is clear that k ≤ n. Then, in the resulting new ordering,
we have r1 ≤ r2 ≤ . . . ≤ rk. We can place indices from the
groups I− and I+ after k indices from the group I .

The ordering of the ratios ri subdivides the real line into
k + 1 “zones”

z0
def= (−∞, r1], z1

def= [r1, r2], . . . ,

zk−1
def= [rk−1, rk], zk

def= [rk,∞).

For each zone zj , we take the assignment corresponding to
the case when the actual (unknown) value r = d⊆ is in this
zone. In this case, as we have shown,
• for i ≤ j, minimum is attained for ai = ai and

min(ai, bi) = bi;
• for i > j, minimum is attained for ai = ai and

min(ai, bi) = ai.
Thus, the corresponding value r(j) of the ratio r can be
computed as

r(j) =
m(j)

M (j)
,

where

m(j) def=
∑

i≤j

bi +
k∑

i=j+1

ai +
∑

i∈I−
ai +

∑

i∈I+

bi;

M (j) def=
∑

i≤j

ai +
k∑

i=j+1

ai +
∑

i∈I−
ai +

∑

i∈I+

ai.



The values m(j) and M (j) do not need to be recomputed every
time, since the next value differs from the previous one only
by two terms:

m(j+1) = m(j) + (bj+1 − aj+1);

M (j+1) = m(j) + (aj+1 − aj+1).

Thus, we arrive at the following algorithm.

III. ALGORITHM FOR COMPUTING d⊆
Description of the algorithm. First, we divide n indices into
three groups:
• The group I− consists of all the indices i for which

ai < bi.

• The group I+ consists of all the indices i for which

bi < ai.

The remaining indices i form the third group I .
For all i ∈ I , we compute the ratios

ri
def=

bi − ai

ai − ai

.

We then sort the indices i ∈ I in the increasing order of this
ratio. In the resulting new ordering, we have

r1 ≤ r2 ≤ . . . ≤ rk,

where k is the number of elements in the group I .
We then compute

m(0) =
∑

i∈I

ai +
∑

i∈I−
ai +

∑

i∈I+

bi

and
M (0) =

∑

i∈I

ai +
∑

i∈I−
ai +

∑

i∈I+

ai.

For j from 0 to k, we then compute

m(j+1) = m(j) + (bj+1 − aj+1);

M (j+1) = m(j) + (aj+1 − aj+1).

For all j from 0 to k + 1, we compute r(j) =
m(j)

M (j)
. The

smallest of these values r(j) is the desired smallest value d⊆.

Computational complexity of this algorithm. Let us describe
how much computation time is needed for each stage of the
above algorithm.
• Dividing indices into 3 groups requires linear time O(n).
• Computing the ratios ri for i ∈ I also requires linear

time O(n).
• Sorting k ≤ n requires time O(k·log(k)) = O(n·log(n)).
• Computing m(0) and M (0) requires linear time O(n).
• Computing each new pair m(j+1) and M (j+1) requires

a constant number of computation steps, so computing
≤ n such pairs requires ≤ const · n = O(n) steps.

• Finally, finding the smallest of n+1 numbers also requires
linear time O(n).

Thus, for this algorithm, the overall computation time is

O(n) + O(n) + O(n · log(n)) + O(n) + O(n) + O(n) =

O(n · log(n)).

IV. COMPUTING d⊆: ANALYSIS OF THE PROBLEM

First observation: maximum of d⊆ is attained when bi = bi.
We have already mentioned that for every i, the degree of
subsethood d⊆ is a (non-strictly) increasing function of bi.
Thus, its largest possible value d⊆ is attained when each of
the n variables bi attains its largest possible value bi. So, to
find the largest possible value d⊆ of the degree of subsethood
d⊆, it is sufficient to consider the values bi = bi. In other
words, it is sufficient to find the maximum of the ratio

r′ =

n∑
i=1

min(ai, bi)

n∑
i=1

ai

when ai ∈ [ai, ai].

Two possible cases. Let us consider the values ai for which
this maximum is attained. For each i, there are two possible
cases:
• the case when ai ≤ bi and thus, min(ai, bi) = ai, and
• the case when bi ≤ ai and thus, min(ai, bi) = bi.

Let us consider these two cases one by one.

Case when ai ≤ bi. In this case, both the numerator and
the denominator of the ratio r contain the term ai. Thus, the
dependence of the ratio r′ on ai takes the form

r′ =
ai + m′

i

ai + Mi
,

where m′
i

def=
∑
j 6=i

min(aj , bj) and Mi
def=

∑
j 6=i

aj . Since

min(aj , bj) ≤ aj for all j, we have m′
i ≤ Mi. Thus, the

ratio can be reformulated as follows:

r′ = 1− Mi −m′
i

ai + Mi
.

When ai increases, the sum ai + Mi also increases, hence

the ratio
Mi −m′

i

ai + Mi
decreases, and the difference r′ = 1 −

Mi −m′
i

ai + Mi
increases. So, the ratio r′ attains its largest value

when ai ∈ [ai, ai] is the largest within the requirement ai ≤ bi,
i.e., when
• either ai = ai ≤ bi,
• or ai = bi and thus, ai ≤ bi < ai.

Case when bi ≤ ai. In this case, only the denominator of the
ratio r′ contains ai. Specifically, the dependence of r′ on ai

takes the form
r′ =

m′

ai + Mi
,



where Mi is the same sum as above, and

m′ def=
n∑

j=1

min(aj , bj)

does not depend on ai, since m′ = bi + m′
i. This expression

for r′ clearly decreases with ai. Thus, in this case, the smallest
possible value of r′ is attained when ai ∈ [ai, ai] attains the
smallest possible value within the requirement bi ≤ ai, i.e.,
when
• either ai = ai and bi ≤ ai,
• or ai = bi and thus, ai < bi ≤ ai.

Synthesizing the analysis of the two cases. From the analysis
of the above two cases, we conclude that for each i, we have
three possibilities:
• ai = ai ≤ bi;
• ai = bi ≥ bi; and
• ai = bi and ai ≤ bi ≤ ai.

Thus, we can conclude the following:
• when ai < bi, we cannot have the second and the third

possibilities and thus, we have ai = ai;
• when bi < ai, we cannot have the first and the third cases

and thus, we have ai = ai;
• in the remaining cases, when ai ≤ bi ≤ ai, we must have

the third possibility and thus, ai = bi.
Thus, we arrive at the following algorithm.

V. ALGORITHM FOR COMPUTING d⊆
Description of the algorithm. For every i from 1 to n, we
select the following value ai ∈ [ai, ai]:
• when ai < bi, we select ai = ai;
• when bi < ai, we select ai = ai;
• when ai ≤ bi ≤ bi, we select ai = bi.

Using the selected values ai, we compute the desired value
d⊆ as

d⊆ =

n∑
i=1

min(ai, bi)

n∑
i=1

ai

.

Computational complexity of this algorithm. Selecting ai

requires linear time, and computing d⊆ also requires linear
time, so overall the algorithm requires linear time O(n).

VI. COMPUTING d=: ANALYSIS OF THE PROBLEM

When is the ratio d= =
∑

min(ai, bi)∑
max(ai, bi)

the smallest? Let

us pick an index i; for this i, either ai ≤ bi or bi ≤ ai.
In the first case ai ≤ bi, we have min(ai, bi) = ai and

max(ai, bi) = bi, so the ratio d= takes the form

d= =
ai + m=

i

bi + M=
i

,

where m=
i

def=
∑
j 6=i

min(aj , bj) and M=
i

def=
∑
j 6=i

max(aj , bj) do

not depend on ai and bi.

The above expression d= increases with ai and decreases
with bi, so its smallest possible value is attained when ai is
the smallest possible and bi is the largest possible, i.e., when
ai = ai and bi = bi.

Similarly, for the case when ai ≥ bi, the smallest possible
value of d= is attained when ai = ai and bi = bi.

Thus, for each i, we have two possibilities:
• ai = ai, bi = bi, and ai ≤ bi; and
• ai = ai, bi = bi, and bi ≤ ai.

When the intervals [ai, ai] and [bi, bi] do not intersect, we only
have one of these possibilities:
• if ai < bi, then we have ai < bi and thus, ai = ai and

bi = bi; and
• if bi < ai, then we have bi < ai and thus, ai = ai and

bi = bi.
When the interval intersect, then, in principle, we have both
options:
• ai = ai and bi = bi, and
• ai = ai and bi = bi.

Which of them leads the smaller value of the similarity degree
d=? For example, when is the first option better? It is better if
the simultaneous replacing ai with ai and replacing bi with bi

increases the value of d=. The original value of d= is
m=

M=
,

where m= def=
n∑

j=1

min(aj , bj) and M= def=
n∑

j=1

max(aj , bj).

After the replacement,
• the numerator takes the new value m= + (bi − ai);
• the denominator takes the new value M= + (ai − bi);
• thus, the similarity degree takes the new value

m= + (bi − ai)
M= + (ai − bi)

.

Thus, the new value of the similarity degree is larger than the
original value if and only if

m=

M=
<

m= + (bi − ai)
M= + (ai − bi)

.

Multiplying both sides by both positive denominators and
canceling the common term m= · M= in both sides of the
resulting inequality, we conclude that

m= · (ai − bi) < M= · (bi − ai).

If ai < bi, then we swap these two values, it will not affect
the resulting similarity degree. After such swapping, we get
ai ≥ bi. Dividing both sides by positive numbers ai − bi and
M=, we conclude that

m=

M=
<

bi − ai

ai − bi

.

So, if the right-hand side ratio exceeds the ratio
m=

M=
, we get

ai = ai and bi = bi; otherwise, we get ai = ai and bi = bi.
Similarly to the computation of d⊆, it is sufficient to know

where the ratio
m=

M=
stands in comparison with different



values
bi − ai

ai − bi

. Thus, similarly to the computation of d⊆, we

arrive at the following algorithm.

VII. ALGORITHM FOR COMPUTING d=

Description of the algorithm. Before performing computa-
tions, for each i, we check whether ai < bi. If this inequality
is indeed satisfied, then we swap the corresponding intervals
[ai, ai] and [bi, bi]. After these swaps, we have ai ≥ bi for
all i.

Now come the actual computations. First, we divide n
indices into two groups:
• the group I− consists of all the indices i for which

bi < ai,

and
• the group I consisting of all remaining indices, i.e., of

all the indices i for which

bi ≥ ai.

For all i ∈ I , we compute the ratios

r=
i

def=
bi − ai

ai − bi

.

We then sort the indices i ∈ I in the increasing order of this
ratio. In the resulting new ordering, we have

r=
1 ≤ r=

2 ≤ . . . ≤ r=
k ,

where k is the number of elements in the group I .

We then compute m(0) =
n∑

i=1

bi and M (0) =
n∑

i=1

ai. For j

from 0 to k, we then compute

m(j+1) = m(j) + (aj+1 − bj+1);

M (j+1) = m(j) + (bj+1 − aj+1).

For all j from 0 to k + 1, we compute r(j) =
m(j)

M (j)
. The

smallest of these values r(j) is the desired smallest value d=.

Computational complexity of this algorithm. Similarly to
the algorithm for computing d⊆, this new algorithm requires

O(n) + . . . + O(n) + O(n · log(n)) = O(n · log(n))

computation steps.

VIII. COMPUTING d=: ANALYSIS OF THE PROBLEM

When is the ratio

d= =

n∑
i=1

min(ai, bi)

n∑
i=1

max(ai, bi)

the largest? Let us pick an index i; for this i, either ai ≤ bi

or bi ≤ ai.

For ai ≤ bi, the ratio d= takes the form

d= =
ai + m=

i

bi + M=
i

.

The above expression d= increases with ai and decreases with
bi, so its largest possible value is attained when ai is the largest
possible and bi is the smallest possible within the limitation
ai ≤ bi.

In other words, if ai ≤ bi, then we should take ai = ai and
bi = bi. In all other cases (i.e., when ai > bi), we should take
ai = bi. In this case, we have

d= =
ai + m=

i

ai + M=
i

,

with m=
i ≤ M=

i . We already know, from the analysis of d⊆,
that this expression increases with ai. Thus, its largest value
is attained when ai = bi attains the largest possible value, i.e.,
when ai = bi = min(ai, bi).

Similarly, when ai ≥ bi, the largest possible value of d= is
attained when ai is the smallest and bi is the largest – within
the constraint ai ≥ bi. So, if bi < ai, the maximum is attained
when ai = ai and bi = bi. In all other cases, the maximum is
attained when ai = bi = min(ai, bi).

Thus, depending on the relation between the intervals
[ai, ai] and [bi, bi], we get three possible situations:

• if the interval [ai, ai] is completely to the left of the
interval [bi, bi], i.e., if ai < bi, then ai < bi and thus,
in the optimal assignment, ai = ai and bi = bi;

• if the interval [ai, ai] is completely to the right of the
interval [bi, bi], i.e., if bi < ai, then bi < ai and thus, in
the optimal assignment, ai = ai and bi = bi;

• finally, if the intervals [ai, ai] and [bi, bi] intersect, then
in the optimal assignment, ai = bi = min(ai, bi), i.e.,
both ai and bi are equal to the upper endpoint of the
intersection interval.

As a result, we arrive at the following algorithm.

IX. ALGORITHM FOR COMPUTING d=

Description of the algorithm. For every i from 1 to n, we
select the following value ai ∈ [ai, ai] and bi ∈ [bi, bi]:
• when ai < bi, we select ai = ai and bi = bi;
• when bi < ai, we select ai = ai and bi = bi;
• in all other cases, we select ai = bi = min(ai, bi).

Using the selected values ai and bi, we compute the desired
value d= as

d= =

n∑
i=1

min(ai, bi)

n∑
i=1

max(ai, bi)
.

Computational complexity of this algorithm. Selecting ai

and bi requires linear time, and computing d= also requires
linear time, so overall the algorithm requires linear time O(n).



X. CONCLUSION

To adequately capture commonsense and expert reasoning,
we must, in particular, capture the ambiguous, imprecise
character of this reasoning. One of the most successful ways
to describe such reasoning is the technique of fuzzy sets, a
technique that generalizes the traditional set theoretic tech-
niques to situations in which for each element a, there is
a degree µA(a) ∈ [0, 1] to which this element belongs to
the set A (i.e, to which this element satisfies the property
that defines the set A). These degrees, in turn, can only be
determined with uncertainty, so in practice, we only know
intervals [µ

A
(a), µA(a)] of possible values of these degrees.

In other words, we practice, we only have an interval-valued
fuzzy set.

Among the most important concepts of set theory are
the notions of subsethood and equality. Thus, to extend set
theoretic techniques to fuzzy sets and interval-valued fuzzy
sets, it is desirable to be able to efficiently compute degrees
of subsethood and degrees of equality (similarity) for fuzzy
sets and for interval-valued fuzzy sets. There exist efficient
algorithms for computing these degrees for fuzzy sets. In this
paper, we showed that these algorithms can be extended to a
more realistic case of interval-valued fuzzy sets.
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APPENDIX

Let us provide an alternative probabilistic justification of the
above formulas for the degrees of subsethood and similarity.

Probabilistic justification of the formula for the degree
of subsethood. Let us start with the degree of subsethood.
From the probabilistic viewpoint, A is a subset of B if and
only the conditional probability P (B |A) that B holds under
the condition that A holds is equal to 1. Thus, we can view
this conditional probability P (B |A) as the desired degree of
subsethood.

By definition of conditional probability, we can describe this
probability as

P (B |A) =
P (A ∩B)

P (A)
.

How do we get these probabilities?
For finite crisp sets, it is reasonable to assume that all the

elements of the universe of discourse are equally probable;
see, e.g., [2]. In this case, the probability P (A) of a set A is
simply proportional to the number of elements |A| in this set.

Thus, for finite crisp sets, we get the exact same ratio
|A ∩B|
|A

as before.
How can we extend this idea to the fuzzy case? One

reasonable way to gauge the values µA(x) of the membership
function is to poll experts and to select, as µA(x), the
proportion of experts who believe that the value x indeed
satisfies the property A [3], [9]. In this case, µA(x) is the
probability that, according to a randomly selected expert, the
value x satisfies the corresponding property.

The above description can be reformulated in more mathe-
matical term. Every expert has a set of values that, according
to this expert’s belief, satisfy the property A. We consider
the experts to be equally valuable, so these sets are equally
probable.

Thus, we have, in effect, a probability distribution on the
class of all possible sets. Similarly to the fact that the proba-
bility distribution on the set of all possible numbers is called
a random number, the probability distribution on the class of
all possible sets is called a random set. Thus, a membership
function µA(x) can be interpreted as the probability that a
given element x belongs to the random set.

This interpretation of fuzzy sets as random sets has been
known and used for several decades; see, e.g., [8] and refer-
ences therein.

A fuzzy set means, in effect, that instead of a deterministic
set, we have a random set, i.e., that we have a probability
measure on the class of all possible sets. Thus, it is reasonable
to describe the probability P (A) as the probability that a
random element x belongs to the corresponding random set.
Due to the formula of full probability, this probability can be
described as the integral P (A) =

∑
x

PA(x ∈ S) · p(x), where

• PA(x ∈ S) is the probability that a given element x
belongs to the corresponding random set, and

• p(x) is the probability of the element x.



According to the above random set interpretation of a fuzzy
set, the probability PA(x ∈ S) that a given element x belongs
to the randomly selected set is equal to the corresponding
value of the membership function µA(x). We also know that
all the probabilities p(x) are the same: p(x) = c for some
constant c. Thus, the desired probability has the form P (A) =
c ·∑

x
µA(x).

Similarly, the probability P (A ∩B) is equal to

P (A ∩B) = c ·
∑

x

µA∩B(x).

Therefore, the desired ratio

P (B |A) =
P (A ∩B)

P (A)

is equal to

P (B |A) =

∑
x

µA∩B(x)
∑
x

µA(x)
,

i.e., to

P (B |A) =

n∑
i=1

min(ai, bi)

n∑
i=1

ai

.

So, the above formula for the degree of subsethood is indeed
justified.

Probabilistic justification of the formula for the degree of
similarity. The sets A and B are equal if every element that
belongs to one of them belongs to both. In other words, A = B
means that every element of the union A∪B also belongs to
the intersection A ∩ B. From the probabilistic viewpoint, the
sets A and B are equal if the conditional probability

P (A ∩B |A ∪B) =
P (A ∩B)
P (A ∪B)

is equal to 1. Thus, we can view this conditional probability
as the desired degree of similarity.

For fuzzy sets, we get

P (A ∩B) = c ·
∑

x

µA∩B(x)

and
P (A ∪B) = c ·

∑
x

µA∪B(x).

Thus, the desired ratio takes the form

P (A ∩B |A ∪B) =
c ·∑

x
µA∩B(x)

c ·∑
x

µA∪B(x)
=

n∑
i=1

min(ai, bi)

n∑
i=1

max(ai, bi)
.

Thus, the above formula for the degree of similarity has also
been justified.


