
Choquet Integrals and OWA Criteria as a
Natural (and Optimal) Next Step After Linear

Aggregation: A New General Justification

François Modave, Martine Ceberio, and Vladik Kreinovich

Department of Computer Science
University of Texas at El Paso, El Paso, TX 79968, USA,

{fmodave,mceberio,vladik}@utep.edu

Abstract. In areas ranging from multi-criteria decision making to multi-
agent decision making, it is necessary to aggregate (combine) utility val-
ues corresponding to several criteria and/or several agents. The simplest
way to combine these criteria is to use linear aggregation. In many practi-
cal situations, linear aggregation does not adequately describe the actual
decision making process, so non-linear aggregation is needed.
From the purely mathematical viewpoint, the next natural step after
linear functions is the use of quadratic functions, followed by cubic etc.
However, in decision making, different non-linearities are usually more
adequate, non-linearities like OWA or Choquet integral that use min
and max in addition to linear combinations. In this paper, we explain
the empirically observed advantage of such functions by proving that
under reasonable conditions, such functions are indeed optimal non-linear
aggregations.

1 Formulation of the Problem

Traditional approach to decision making: brief reminder. In the tradi-
tional approach to decision making, an agent selects an alternative which is the
most beneficial to this agent. In order to understand which alternative would
be preferred by the agent, it is necessary to describe the agent’s preferences in
precise terms.
How to describe preferences: general idea. The possibility to describe
preferences in precise terms comes from the fact that a decision maker can always
decide which of the two alternatives is better (preferable). Thus, if we provide
a continuous scale of alternatives, from a very bad to a very good one, then for
each alternative in the middle, there should be an alternative on this scale which
is, to this decision maker, equivalent to the given one.
How to describe preferences: specific ideas. Such a scale can be easy
constructed as follows. We select two alternatives:

– a very negative alternative A0; e.g., an alternative in which the decision
maker loses all his money (and/or loses his health as well), and

2

– a very positive alternative A1; e.g., an alternative in which the decision maker
wins several million dollars.

Now, for every value p ∈ [0, 1], we can consider a lottery in which we get A1 with
probability p and A0 with the remaining probability 1− p. This probability will
be denoted by A(p).

For p = 1, the probability of the unfavorable outcome A0 is 0, so the lottery
A(1) simply means the very positive alternative A1. Similarly, for p = 0, the
probability of the favorable outcome A1 is 0, so the lottery A(0) simply means
the very negative alternative A0. The larger the probability p, the more prefer-
able the lottery A(p). Thus, the corresponding lotteries A(p) form a continuous
1-D scale ranging from the very negative alternative A0 to the very positive
alternative A1.
The resulting notion of utility. Practical alternatives are usually better than
A(0) = A0 but worse than A(1) = A1: A(0) < A < A(1). Thus, for each practical
alternative A, there exists a probability p ∈ (0, 1) for which the lottery A(p) is,
to this decision maker, equivalent to A: A(p) ∼ A. This “equivalent” probability
p is called the utility of the alternative A and denoted by u(A).
How can we actually find the value of this utility u(A)? We cannot
just compare A with different lotteries A(p) and wait until we get a lottery for
which A(p) ∼ A: there are many different probability values, so such a compar-
ison would require an impractically long time. However, there is an alternative
efficient way of determining u(A) which is based on the following bisection pro-
cedure.

The main idea of this procedure is to produce narrower and narrower intervals
containing the desired value u(A). In the beginning, we only know that u(A) ∈
[0, 1], i.e., we know that u(A) ∈ [u, u] with u = 0 and u = 1. Let us assume that
at some iteration of this procedure, we know that u(A) ∈ [u, u], i.e., that A(u) ≤
A ≤ A(u). To get a narrower interval, let us take the midpoint m

def=
u + u

2
of

the existing interval and compare A(m) with A.

– If A is better than A(m) (A(m) ≤ A), this means that m ≤ u(A) and thus,
that the utility u(A) belongs to the upper half-interval [m,u].

– If A is worse than A(m) (A ≤ A(m)), this means that u(A) ≤ m and thus,
that the utility u(A) belongs to the lower half-interval [u,m].

In both cases, we get a new interval containing u(A) whose width is the half of
the width of the interval [u, u]. We start with an interval of width 1. Thus, after
k iterations, we get an interval [u, u] of width 2−k that contains u(A). In this
case, both endpoints u and u are 2−k-approximations to u(A). In particular:

– to obtain u(A) with accuracy 1% = 0.01, it is sufficient to perform 7 itera-
tions: since 2−7 = 1/128 < 0.01;

– to obtain u(A) with accuracy 0.1% = 0.001, it is sufficient to perform 10
iterations: since

2−10 = 1/1024 < 0.001;

3

– to obtain u(A) with accuracy 10−4% = 10−6, it is sufficient to perform 20
iterations: since

2−20 = 1/(1024)2 < 10−6;

– in general, to obtain u(A) with accuracy ε, it is sufficient to perform ≈
− log2(ε) iterations.

The numerical value of the utility depends on the choice of extreme
alternatives A0 and A1. In our definition, the numerical value of the utility
depends on the selection of the alternatives A0 and A1: e.g., A0 is the alternative
whose utility is 0 and A1 is the alternative whose utility is 1. What if we use a
different set of alternatives, e.g., A′0 < A0 and A′1 > A1?

Let A be an arbitrary alternative between A0 and A1, and let u(A) be its
utility with respect to A0 and A1. In other words, we assume that A is equivalent
to the lottery in which:

– we have A1 with probability u(A), and
– we have A0 with probability 1− p.

In the scale defined by the new alternatives A′0 and A′1, let u′(A0), u′(A1), and
u′(A) denote the utilities of A0, A1, and A. This means, in particular:

– that A0 is equivalent to the lottery in which we get A′1 with probability
u′(A0) and A′0 with probability 1− u′(A0); and

– that A1 is equivalent to the lottery in which we get A′1 with probability
u′(A1) and A′0 with probability 1− u′(A1).

Thus, the alternative A is equivalent to the compound lottery, in which

– first, we select A1 or A0 with probabilities u(A) and 1− u(A), and then
– depending on the first selection, we select A′1 with probability u′(A1) or

u′(A0) – and A′0 with the remaining probability.

As the result of this compound lottery, we get either A′0 or A′1. The probability
p of getting A′1 in this compound lottery can be computed by using the formula
of full probability

p = u(A) · u′(A1) + (1− u(A)) · u′(A0) =

u(A) · (u′(A1)− u′(A0)) + u′(A0).

So, the alternative A is equivalent to a lottery in which we get A′1 with probability
p and A′0 with the remaining probability 1−p. By definition of utility, this means
that the utility u′(A) of the alternative A in the scale defined by A′0 and A′1 is
equal to this value p:

u′(A) = u(A) · (u′(A1)− u′(A0)) + u′(A0).

So, changing the scale means a linear re-scaling of the utility values:

u(A) → u′(A) = a · u(A) + b

4

for some a = u′(A1)− u′(A0) > 0 and b = u′(A0).
Vice versa, for every a > 0 and b, one can find appropriate events A′0 and A′1

for which the re-scaling has exactly these values a and b. In other words, utility
is defined modulo an arbitrary (increasing) linear transformation.

Utility of an action: a derivation of the expected utility formula. What
if an action leads to alternatives a1, . . . , am with probabilities p1, . . . , pm? Sup-
pose that we know the utility ui = u(ai) of each of the alternatives a1, . . . , am.
By definition of the utility, this means that for each i, the alternative ai is equiv-
alent to the lottery A(ui) in which we get A1 with probability ui and ai with
probability 1 − ui. Thus, the results of the action are equivalent to the “com-
pound lottery” in which, with the probability pi, we select a lottery A(ui). In
this compound lottery, the results are either A1 or A0. The probability p of get-
ting A1 in this compound lottery can be computed by using the formula for full
probability:

p = p1 · u1 + . . . + pm · um.

Thus, the action is equivalent to a lottery in which we get A1 with probability p
and A0 with the remaining probability 1− p. By definition of utility, this means
that the utility u of the action in question is equal to

u = p1 · u1 + . . . + pm · um.

In statistics, the right-hand of this formula is known as the expected value. Thus,
we can conclude that the utility of each action with different possible alternatives
is equal to the expected value of the utility; see, e.g., [3–5].

Need to combine utilities: case of multi-criterion decision making. In
most practical situations, we need to make a decision based on several different
criteria. For example, a house can be characterized by its location, size, cost,
age, etc. Each of these criteria can be described by a numerical characteristic.
For each of these characteristic xi, the above algorithm can describe the value of
the utility ui(xi) corresponding to this characteristic. Finding a single value of
the utility ui(xi) with a given accuracy ε > 0 requires (as we have mentioned) a
finite number of questions c ≈ − log2(ε) to ask the decision maker. Thus, if we
consider N different values of this characteristic xi, we need c ·N questions.

These 1-D utility functions enable us only to compare the alternatives char-
acterized by a single characteristic xi. In practice, we usually a large number M
of characteristics x1, . . . , xM describing each alternative. To adequately present
the preference between situations described by these multiple characteristics, we
must describe NM different utility values u(x1, . . . , xM) corresponding to NM

possible combinations (x1, . . . , xM). The number of such values grows exponen-
tially with M ; so, for large M , it is no longer feasible to ask that many question
to the decision maker.

Instead, we can

– ask the decision maker to describe his or her preferences corresponding to
each of the M characteristics;

5

– use the answers to the corresponding questions to form M utility functions
u1(x1), . . . , uM (xM) corresponding to M characteristics x1, . . . , xM ; and
then

– combine these N utility functions into a single function describing the deci-
sion maker’s preference:

u(x1, . . . , xM) ≈ f(u1(x1), . . . , uM (xM))

for an appropriate aggregation function f(u1, . . . , uM).

A natural question is: What aggregation function should we choose? This is the
question that we will be analyzing and discussing in this paper.

Need to combine utilities: case of multi-agent decision making. Up
to now, we have considered situations in which one person makes a decision.
In practice, decisions are usually made by a group of people. To find out the
corresponding “collective utility” of each alternative, we must therefore ask the
group to make selections based on their joint preference. Each group decision
requires a lot of discussions, and thus, a large amount of time. When we have
a large number of alternatives, the overall time needed to gauge the collective
utility values becomes impractically large.

Alternatively, we can try:

– interview each of M decision makers separately, and come up with the cor-
responding utility functions u1(x), . . . , uM (x); and then

– combine the corresponding utility functions into a single function character-
izing the overall utility:

u(x) ≈ f(u1(x), . . . , uM (x)).

Here, the same natural question arises: What aggregation function should we
choose?

Simplest case: linear combination. The traditional approach to aggregation
is based on the following two facts:

– first, small changes in the values of the characteristics lead to small changes
in individual and joint utilities; it is therefore reasonable to assume that the
aggregation functions are smooth;

– second, we are mostly interested in comparing similar alternatives – because
these are the most difficult to compare; thus, we need to only consider the
values of the aggregation function f(u1, . . . , uM) in a small area.

It is well known that on a small domain, each smooth function is well approxi-
mated by a linear function – the sum of its constant and linear terms in Taylor
expansion. In geometric terms, the smooth graph of the aggregation function can
be approximated by its tangent hyperplane – which can be viewed as a graph
of some linear function. On the domain of linear size δ, the accuracy of this
approximation is determined by the first ignored terms in the Taylor expansion

6

– quadratic terms O(δ2). Thus, the smaller the domain, the more accurate the
linear approximation.

In this linear approximation, the aggregation function takes the form

f(u1, . . . , uM) = a0 + a1 · u1 + . . . + aM · uM

for some coefficients a0, a1, . . . , aM . We have mentioned earlier that utility is
defined modulo a starting point, so we can ignore a0 and conclude that the
aggregation is simply a weighted linear combination of component utility values:

f(u1, . . . , uM) = a1 · u1 + . . . + aM · uM .

Need to go beyond linear combination. A linear function is often a good
approximation to a general smooth function, but it is still only an approximation.
To get a more adequate representation of the decision maker’s preferences, we
must go beyond linear functions.

A natural question is: how can we expand the class of linear aggregation
functions to get a better representation of decision maker’s preferences?

Seemingly natural idea: quadratic aggregation functions. Based on the
above justification of linear functions – as the sum of 0-th and 1-st order terms
in the Taylor expansion – it is reasonable to expect that the reasonable next
approximation would include quadratic aggregation functions – followed by cubic
etc.

Empirical fact: min- and max-using aggregation functions are more
adequate. It turns out that in decision making, non-quadratic non-linearities
are usually more adequate, namely, non-linearities like OWA [7] or Choquet
integral [2] that use min and max in addition to linear combinations.

For example, the general OWA combination of two utility values has the form

f(u1, u2) = w1 ·min(u1, u2) + w2 ·max(u1, u2).

Similarly, the general OWA combination of three utility values has the form

f(u1, u2, u3) = w1 ·min(u1, u2, u3)+

w2 ·max(min(u1, u2), min(u1, u3), min(u2, u3))+

w3 ·max(u1, u2, u3).

What we plan to do. In this paper, we explain the empirically observed
advantage of such functions.

7

2 First Explanation: Why Quadratic Aggregation
Functions are Not Very Adequate

Scale invariance: reminder. To understand why quadratic functions are not
very adequate, it is sufficient to recall that the utility is defined modulo two
types of transformations: changing a starting point u → u + b and changing a
scale u → λ · u for some λ > 0. In the previous section, we only considered the
shift u → u + b.

It is also reasonable to consider the re-scaling u → u′ = λ · u. Namely, the
aggregation operation should not depend on which “unit” (i.e., which extreme
event A1) we use to describe utility.
Linear aggregation functions are scale-invariant. The scale-“independence”
holds for the above linear combination. Indeed, on the one hand,

– suppose that we start with utility values u1, . . . , uM ;
– to these values, we apply the above linear aggregation function and get the

resulting overall utility u = a1 · u1 + . . . + aM · uM .

On the other hand,

– we can express the same utility values in a new scale, as

u′1 = λ · u1, . . . , u
′
M = λ · uM ;

– then, we use the same aggregation function to combine the new utility values;
as a result, we get

u′ = a1 · u′1 + . . . + aM · u′M .

Substituting the expressions u′i = λ · ui into this formula, we conclude that

u′ = a1 · λ · u1 + . . . + aM · λ · uM = λ · (a1 · u1 + . . . + aM · uM) = λ · u.

In other words, the new aggregated value u′ is exactly the old value u – but
described in the new scale.
Scale invariance: a natural requirement on an aggregation function.
In view of the above arguments, it is natural to require that in general, the
aggregation function should be invariant w.r.t. the same re-scalings. Specifically,
we require that the utility

u′ = f(u′1, . . . , u
′
M) = f(λ · u1, . . . , λ · uM)

reflect the same degree of preference as the utility u = f(u1, . . . , uM) but in a
different scale: u′ = λ · u, i.e.,

f(λ · u1, . . . , λ · uM) = λ · f(u1, . . . , uM).

Comment. In mathematics, such functions are called homogeneous (of first de-
gree).
Why quadratic functions are not very adequate aggregation operators.
Now, we are ready to explain why min and max are adequate in describing a
standard multi-criterion, while quadratic functions are not:

8

– min and max are homogeneous functions, while
– a generic quadratic function, e.g., a function u = u2

1 are not homogeneous.

Remaining problem. The scaling idea

– explains why quadratic functions are not very adequate, but
– it does not explain why necessarily aggregation functions consisting of min,

max, and linear combinations are empirically the best – there are many dif-
ferent homogeneous functions, why are not these other operations optimal?

3 Which Aggregation Operations Are the Best?

General idea: we need fastest-to-compute aggregation functions. As
we have mentioned, one of the reasons why we need aggregation operations in
the first place is that a straightforward determination of the multi-dimensional
utility function requires too long a time. Therefore, when we select an approxi-
mating family for aggregation operations, it is reasonable to select approximating
functions which are the fastest to compute.

We need parallelization. One well-known way to speed up computations is
to perform them in parallel on several computers. In a parallel computer:

– first, we perform some elementary step(s) in parallel;
– then, we perform some other elementary step(s) in parallel;
– . . .
– finally, we perform the last elementary step(s) in parallel.

How to speed up parallel computations. Thus, to speed up computations,
we must:

– first, select elementary steps which are the fastest to compute, and
– select a computation steps with the smallest possible number of sequential

operations.

Selection of the fastest elementary operations. The fastest computer op-
erations are the ones which are hardware supported, i.e., the ones for which the
hardware has been optimized. In modern computers, the hardware supported
operations with numbers include elementary arithmetic operations (+, −, ·, /,
etc.), and operations min and max.

In the standard (digital) computer (see, e.g., [1])

– addition of two n-bit numbers requires, in the worst case, 2n bit operations:
n to add corresponding digits, and n to add carries;

– multiplication, in the worst case, means n additions – by each bit of the
second factor; so, we need O(n2) bit operations;

– division is usually performed by trying several multiplications, so it takes
even longer than multiplication;

9

– finally, min and max can be performed bit-wise and thus, require only n bit
operations.

Thus, the fastest elementary operations are addition (or, more generally, linear
combination), min, and max.

Thus, the optimal (fastest-to-compute) aggregation functions must be com-
positions of such fast operations.

Conclusion: we have (almost) justified OWA- and Choquet-type op-
erations. Thus, the optimal aggregation operations are superpositions of linear
functions, min, and max – i.e., exactly the operations that are empirically the
best.

Remaining questions. Strictly speaking, the above conclusions says that if it
is possible to approximate an arbitrary homogeneous functions by a composition
of such elementary operations, then such compositions indeed lead to the fastest-
to-compute aggregation functions. Thus, we need to show that such compositions
are indeed universal approximators for homogeneous functions.

It is also worth mentioning that the computation time of parallel computa-
tions depends not only on the time of each elementary operation, but also on
the number of sequential steps (computation layers): the relative advantage of
fast elementary operations may be eliminated if we need too many sequential
steps. Thus, it is important to find our how many sequential steps we need for
the desired approximation.

Let us start answering these questions.

4 Definitions and the Main Result

Definition 1. A function f(x1, . . . , xn) is called homogeneous if for every x1,
. . . , xn and for every λ > 0, we have

f(λ · x1, . . . , λ · xn) = λ · f(x1, . . . , xn).

Definition 2.

– By an elementary operation, or a function computable in one step, we mean
one of the following functions:
• a linear function f(x1, . . . , xn) = a1 · x1 + . . . + an · xn;
• a minimum function f(x1, . . . , xn) = min(xi1 , . . . , xim); and
• a maximum function f(x1, . . . , xn) = max(xi1 , . . . , xim).

– We say that a function f(x1, . . . , xn) is computable in k steps if it has a
form

f(x1, . . . , xn) = g(h1(x1, . . . , xn), . . . , hm(x1, . . . , xn)),

where the function g is computable in one step, and the functions h1(x1, . . . , xn),
. . . , hm(x1, . . . , xn) are computable in k − 1 steps.

10

Comment. By induction over k, one can easily prove that all thus computable
functions are homogeneous.
Examples.

– a linear combination is computable in 1 step;
– an OWA combination of two values is computable in 2 steps;
– a general OWA operation is computable in 2 steps.

Definition 3. Let k > 0 be a positive integer. We say that k-layer computations
have a universal approximation property for homogeneous functions if for every
continuous homogeneous function f(x1, . . . , xn), and for every two numbers ε >

0 and ∆ > 0, there exists a function f̃(x1, . . . , xn) which is computable in k

steps and for which |f(x1, . . . , xn) − f̃(x1, . . . , xn)| ≤ ε for all x1, . . . , xn for
which |xi| ≤ ∆ for all i.
Theorem 1. 3-layer computations have a universal approximation property for
homogeneous functions.
Theorem 2.

– 1-layer computations do not have a universal approximation property for
homogeneous functions;

– 2-layer computations do not have a universal approximation property for
homogeneous functions.

Comment. So, by using the above elementary operations, we can compute an
arbitrary homogeneous function with a given accuracy in only 3 steps. This
is actually exactly as many steps as we need to compute OWA or Choquet
aggregations; thus, these empirically successful aggregation operations are indeed
as fast as possible – and in this sense optimal.

5 Proof of Theorems 1 and 2

1. Before we start proving, let us notice that the values of the functions

min(xi1 , . . . , xim)

and max(xi1 , . . . , xim) depend on the order between the values x1, . . . , xn. There
are n! possible orders, so we can divide the whole n-dimensional space of all
possible tuples (x1, . . . , xn) into n! zones corresponding to these different orders.

2. In each zone, an elementary function is linear:

– a linear function is, of course, linear;
– a minimizing function min(xi1 , . . . , xim) is simply equal to the variable xik

which is the smallest in this zone and is, thus, linear;
– a maximizing function max(xi1 , . . . , xim) is simply equal to the variable xik

which is the largest in this zone and is, thus, also linear.

11

3. If a function f(x1, . . . , xn) can be approximated, with arbitrary accuracy,
by functions from a certain class, this means that f(x1, . . . , xn) is a limit of
functions from this class.
4. Functions computable in 1 step are linear in each zone; thus, their limits are
also linear. Since some homogeneous functions are non-linear, we can thus con-
clude that functions computable in 1 step do not have a universal approximation
property for homogeneous functions.
5. Let us now consider functions computable in 2 steps, i.e., functions of the type

f(x1, . . . , xn) = g(h1(x1, . . . , xn), . . . , hm(x1, . . . , xn)),

where g and hi are elementary functions.
Since there are three types of elementary functions, we have three options:

– g(x1, . . . , xm) is a linear function;
– g(x1, . . . , xm) is a minimizing function; and
– g(x1, . . . , xm) is a maximizing function.

Let us consider these three options one by one.
5.1. Let us start with the first option, when g(x1, . . . , xm) is a linear function.
Since on each zone, each elementary function hi is also linear, the composition
f(x1, . . . , xn) is linear on each zone.
5.2. If g(x1, . . . , xm) is a minimizing function, then on each zone, each hi is linear
and thus, the composition f(x1, . . . , xn) is a minimum of linear functions. It is
known that minima of linear functions are concave; see, e.g., [6]. So, within this
option, the function f(x1, . . . , xn) is concave.
5.3. If g(x1, . . . , xm) is a maximizing function, then on each zone, each hi is
linear and thus, the composition f(x1, . . . , xn) is a maximum of linear functions.
It is known that maxima of linear functions are convex; see, e.g., [6]. So, within
this option, the function f(x1, . . . , xn) is convex.
6. In each zone, functions computable in 2 steps are linear, concave, or convex.
The class of all functions approximable by such 2-step computable functions is
the class of limits (closure) of the union of the corresponding three classes: of
linear, concave, and convex sets. It is known that the closure of the finite union
is the union of the corresponding closures. A limit of linear functions is always
linear, a limit of concave functions is concave, and a limit of convex functions is
convex. Thus, by using 2-step computable functions, we can only approximate
linear, concave, or convex functions. Since there exist homogeneous functions
which are neither linear nor concave or convex, we can thus conclude that 2-
step computable functions are not universal approximators for homogeneous
functions.
7. To complete the proof, we must show that 3-steps computable functions
are universal approximators for homogeneous functions. There are two ways
to prove it.
7.1. First, we can use the known facts about concave and convex functions [6]:

12

– that every continuous function on a bounded area can be represented as as
a difference between two convex functions, and

– that every convex function can be represented as a maximum of linear func-
tions – namely, all the linear functions which are smaller than this function.

This facts are true for general (not necessarily homogeneous) functions. For
homogeneous functions f(x1, . . . , xn), one can easily modify the existing proofs
and show:

– that every homogeneous continuous function on a bounded area can be rep-
resented as as a difference between two convex homogeneous functions, and

– that every homogeneous convex function can be represented as a maximum of
homogeneous linear functions – namely, all the homogeneous linear functions
which are smaller than this function.

Thus, we can represent the desired function f(x1, . . . , xn) as the difference
between two convex homogeneous functions f(x1, . . . , xn) = f1(x1, . . . , xn) −
f2(x1, . . . , xn). Each of these convex functions can be approximated by maxima
of linear functions and thus, by functions computable in 2 steps. Substraction
f1 − f2 adds the third step, so f(x1, . . . , xn) can indeed be approximated by
functions computable in 3 steps.

To prove that a function f(x1, . . . , xn) can be represented as a different be-
tween two convex functions, we can, e.g., first approximate it by a homogeneous
function which is smooth on a unit sphere

{(x1, . . . , xn) : x2
1 + . . . + x2

n = 1},
and then take f1(x1, . . . , xn) = k ·

√
x2

1 + . . . + x2
n for a large k. For smooth

functions, convexity means that the Hessian matrix – consisting of its second

derivatives
∂2f

∂xi∂xj
– is positive definite.

For sufficiently large k, the difference

f2(x1, . . . , xn) = f1(x1, . . . , xn)− f(x1, . . . , xn)

is also convex – since its second derivatives matrix is dominated by positive
definite terms coming from f1. Thus, the difference f1 − f2 = f is indeed the
desired difference.
7.2. Another, more constructive proof, is, for some δ′ > 0, to select a finite δ′-
dense set of points e = (e1, . . . , en) on a unit square. For each such point, we
build a 2-step computable function which coincides with f on the corresponding
ray {λ · (e1, . . . , en) : λ > 0}. This function can be obtained, e.g., as a minimum
of several linear functions which have the right value on this ray but change
drastically immediately outside this ray.

For example, let f0(x) be an arbitrary homogeneous linear function which
coincides with f(x) at the point e – and thus, on the whole ray. To construct the
corresponding linear functions, we can expand the vector e to an orthonormal
basis e, e′, e′′, etc., and take linear functions f0(x)+k ·(e′ ·x) and f0(x)−k ·(e′ ·x)

13

for all such e′ (and for a large k > 0). Then, the minimum of all these functions
is very small outside the ray.

We then take the maximum of all these minima – a 3-step computable func-
tion.

The function f(x1, . . . , xn) is continuous on a unit sphere and thus, uniformly
continuous on it, i.e., for every ε > 0, there is a δ such that δ-close value on
the unit sphere lead to ε-close values of f . By selecting appropriate δ′ and k
(depending on δ), we can show that the resulting maximum is indeed ε-close
to f .

The theorem is proven.

Acknowledgments

This work was supported in part by NSF grant HRD-0734825, by Grant 1 T36
GM078000-01 from the National Institutes of Health, by the Japan Advanced
Institute of Science and Technology (JAIST) International Joint Research Grant
2006-08, and by the Max Planck Institut für Mathematik.

References

1. Cormen, T.H., Leiserson, C. E., Rivest, R. L., Stein, C.: Introduction to Algorithms,
MIT Press, Cambridge, Massachusetts, 2001.

2. Grabisch, M., Murofushi, T., Sugeno, M. eds.: Fuzzy Measures and Integrals,
Physica-Verlag, Berlin-Heidelberg, 2000.

3. Keeney, R. L., Raiffa, H.: Decisions with Multiple Objectives, John Wiley and Sons,
New York, 1976.

4. Luce, R. D., Raiffa, H.: Games and Decisions: Introduction and Critical Survey,
Dover, New York, 1989.

5. Raiffa, H.: Decision Analysis, Addison-Wesley, Reading, Massachusetts, 1970.
6. Rockafeller, R. T.: Convex Analysis, Princeton University Press, Princeton, New

Jersey, 1970.
7. Yager, R. R., Kacprzyk, J., eds.: The Ordered Weighted Averaging Operators: Theory

and Applications, Kluwer, Norwell, Massachusetts, 1997,

