
Choquet Integrals and OWA Criteria as a
Natural (and Optimal) Next Step After Linear

Aggregation: A New General Justification

François Modave, Martine Ceberio, and Vladik Kreinovich

Department of Computer Science
University of Texas at El Paso, El Paso, TX 79968, USA,

{fmodave,mceberio,vladik}@utep.edu

Abstract. In multi-criteria decision making, it is necessary to aggregate
(combine) utility values corresponding to several criteria (parameters).
The simplest way to combine these values is to use linear aggregation.
In many practical situations, however, linear aggregation does not fully
adequately describe the actual decision making process, so non-linear
aggregation is needed.
From the purely mathematical viewpoint, the next natural step after
linear functions is the use of quadratic functions. However, in decision
making, a different type of non-linearities are usually more adequate than
quadratic ones: non-linearities like OWA or Choquet integral that use
min and max in addition to linear combinations. In this paper, we explain
the empirically observed advantage of such aggregation operations.

1 Introduction

One of the main purposes of Artificial Intelligence in general is to incorporate a
large part of human intelligent reasoning and decision-making into a computer-
based systems, so that the resulting intelligent computer-based systems help
users in making rational decisions. In particular, to help a user make a decision
among a large number of alternatives, an intelligent decision-making systems
should select a small number of these alternatives – alternatives which are of the
most potential interest to the user.

For example, with so many possible houses on the market, it is not realisti-
cally possible to have a potential buyer inspect all the house sold in a given city.
Instead, a good realtor tries to find out the buyer’s preferences and only show
him or her houses that more or less fit these preferences. It would be great to
have an automated system for making similar pre-selections.

To be able to make this selection, we must elicit the information about the
user preferences.

In principle, we can get a full picture of the user preferences by asking the user
to compare and/or rank all possible alternatives. Such a complete description
of user preferences may be sometimes useful, but in decision making applica-
tions, such an extensive question-asking defeats the whole purpose of intelligent
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decision-making systems – to avoid requiring that the the user make a large
number of comparisons.

The existing approach to this problem is called multi-criteria decision mak-
ing (MCDM). The main idea behind this approach is that each alternative is
characterized by the values of different parameters. For example, the buyer’s
selection of a house depends on the house’s size, on its age, on its geograph-
ical location, on the number of bedrooms and bathrooms, etc. The idea is to
elicit preferences corresponding to each of these parameters, and then to com-
bine these single-parameter preferences into a reasonable model for describing
the user’s choice.

In the standard decision making theory, preferences are characterized by as-
signing, to each alternative, a numerical value called its utility. In these terms, the
multi-criteria decision making approach means that we try to combine single-
variable utility values u1(x1), . . . , un(xn) characterizing the user’s preferences
over individual parameters x1, . . . , xn into a utility value u(x1, . . . , xn) that char-
acterizes the utility of an alternative described by the values (x1, . . . , xn).

In the first approximation, it makes sense simply to add the individual utility
values with appropriate weights, i.e., to consider linear aggregation

u(x1, . . . , xn) = w1 · u1(x1) + . . . + wn · un(xn).

In many practical situations, linear aggregation works well, but in some cases,
it leads to counterintuitive conclusions. For example, when selecting a house,
a user can assign certain weights to all the parameters characterizing different
houses, but the user may also has absolute limitations: e.g., a user with kids may
want a house with at least two bedrooms, and no advantages in location and
price would entice her to buy a one-bedroom house. To describe such reasonable
preferences, we must therefore go beyond linear aggregation functions.

From the purely mathematical viewpoint, the inadequacy of a linear model
is a particular example of a very typical situation. Often, when we describe
the actual dependence between the quantities in physics, chemistry, engineering,
etc., a linear expressions y = c0 + c1 · x1 + . . . + cn · xn is a very good first
approximation (at least locally), but to get a more accurate approximations, we
must take non-linearity into account. In mathematical applications to physics,
engineering, etc., there is a standard way to take non-linearity into account: if a
linear approximation is not accurate enough, a natural idea is to use a quadratic

approximation y ≈ a0+
n∑

i=1

ci·xi+
n∑

i=1

n∑
j=1

cij ·xi·xj ; if the quadratic approximation

is not sufficient accurate, we can use a cubic approximation, etc.; see, e.g., [3].
At first glance, it seems reasonable to apply a similar idea to multi-criteria

decision making and consider quadratic aggregation functions

u
def= u(x1, . . . , xn) = u0 +

n∑

i=1

wi · ui(xi) +
n∑

i=1

n∑

j=1

wij · ui(xi) · uj(xj).

Surprisingly, in contrast to physics and engineering applications, quadratic ap-
proximation do not work as well as approximations based on the use of piece-wise
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linear functions, such as the OWA operation u = w1 ·u(1) + . . .+wn ·u(n), where
u(1) = max(u1(x1), . . . , un(xn)) is the largest of n utility values ui(xi), u(2) is
the second largest, . . . , and u(n) = min(u1(x1), . . . , un(xn)) is the smallest of n
utility values; see, e.g., [9].

In our own research, we have applied OWA and we have also applied similar
piece-wise linear operations (based on the so-called Choquet integral [4]), and we
also got good results – better than quadratic approximations; see, e.g., [1] and
references therein. Similar results have been obtained by others. For quite some
time, why piece-wise approximations are better than quadratic ones remains a
mystery to us – and to many other researchers whom we asked this question.
Now, we finally have an answer to this question – and this answer is presented
in the current paper.

Thus, the paper provides a new justification of the use of piece-wise aggrega-
tion operations in multi-criteria decision making – a justification that explains
why these aggregation operations are better than the (seemingly more natural)
quadratic ones.

The structure of this paper is as follows. To explain our answer to the long-
standing puzzle, we need to recall the properties of the utility functions. The
needed properties of utility functions are described in Section 2. Readers who
are already well familiar with the standard decision making theory (and with
the corresponding properties of utility functions) can skip this section and pro-
ceed directly to Section 3. In Section 3, we explain why quadratic aggregation
operations are less adequate than OWA and Choquet operations: because the
basic properties of utility functions lead to the need for aggregation operations
to be scale-invariant; OWA and Choquet aggregations are scale-invariant, while
quadratic aggregations aren’t.

In Section 4, we explain that OWA and Choquet operations are, in some
reasonable sense, the most general ones: namely, crudely speaking, every scale-
invariant operation can be composed of linear combinations and min and max
operations. We also argue that the selection of linear operations, min, and max
as elementary operations is well justified from the computational viewpoint:
since they are the fastest possible scale-invariant operations. This justification
is presented in Section 5. The mathematical proofs are placed, for reader’s con-
venience, in a special Section 6. The last section contains conclusions.

2 Standard Decision Making Theory: A Brief Reminder

As we have mentioned earlier, to explain our answer to the long-standing puzzle,
we need to recall the properties of the utility functions. The needed properties
of utility functions are described in this section. Readers who are already well
familiar with the standard decision making theory (and with the corresponding
properties of utility functions) can skip this section and proceed directly to
Section 3.

To be able to describe decisions, we must have a numerical scale for describing
preferences. The traditional decision making theory (see, e.g., [5–7]) starts with
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an observation that such a scale can be naturally obtained by using probabilities.
Specifically, to design this scale, we select two alternatives:

– a very negative alternative A0; e.g., an alternative in which the decision
maker loses all his money (and/or loses his health as well), and

– a very positive alternative A1; e.g., an alternative in which the decision maker
wins several million dollars.

Based on these two alternatives, we can, for every value p ∈ [0, 1], consider a
randomized alternative L(p) in which we get A1 with probability p and A0 with
probability 1− p.

(It should be mentioned that in the standard decision making theory, ran-
domized alternatives like L(p) are also (somewhat misleadingly) called lotteries.
This name comes from the fact that a lottery is one of the few real-life examples
of randomized outcomes with known probabilities.)

In the two extreme cases p = 0 and p = 1, the randomized alternative L(p)
turns into one of the original alternatives: when p = 1, we get the favorable
alternative A1 (with probability 1), and when p = 0, we get the unfavorable
alternative A0. In general, the larger the probability p of the favorable alternative
A1, the more preferable is the corresponding randomized alternative L(p). Thus,
the corresponding randomized alternatives (“lotteries”) L(p) form a continuous
1-D scale ranging from the very negative alternative A0 to the very positive
alternative A1.

So, it is reasonable to gauge the preference of an arbitrary alternative A
by comparing it to different alternatives L(p) from this scale until we find A’s
place on this scale, i.e., the value p ∈ [0, 1] for which, to this decision maker,
the alternative A is equivalent to L(p): L(p) ∼ A. This value is called the utility
u(A) of the alternative A in the standard decision making theory.

In our definition, the numerical value of the utility depends on the selection
of the alternatives A0 and A1: e.g., A0 is the alternative whose utility is 0 and A1

is the alternative whose utility is 1. What if we use a different set of alternatives,
e.g., A′0 < A0 and A′1 > A1?

Let A be an arbitrary alternative between A0 and A1, and let u(A) be its
utility with respect to A0 and A1. In other words, we assume that A is equivalent
to the randomized alternative in which:

– we have A1 with probability u(A), and
– we have A0 with probability 1− p.

In the scale defined by the new alternatives A′0 and A′1, let u′(A0), u′(A1), and
u′(A) denote the utilities of A0, A1, and A. This means, in particular:

– that A0 is equivalent to the randomized alternative in which we get A′1 with
probability u′(A0) and A′0 with probability 1− u′(A0); and

– that A1 is equivalent to the randomized alternative in which we get A′1 with
probability u′(A1) and A′0 with probability 1− u′(A1).

Thus, the alternative A is equivalent to the compound randomized alternative,
in which
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– first, we select A1 or A0 with probabilities u(A) and 1− u(A), and then
– depending on the first selection, we select A′1 with probability u′(A1) or

u′(A0) – and A′0 with the remaining probability.

As the result of this two-stage process, we get either A′0 or A′1. The probability
p of getting A′1 in this two-stage process can be computed by using the formula
of full probability

p = u(A) · u′(A1) + (1− u(A)) · u′(A0) = u(A) · (u′(A1)− u′(A0)) + u′(A0).

So, the alternative A is equivalent to a randomized alternative in which we get
A′1 with probability p and A′0 with the remaining probability 1−p. By definition
of utility, this means that the utility u′(A) of the alternative A in the scale
defined by A′0 and A′1 is equal to this value p:

u′(A) = u(A) · (u′(A1)− u′(A0)) + u′(A0).

So, changing the scale means a linear re-scaling of the utility values:

u(A) → u′(A) = λ · u(A) + b

for λ = u′(A1)− u′(A0) > 0 and b = u′(A0).
Vice versa, for every λ > 0 and b, one can find appropriate events A′0 and A′1

for which the re-scaling has exactly these values λ and b. In other words, utility
is defined modulo an arbitrary (increasing) linear transformation.

The last important aspect of the standard decision making theory is its de-
scription of the results of different actions. Suppose that an action leads to al-
ternatives a1, . . . , am with probabilities p1, . . . , pm. We can assume that we have
already determined the utility ui = u(ai) of each of the alternatives a1, . . . , am.
By definition of the utility, this means that for each i, the alternative ai is equiv-
alent to the randomized alternative L(ui) in which we get A1 with probability ui

and A0 with probability 1− ui. Thus, the results of the action are equivalent to
the two-stage process in which, with the probability pi, we select a randomized
alternative L(ui). In this two-stage process, the results are either A1 or A0. The
probability p of getting A1 in this two-stage process can be computed by using
the formula for full probability: p = p1 · u1 + . . . + pm · um. Thus, the action is
equivalent to a randomized alternative in which we get A1 with probability p
and A0 with the remaining probability 1− p. By definition of utility, this means
that the utility u of the action in question is equal to

u = p1 · u1 + . . . + pm · um.

In statistics, the right-hand of this formula is known as the expected value. Thus,
we can conclude that the utility of each action with different possible alternatives
is equal to the expected value of the utility.
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3 Why Quadratic Aggregation Operations are Less
Adequate than OWA and Choquet Operations: An
Explanation

To adequately describe the decision maker’s preferences, we must be able, given
an alternative characterized by n parameters x1, . . . , xn, to describe the util-
ity u(x1, . . . , xn) of this alternative. To get a perfect description of the user’s
preference, we must elicit such a utility value for all possible combinations of
parameters. As we have mentioned in the Introduction, for practical values n,
it is not realistic to elicit that many utility values from a user. So, instead,
we elicit the user’s preference over each of the parameters xi, and then aggre-
gate the resulting utility values ui(xi) into an approximation for u(x1, . . . , xn):
u(x1, . . . , xn) ≈ f(u1, . . . , un), where ui

def= ui(xi).
We have also mentioned that in the first approximation, linear aggregation

operations f(u1, . . . , un) = a0 +
n∑

i=1

wi ·ui work well, but to get a more adequate

representation of the user’s preferences, we must go beyond linear functions.
From the purely mathematical viewpoint, it may seem that quadratic functions
f(u1, . . . , un) should provide a reasonable next approximation, but in practice,
piece-wise linear aggregation operations such as OWA (or Choquet integral)
provide a much more adequate description of expert preferences.

For example, for two parameters, the general OWA combination of two utility
values has the form

f(u1, u2) = w1 ·min(u1, u2) + w2 ·max(u1, u2).

Similarly, the general OWA combination of three utility values has the form

f(u1, u2, u3) = w1 ·min(u1, u2, u3)+

w2 ·max(min(u1, u2),min(u1, u3), min(u2, u3)) + w3 ·max(u1, u2, u3).

Let us show that this seemingly mysterious advantage of non-quadratic ag-
gregation operations can be explained based on the main properties of the utility
functions.

Indeed, as we have mentioned in Section 2, the utility is defined modulo two
types of transformations: changing a starting point u → u + b and changing a
scale u → λ · u for some λ > 0. It is therefore reasonable to require that the
aggregation operation should not depend on which “unit” (i.e., which extreme
event A1) we use to describe utility. Let us describe this requirement in precise
terms.

In the original scale,

– we start with utility values u1, . . . , un;
– to these values, we apply the aggregation operation f(u1, . . . , un) and get

the resulting overall utility u = f(u1, . . . , un).

On the other hand,
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– we can express the same utility values in a new scale, as u′1 = λ · u1, . . . ,
u′n = λ · un;

– then, we use the same aggregation function to combine the new utility values;
as a result, we get the resulting overall utility u′ = f(u′1, . . . , u

′
n).

Substituting the expressions u′i = λ · ui into this formula, we conclude that
u′ = f(λ · u1, . . . , λ · un). We require that the utility

u′ = f(u′1, . . . , u
′
n) = f(λ · u1, . . . , λ · un)

reflect the same degree of preference as the utility u = f(u1, . . . , un) but in a
different scale: u′ = λ · u, i.e.,

f(λ · u1, . . . , λ · un) = λ · f(u1, . . . , un).

It is worth mentioning that in mathematics, such functions are called ho-
mogeneous (of first degree). So, we arrive at the conclusion that an adequate
aggregation operation should be homogeneous.

This conclusion about the above mysterious fact. On the other hand, one
can show that linear aggregation operations and piece-wise linear aggregation
operations like OWA are scale-invariant.

Let us start with a linear aggregation operation f(u1, . . . , un) = w1 · u1 +
. . . + wn · un. For this operation, we get

f(λ · u1, . . . , λ · un) = w1 · (λ · u1) + . . . + wn · (λ · un) =

λ · (w1 · u1 + . . . + wn · un) = λ · f(u1, . . . , un).

Let us now consider the OWA aggregation operation f(u1, . . . , un) =
w1 · u(1) + . . . + wn · u(n), where u(1) is the largest of n values u1, . . . , un, u(2)

is the second largest, etc. If we multiply all the utility values ui by the same
constant λ > 0, their order does not change. In particular, this means that the
same value u(1) which was the largest in the original scale is the largest in the
new scale as well. Thus, its numerical value u′(1) can be obtained by re-scaling
u(1): u′(1) = λ · u(1). Similarly, the same value u(2) which was the second largest
in the original scale is the second largest in the new scale as well. Thus, its
numerical value u′(2) can be obtained by re-scaling u(2): u′(2) = λ · u(2), etc. So,
we have u′(i) = λ · u(i) for all i. Thus, for the OWA aggregation operation, we
have

f(λ ·u1, . . . , λ ·un) = w1 ·u′(1)+ . . .+wn ·u′(n) = w1 ·(λ ·u(1))+ . . .+wn ·(λ ·u(n)) =

λ · (w1 · u(1) + . . . + wn · u(n)) = λ · f(u1, . . . , un).

On the other hand, a generic quadratic operation is not homogeneous. Indeed,
a general quadratic operation has the form

f(u1, . . . , un) =
n∑

i=1

wi · ui +
n∑

i=1

n∑

j=1

wij · ui · uj .
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Here,

f(λu1, . . . , λun) =
n∑

i=1

wi · (λ · ui) +
n∑

i=1

n∑

j=1

wij · (λ · ui) · (λ · uj) =

λ ·
n∑

i=1

wi · ui + λ2 ·
n∑

i=1

n∑

j=1

wij · ui · uj .

On the other hand,

λ · f(u1, . . . , un) = λ ·
n∑

i=1

wi · ui + λ ·
n∑

i=1

n∑

j=1

wij · ui · uj .

The linear terms in the expressions f(λu1, . . . , λun) and λ·f(u1, . . . , un) coincide,
but the quadratic terms differ: the quadratic term in f(λu1, . . . , λun) differs
from the quadratic term in λ · f(u1, . . . , un) by a factor of λ. Thus, the only
possibility to satisfy the scale-invariance (homogeneity) requirement for all λ is
to have these differing quadratic terms equal to 0, i.e., to have wij = 0 – but in
this case the aggregation operation is linear. So, quadratic operations are indeed
not homogeneous – which explains whey they are less adequate in describing
user’s preferences than homogeneous operations like OWA or Choquet integral.

4 OWA and Choquet Operations Are, in Some
Reasonable Sense, the Most General Ones: A New
Result

In the previous section, we explained the empirical fact that in multi-criteria de-
cision making, OWA and Choquet operations lead to more adequate results than
seemingly natural quadratic aggregation operations. The explanation is that, due
to the known properties of the utility, it is reasonable to require that aggregation
operation be scale-invariant (homogeneous); OWA and Choquet operations are
scale-invariant but quadratic operations are not.

However, in principle, OWA and Choquet operations are just a few examples
of scale-invariant operations, so by itself, the above result does not explain why
OWA and Choquet operations are so successful and not any other scale-invariant
operation. In this section, we give such an explanation.

This explanation is based on the fact that OWA and Choquet operations
are compositions of linear functions, min, and max. In this section, we prove
that, crudely speaking, every scale-invariant operation can be composed of linear
functions and min and max operations.
Definition 1. A function f(x1, . . . , xn) is called homogeneous if for every x1,
. . . , xn and for every λ > 0, we have f(λ · x1, . . . , λ · xn) = λ · f(x1, . . . , xn).
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Definition 2. By a basic function, we mean one of the following functions:

– a linear function f(x1, . . . , xn) = w1 · x1 + . . . + wn · xn;
– a minimum function f(x1, . . . , xn) = min(xi1 , . . . , xim); and
– a maximum function f(x1, . . . , xn) = max(xi1 , . . . , xim).

We also say that basic functions are 1-level compositions of basic functions.
We say that a function f(x1, . . . , xn) is a k-level composition of basic func-
tions if f(x1, . . . , xn) = g(h1(x1, . . . , xn), . . . , hm(x1, . . . , xn)), where g is a basic
function, and the functions h1(x1, . . . , xn), . . . , hm(x1, . . . , xn) are (k− 1)-level
compositions of basic functions.

By induction over k, one can easily prove that all compositions of basic
functions are homogeneous. For example:

– a linear combination is a basic function;
– an OWA combination of two values is a 2-level composition of basic functions;
– a general OWA operation is a 3-level composition of basic functions.

It turns out that an arbitrary homogeneous function can be approximated by
appropriate 3-level compositions.
Definition 3. Let k > 0 be a positive integer. We say that k-level compositions
have a universal approximation property for homogeneous functions if for ev-
ery continuous homogeneous function f(x1, . . . , xn), and for every two numbers
ε > 0 and ∆ > 0, there exists a function f̃(x1, . . . , xn) which is a k-level com-
position of basic functions and for which |f(x1, . . . , xn)− f̃(x1, . . . , xn)| ≤ ε for
all x1, . . . , xn for which |xi| ≤ ∆ for all i.
Theorem 1. 3-level compositions have a universal approximation property for
homogeneous functions.

(As we mentioned in Section 1, for readers’ convenience, all the proofs are
located in the special Proofs section.)

A natural question is: do we need that many levels of composition? What is
we only use 1- or 2-level compositions? It turns out that in this case, we will
not get the universal approximation property – and thus, the 3 levels of OWA
operations is the smallest possible number.
Theorem 2.

– 1-layer computations do not have a universal approximation property for
homogeneous functions;

– 2-layer computations do not have a universal approximation property for
homogeneous functions.

5 Why Linear Operations, min, and max: A
Computational Justification

A natural question is: why should we select linear functions, min, and max as
basic functions? One possible answer is that these operations are the fastest to
compute, i.e., they require the smallest possible number of computational steps.
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Indeed, the fastest computer operations are the ones which are hardware
supported, i.e., the ones for which the hardware has been optimized. In modern
computers, the hardware supported operations with numbers include elementary
arithmetic operations (+, −, ·, /, etc.), and operations min and max.

In the standard (digital) computer (see, e.g., [2])

– addition of two n-bit numbers requires, in the worst case, 2n bit operations:
n to add corresponding digits, and n to add carries;

– multiplication, in the worst case, means n additions – by each bit of the
second factor; so, we need O(n2) bit operations;

– division is usually performed by trying several multiplications, so it takes
even longer than multiplication;

– finally, min and max can be performed bit-wise and thus, require only n bit
operations.

Thus, the fastest elementary operations are indeed addition (or, more generally,
linear combination), min, and max.

6 Proof of Theorems 1 and 2

1. Before we start proving, let us notice that the values of the functions
min(xi1 , . . . , xim) and max(xi1 , . . . , xim) depend on the order between the values
x1, . . . , xn. There are n! possible orders, so we can divide the whole n-dimensional
space of all possible tuples (x1, . . . , xn) into n! zones corresponding to these
different orders.
2. In each zone, a basic function is linear:

– a linear function is, of course, linear;
– a minimizing function min(xi1 , . . . , xim) is simply equal to the variable xik

which is the smallest in this zone and is, thus, linear;
– a maximizing function max(xi1 , . . . , xim) is simply equal to the variable xik

which is the largest in this zone and is, thus, also linear.

3. If a function f(x1, . . . , xn) can be approximated, with arbitrary accuracy,
by functions from a certain class, this means that f(x1, . . . , xn) is a limit of
functions from this class.
4. Basic functions are linear in each zone; thus, their limits are also linear in
each zone. Since some homogeneous functions are non-linear, we can thus con-
clude that basic functions do not have a universal approximation property for
homogeneous functions.
5. Let us now consider 2-level compositions of basic functions, i.e., functions of
the type f(x1, . . . , xn) = g(h1(x1, . . . , xn), . . . , hm(x1, . . . , xn)), where g and hi

are basic functions.
Since there are three types of basic functions, we have three options:

– it is possible that g(x1, . . . , xm) is a linear function;
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– it is possible that g(x1, . . . , xm) is a minimizing function; and
– it is possible that g(x1, . . . , xm) is a maximizing function.

Let us consider these three options one by one.
5.1. Let us start with the first option, when g(x1, . . . , xm) is a linear func-
tion. Since on each zone, each basic function hi is also linear, the composition
f(x1, . . . , xn) is linear on each zone.
5.2. If g(x1, . . . , xm) is a minimizing function, then on each zone, each hi is linear
and thus, the composition f(x1, . . . , xn) is a minimum of linear functions. It is
known that minima of linear functions are concave; see, e.g., [8]. So, within this
option, the function f(x1, . . . , xn) is concave.
5.3. If g(x1, . . . , xm) is a maximizing function, then on each zone, each hi is
linear and thus, the composition f(x1, . . . , xn) is a maximum of linear functions.
It is known that maxima of linear functions are convex; see, e.g., [8]. So, within
this option, the function f(x1, . . . , xn) is convex.
6. In each zone, 2-level compositions of basic functions are linear, concave, or
convex. The class of all functions approximable by such 2-level compositions is
the class of limits (closure) of the union of the corresponding three classes: of
linear, concave, and convex sets. It is known that the closure of the finite union
is the union of the corresponding closures. A limit of linear functions is always
linear, a limit of concave functions is concave, and a limit of convex functions
is convex. Thus, by using 2-level compositions, we can only approximate linear,
concave, or convex functions. Since there exist homogeneous functions which are
neither linear nor concave or convex, we can thus conclude that 2-level compo-
sitions are not universal approximators for homogeneous functions.
7. To complete the proof, we must show that 3-level compositions are universal
approximators for homogeneous functions. There are two ways to prove it.
7.1. First, we can use the known facts about concave and convex functions [8]:

– that every continuous function on a bounded area can be represented as as
a difference between two convex functions, and

– that every convex function can be represented as a maximum of linear func-
tions – namely, all the linear functions which are smaller than this function.

These facts are true for general (not necessarily homogeneous) functions. For
homogeneous functions f(x1, . . . , xn), one can easily modify the existing proofs
and show:

– that every homogeneous continuous function on a bounded area can be rep-
resented as as a difference between two convex homogeneous functions, and

– that every homogeneous convex function can be represented as a maximum of
homogeneous linear functions – namely, all the homogeneous linear functions
which are smaller than this function.

Thus, we can represent the desired function f(x1, . . . , xn) as the difference
between two convex homogeneous functions f(x1, . . . , xn) = f1(x1, . . . , xn) −
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f2(x1, . . . , xn). Each of these convex functions can be approximated by max-
ima of linear functions and thus, by 2-level compositions. Substraction f1 − f2

adds the third level, so f(x1, . . . , xn) can indeed be approximated by 3-level
compositions.

To prove that a function f(x1, . . . , xn) can be represented as a different be-
tween two convex functions, we can, e.g., first approximate it by a homogeneous
function which is smooth on a unit sphere {(x1, . . . , xn) : x2

1 + . . . + x2
n = 1},

and then take f1(x1, . . . , xn) = k ·
√

x2
1 + . . . + x2

n for a large k. For smooth
functions, convexity means that the Hessian matrix – consisting of its second

derivatives
∂2f

∂xi∂xj
– is positive definite.

For sufficiently large k, the difference

f2(x1, . . . , xn) = f1(x1, . . . , xn)− f(x1, . . . , xn)

is also convex – since its second derivatives matrix is dominated by positive
definite terms coming from f1. Thus, the difference f1 − f2 = f is indeed the
desired difference.
7.2. Another, more constructive proof, is, for some δ′ > 0, to select a finite
δ′-dense set of points e = (e1, . . . , en) on a unit square. For each such point,
we build a 2-level composition which coincides with f on the corresponding ray
{λ · (e1, . . . , en) : λ > 0}. This function can be obtained, e.g., as a minimum
of several linear functions which have the right value on this ray but change
drastically immediately outside this ray.

For example, let f0(x) be an arbitrary homogeneous linear function which
coincides with f(x) at the point e – and thus, on the whole ray. To construct the
corresponding linear functions, we can expand the vector e to an orthonormal
basis e, e′, e′′, etc., and take linear functions f0(x)+k ·(e′ ·x) and f0(x)−k ·(e′ ·x)
for all such e′ (and for a large k > 0). Then, the minimum of all these functions
is very small outside the ray.

We then take the maximum of all these minima – a 3-level composition.
The function f(x1, . . . , xn) is continuous on a unit sphere and thus, uniformly

continuous on it, i.e., for every ε > 0, there is a δ such that δ-close value on
the unit sphere lead to ε-close values of f . By selecting appropriate δ′ and k
(depending on δ), we can show that the resulting maximum is indeed ε-close
to f .

The theorem is proven.

7 Conclusions

In multi-criteria decision making, it is necessary to aggregate (combine) util-
ity values corresponding to several criteria (parameters). The simplest way to
combine these values is to use linear aggregation. In many practical situations,
however, linear aggregation does not fully adequately describe the actual decision
making process, so non-linear aggregation is needed.
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From the purely mathematical viewpoint, the next natural step after linear
functions is the use of quadratic functions. However, in decision making, a dif-
ferent type of non-linearities are usually more adequate than quadratic ones:
non-linearities like OWA or Choquet integral that use min and max in addition
to linear combinations. In this paper, we explain the empirically observed ad-
vantage of such aggregation operations. Specifically, we show that, due to the
known properties of the utilities, reasonable operations for aggregating utilities
must be scale-invariant. Aggregation operations like OWA or Choquet integral
are scale-invariant, while quadratic functions are not. We also prove that oper-
ations like OWA and Choquet are general: to be more precise, we prove that
compositions of linear functions, min, and max are universal approximators for
scale-invariant operators.
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