
UTEP Technical Report UTEP-CS-08-29

Testing the Value of a Time-based Language Model

for Speech Recognition

Nisha Kiran1, Nigel G. Ward

Department of Computer Science
University of Texas at El Paso
500 West University Avenue
El Paso, TX 79968-0518

email: nisha.iitkgp@gmail.com, nigel@cs.utep.edu

July 14, 2008

Speech recognition relies on the language model in order to decode an utterance, and
in general a better language model improves the performance of a speech recognizer.
We have recently found that a time-based language model can improve on a standard
trigram language model in terms of perplexity [5]. This technical report presents the
evaluation of this new language model in the context of speech recognition. First, a
basic speech recognizer was built using the HTK [6] tool. Then the recognizer was
run using the standard language model and using the time-based one. On a testset of
39,147 words from the Switchboard corpus, there was a slight improvement, with the
percentage of words correctly recognized going from 11.31% to 11.40%.

Index Terms: speech recognition, Switchboard corpus, time-based language model, HTK

1 Introduction

Speaking is a cognitive process in time and also a communicative process in time [1], but these
processes are not directly modeled by today’s language models, which generally treat speech as
consisting merely of sequences of words. This reports aims to test an initial implementation
of a model which considers the time-into-utterance when estimating the probabilities of words
[5]. The work consists of building an automatic speech recognition system and then testing the
performance of the time-based language model by using it to rescore the lattices produced during
the initial decoding stage. The aim is to indicate whether this model can actually be useful
for speech recognition, and to produce a testbed that can be used in the future to test refined
time-based models.

1visiting from the Indian Institute of Technology at Kharagpur

2

Section 2 describes how the Hidden Markov Models were trained on the Switchboard corpus.
Section 3 describes the modifications done to the HTK code to test the time-based language model
and how to use the changed code to test the time based model. Section 4 presents results.

2 Acoustic Model Training

Acoustic models were trained on the data available from the Switchboard Corpus. This did not
require any new code; the HTK Tools provide all the needed functions. However preparation of
the data involved several steps, as did the training itself.

2.1 Data Preparation

2.1.1 Training Corpus

The Switchboard corpus, a collection of short telephone conversations on light topics between
mostly unacquainted adults [2, 3] was licensed from the LDC and used for training as well as
testing. The audio files as well as their transcription files were first broken down into single
utterances. The transcriptions were then converted to the HTK label format, also known as the
MLF format. Two sets of word-level MLF files were generated. One set for training and one for
testing.

A total of 518 Switchboard A tracks were used for training the HMM models as listed in the
file trainingFiles. Each track was broken down into single-utterance label files. These were found
by looking for the regions labeled silence in the B track, that is, the track for the other speaker.
While there are other possible ways to determine utterance regions, this was done to ensure that
the training used only audio regions containing the voice of only one speaker. Utterances which
contained regions labeled [laughter], [vocalized-noise], [noise], -[o]kay etc. were excluded from the
training data. This produced a total of 11960 utterances. The transcriptions were converted into
the HTK label format. The corresponding audio files for each utterance were then clipped out.
Then the labels and the audio were used together for training the HMM acoustic models.

2.1.2 Test Corpus

A total of 96 Switchboard tracks were used for testing the HMM models, as listed in the file
test files. As above, each audio track and its corresponding transrciption was split into single-
utterance audio and single-utterance label files respectively. This produced a test set of 2557
utterances.

2.1.3 Creating the transcription files

After the creation of the training as well as the test corpus, the next task was to acquire a
dictionary with the phonetic transcriptions of words. For this the online dictionary cmudict.0.6d
was used. For the creation of the final dictionary, first a wordlist named wlist was generated which

3

contained the list of all the words which were in the training as well as the test data. Then the
HTK Tool HDMan was used to construct the final dictionary:

HDMan -m -w wlist -n phone1.list -l dlog dict.list cmudict.0.6d

This command generated the dictionary dict.list by searching the source dictionary cmu-
dict.0.6d to find the pronunciations for each word in wlist. The option ’-l’ instructs HDMan to
output a log file dlog which contained various statistics about the constructed dictionary. The
phone list phone1.list contained the 40 phones for which the training was done.

To train a set of HMMs, every file of the training data must have an associated phone level
transcription. The phone level MLF was generated from the word-level transcriptions and dict.list
using the label editor HLEd:

HLEd -d dict.list -i phones0.mlf mkPhones0.led word0.mlf

Where the HLEd edit script mkPhones0.led contained the following commands:

EX

IS sil sil

DE sp

where the expand command EX replaces each word in word0.mlf by the corresponding pronunci-
ation in the dictionary, the IS command inserts a silence model sil at the start and end of every
utterance, and , the delete DE command deletes all short pause sp labels, which are not wanted
in the transcription labels for the initial training stage.

2.1.4 Coding the data

The final stage of data preparation was to parameterize the raw speech waveforms into sequences
of feature vectors, namely Mel Frequency Cepstral Coefficients (MFCCs).

Coding was performed using the tool HCopy, configured to automatically convert its input
into MFCC vectors. To do this the following configuration parameters were set:

1. SOURCEKIND = WAV EFORM

2. SOURCEFORMAT = WAV E

3. SOURCERATE = 625.0
4. TARGETKIND = MFCC 0
5. TARGETRATE = 100000.0
6. WINDOWSIZE = 250000.0
7. USEHAMMING = T

8. NUMCHANS = 20
9. CEPLIFTER = 22

4

10. NUMCEPS = 12

The following command was executed to create the MFCCs for the audio files:

HCopy -C copy.cfg -S copy.scp

where copy.cfg contains the above configuration parameters and copy.scp contains the names of
the single-utterance audio files whose MFCC is to be created.

The files generated were stored in the mfcc/ directory.

2.2 Training

This section explains the actual training of the acoustic models HMMs.

2.2.1 Model Initialization

A simple left-to-right topology with three emitting states was used as the HMM topology. A
general prototype proto was constructed, just as a definition of the model topology. This prototype
has zero means and the diagonal elements of the covariance matrix are all ones.

To initialize the HMM models the tool HCompV was used. HCompV scans the training data
and computes the global means and variances for the whole training corpus and outputs that;
thus at this stage all states have the same output probabilies. HCompV requires a configuration
file. The following configuration parameters were used:

1. TARGETKIND = MFCC 0 D A

2. TARGETRATE = 100000.0
3. SAV ECOMPRESSED = T

4. SAV EWITHCRC = T

5. WINDOWSIZE = 250000.0
6. USEHAMMING = T

7. PREEMCOEF = 0.97
8. NUMCHANS = 20
9. CEPLIFTER = 22
10. NUMCEPS = 12
11. ENORMALISE = F

The following command was used to initialize the HMM model:
HCompV -C comp.cfg -f 0.01 -S train.scp -M hmm0/ proto
where comp.cfg contains the above configuration parameters, train.scp contains the names of the
files which were used for training, hmm0 is the directory in which the resulting model is output
and proto is the prototype model.

5

2.2.2 Re-estimation

The next task was to re-estimate the flat start monophone models. Before re-estimating two files
were generated. The first file hmm0/macros was generated by adding the following line in the be-
ginning of the hmm0/vFloors file, which was generated in the previous stage: ∼o <MFCC 0 D A>

<VecSize> 39

The second file hmm0/hmmdefs was generated by using a small script, init.

./init phone0.list >hmm0/hmmdefs

This script takes as an input the phone list which lacks sp. It uses the hmm0/vFloors and
phone0.list to generate the hmm0/hmmdefs file by copying the HMM model in the hmm0/vFloors
for each phone in phone0.list.

The last point before re-estimation is that new label files need to be generated for HERest,
since it expects the phone-labeled data without sp in the same directory as the mfcc files. To
convert the phone level MLF file phone0.mlf to the corresponding label files, a small script
phone2label was used. The script simply generates the label files in the mfcc/ directory.

./phone2label phones0.mlf

Next, the re-estimation was done using HERest which requires the configuration file comp.cfg
(used with HCompV to generate the flat start monophones), a set of pruning thresholds, a
training file, macros, hmmdefs, and sp-less monophones file phone0.list.

HERest -C comp.cfg -I phones0.mlf -t 250.0 150.0 1000.0 -S train.scp -H hmm0/macros -H
hmm0/hmmdefs -M hmm1/ phone0.list

10 rounds of re-estimation were performed.

2.2.3 Fixing the silence models

The next task was to fix the silence models to introduce the short-pause model. The short-pause
model is used to model the pauses of the speaker between words. To build the short-pause model
the phone level transcription files were modified and then the HMM models were trained using
these transcriptions.

sp model was created in three steps. The first step was to copy the middle state from the
HMM built for sil in the previous stage and use it to build a model for sp. The script sil2sp
extracted the middle state from the sil model and generated this HMM definition file with the sp
model.

./sil2sp hmm10/hmmdefs >hmm11/hmmdefs
The macros file was copied from the hmm10/ directory to the hmm11/ directory.

6

The next task was to create states 2 and 4 for the sp model and tie the middle state of the sil
model to the state 2 of the sp model. This is performed by the tool HHEd:

HHEd -H hmm11/macros -H hmm11/hmmdefs -M hmm12/ sil.hed phone1.list
where phone1.list also contains the sp phone and sil.hed contains the following commands:

AT 2 4 0.2 sil.transP

AT 4 2 0.2 sil.transP

AT 1 3 0.3 sp.transP

TI silst sil.state[3],sp.state[2]

After the HMMs for the silence model were generated, the phone level MLF file phone1.mlf,
which has sp inserted after every word, was created using the tool HLEd.

HLEd -d dict.list -i phone1.mlf mkPhones1.led word0.mlf

After the phone level MLF with sp inserted has been generated, the corresponding label files
were generated in the mfcc/ directory before re-estimation.

./phone2label phone1.mlf
Then 8 more rounds of re-estimation was done using HERest

2.2.4 Realigning the data

The dictionary contained multiple pronunciations for some words, particularly the function
words. The phone models created so far were used to realign the training data and create new
transcriptions. For this the tool HVite was run in the forced alignment mode. One of the main
uses of forced alignment is to determine the actual pronunciations used in the utterances used to
train the HMM models. The transcriptions thus generated were then used to train the HMM
models.
This was done with a single invocation of the HTK recognition tool HVite, viz.

HVite -o SWT -b sil -C comp.cfg -a -H hmm20/macros -H hmm20/hmmdefs -i phone2.mlf
-m -t 250.0 -y lab -I word0.mlf -S train.scp new dict.list phone1.list

This command uses the HMMs stored in hmm20/ to transform the input word level tran-
scriptions word0.mlf to the new phone level transcriptions phone2.mlf using the pronunciations
stored in the dictionary. The key difference between this operation and the original word-to-phone
mapping performed by HLEd is that the recogniser considers all pronunciations for each word and
outputs the pronunciation that best matches the acoustic data.

7

2.2.5 Making Triphones from Monophones

Given a set of monophone HMMs, the final stage of model building was to create context-
dependent triphone HMMs. This was done in two steps. Firstly, the monophone transcriptions
were converted to triphone transcriptions and a set of triphone models were created by copying
the monophones and re-estimating. Secondly, similar acoustic states of these triphones were tied
to ensure that all the state distributions could be robustly estimated.

The tool HLEd was used to generate a list of all triphones for which there was at least one
example in the training data.

HLEd -n triphones1 -i wintri.mlf mktri.led phone2.mlf
Executing the above command converts the monophone transcriptions in phone1.mlf to an equiv-
alent set of triphone transcriptions in wintri.mlf. At the same time, a list of triphones is written
to the file triphones1. The script mktri.led contains the following commands:

WB sp

WB sil

TC
The cloning of the HMM models was done using the tool HHEd.

HHEd -H hmm20/macros -H hmm20/hmmdefs -M hmm21/ mktri.hed phone1.list
The file mktri.hed was generated using the Perl script maketrihed which was included in the
HTKTutorial directory.

After the clones were generated, first the label files corresponding to the triphone transcriptions
were created in the mfcc/ directory and then 9 more rounds of re-estimation of the HMM models
were done.

./phone2label 1 wintri.mlf
The final re-estimation using HERest was performed by setting the -s option as the output would
be used in performing the state-tying in the next stage.

HERest -C comp.cfg -I wintri.mlf -t 250.0 150.0 1000.0 -s stats -S train.scp -H hmm20/macros
-H hmm20/hmmdefs -M hmm21/ triphones1

2.2.6 Making Tied-State Triphones

The outcome of the previous stage was a set of triphone HMMs with all the triphones in a phone
set sharing a transition matrix. The last step in the model building process was to tie states
within triphone sets in order to share data and thus be able to make robust parameter estimates.

Before the decision tree tying could be preformed first a file named fulllist was generated using
the tool HDMan. The file fulllist contained the list of all possible triphones that can be generated
using the dictionary.

HDMan -b sp -n fulllist -g global1.ded -l flog beep-tri dict.list
where global1.ded is an edit script which contained the following commands:

8

HTK Results
SENT: %Correct = 0.86 [H=22, S=2522, N=2544]
WORD: %Corr=9.35, Acc.=-3.33 [H=3659, D=4602, S=30855, I=4962, N=39116]

Table 1: The recognition results obtained using the bigram language model. The line starting
with SENT: indicates that out of 2544 utterances, 22 were recognised. The following line starting
with WORD: gives the word level statistics and indicates that of the 39116 words in total, 3659
were recognised correctly. There were 4602 deletion errors (D), 30855 substitution errors (S) and
4962 insertion errors (I). The accuracy figure (Acc) of -3.33% is lower than the percentage correct
(Cor) because it takes account of the insertion errors which the latter ignores.

AS sp

RS cmu

MP sil sil sp

TC
After this, decision tree tying was performed by running HHEd:

HHEd -H hmm30/macros -H hmm30/hmmdefs -M hmm31/ tree.hed triphones1 >log
where tree.hed contained the contents to be examined for possible clustering. This was generated
using a script mkclscript included in the RMHTK/scripts directory.

Finally, few more rounds of training using HERest were performed and the final HMM,
hmm40/ was generated, which was used in the recognition.

2.3 Recognition results using bigram language model

The bigram language model which was used in the basic recognition stage was built using SRILM
[4]. The list of words used for training the HMM model was used as a vocabulary to generate the
bigram backoff language model using SRILM.

After the bigram language model was built, the bigram word network was constructed using
the HTK Tool HBuild. The following command was used to build the word network:

HBuild -n BigramLM.lm -z wlist bilatfile
where BigramLM.lm is the language model which was generated using SRILM, and wlist is the
list of all the words in the language model including the start of sentence marker and the end of
sentence marker. The final output, which is a word network, is written to the file bilatfile.

Using the generated bigram word network, the basic recognition task was done using the
HTK Tool HVite. This created a lattice for each utterance that could later be rescored using the
HTK Tool HLRescore. The generated lattices were stored in the lattice/ directory. The basic
recognition was done by executing the following command:

HVite -T 1 -C test.cfg -H hmm40/macros -H hmm40/hmmdefs -S test.scp -i recout.mlf -w
bilatfile -z lat -n 5 20 -l lattice/ new dict.list tiedlist

9

where test.cfg is a configuration file containing the following parameter:

TARGETKIND = MFCC 0 D A

and test.scp contained the list of test files and new dict.list was same as dict.list with the following
three additional pronunciations added to it:

sil sil

<s> [] sil

</s> [] sil

where <s> is the start of sentence marker and </s> is the end of sentence marker.

The -n option here specifies the number of N-best tokens to store per state and the number
of N-best hypotheses to generate. In this case top 5 tokens would be stored in each state and the
top 20 hypotheses would be output. The lattice are generated using the -z lat. The lattice files
are stored in the lattice/ directory.

The statistics on the performance of this basic recognition were obtained with the following
command:

HResults tiedlist recout.mlf

The result are given in Table 1.

3 Modifying HTK to use the Time-Based Language Model

This section discusses the modification that was done to the HTK code HLRescore.c to test the
time-based language model. It also explains how the code can be invoked from the command line
to test the time-based language model.

3.1 Lattice Expansion and Lattice Rescoring

HVite
HLRescore
-w [-z S_file]

HLRescore
-f

HResults

audio input
(mfc files)

acoustic models
(hmm files)

word
lattice

trigram language model file
[also S_file]

expanded
word lattice

words
recognized

recognition
rate, etc.

Figure 1: Workflow, with time-based additions in brackets

10

HTK Results Analysis
SENT: %Correct = 1.30 [H=33, S=2513, N=2546]
WORD: %Corr=11.31, Acc.=2.25 [H=4426, D=6603, S=28088, I=3547, N=39117]

Table 2: The recognition results obtained after rescoring lattices using trigram language model.
The language model scaling factor s was set to 5.0 and the fixed penalty p was set to 0.0

Word lattices are composed of the word hypothesis. A word lattice consists of a list of nodes
and a list of arcs. Each node in the lattice represents a point in time measured in seconds and
each arc represents a word spanning the segment of the input starting at the time of its start
node and ending at the time of its end node. For each such span there is an acoustic model score
and a language model score.

In order to perform a second pass over the generated lattices with the higher order language
models, the lattices must be expanded to the same order. This must be done since each word in
the lattice must have a unique history of the same order.

This expansion is done by HLRescore with the -w option. To apply the trigram model,
the lattice generated using the BigramLM.lm was rescored using the trigram language model
TrigramLM.lm which was built using SRILM [4]. The following command did the lattice expansion
using the trigram language model. Each lattice file in the lattice/ directory was expanded and
overwritten.

HLRescore -T 1 -D -C rescore config.cfg -w -n TrigramLM.lm -S test rescore.scp new dict.list

The rescore config.cfg file contained the following lines:

STARTWORD=<s>

ENDWORD=</s>

STARTLMWORD=<s>

ENDLMWORD=</s>

After the lattice has been expanded using the new language model, the expanded lattice is
rescored to find the best path through the lattice. This can be done by setting the -f option while
invoking HLRescore. The acoustic model scores and the new language model scores are used to
find the best path through the lattice. The following command finds the best path through the
expanded lattice:

HLRescore -T 1 -D -C rescore config.cfg -f -i recout tri.mlf -S test rescore.scp new dict.list

The overall work flow is shown in Figure 1.

3.2 Modifications done to the HTK Code

This section discusses the modifications done in the HTK code HLRescore.c to test the time based
language model.

11

HTK Results Analysis
SENT: %Correct = 1.26 [H=32, S=2514, N=2546]
WORD: %Corr=11.39, Acc.=2.28 [H=4456, D=6605, S=28056, I=3563, N=39117]

Table 3: The recognition results obtained after rescoring lattices using trigram and the June 13
S values [1], with the parameters set as before.

HTK Results Analysis
SENT: %Correct=1.26 [H=32, S=2514, N=2546]
WORD: %Corr=11.40, Acc=2.30 [H=4460, D=6607, S=28050, I=3562, N=39117]

Table 4: The recognition results obtained after rescoring lattices using trigram and the July 3 S
values, with the parameters set as before.

First it is necessary to understand how lattice expansion is done by HLRescore.c. There
are several stages. First, HLRescore.c does the initialization of various data structures. Then
it calls the function LatExpand() in file HLat.c which does the basic lattice expansion. The
function LatExpand() splits each node and arc in the lattice into multiple sub-nodes and sub-arcs
as required by the new language model. While splitting the nodes and arcs into sub-nodes and
sub-arcs respectively, the function LatExpand() calls the function LatLMTrans() in file HLat.c
to get the language model probabilities. The function LatLMTrans() in turn calls the function
LMTrans() in the file HLM.c to get the new language model probabilities. Given the current
word and its history, the function LMTrans() returns the log probability using the new language
model.

In order to perform the lattice expansion using the time based language model, the tool
HLRescore was modified to accept the options -w and ’-z f’ where f is the name of the file which
contains the value of scaling factor [5] for the various words. Each line in the file f starts with a
word and then is followed by 24 float values.

Our modified version of HLRescore.c first calls the function InitSValue() which initializes an
array with the scaling factor values for all the words in the file. For the time-based expansion,
HLRescore.c calls function TLatExpand() in HLat.c which does the time-based lattice expansion.
This function in turn calls the function TLMTrans() in HLM.c to get the time-based language
model probabilities. The function TLMTrans() takes the start time of the current word as one
of its argument. The function bucketForTimeInf() in HLM.c finds the bucket to which a word
belongs using this start time of the word. The log of the S-Value for a given word and a given
bucket is returned by the function S Value() which looks in the array to find the S-Value and
returns the log of it. The function TLMTrans() finds the log probability of the current word
given the history (the local context). These two values are then added and returned, thereby
performing the tweaking described in [5]. The function TLMTrans() thus returns the tweaked
language model probabilities.

After the lattice has been expanded using the time-based language model, the lattice is rescored
to find the best path through the lattice using the new language model scores. The HLRescore is
invoked with the -f option as before to find the best path through the lattice.

12

% Correct Correctly
Identified

Deletions Substitutions Insertions Total Words

Bigram 9.35 3659 4602 30855 4962 39116
Trigram 11.31 4426 6603 28088 3547 39117

Time-based 1 11.39 4456 6605 28056 3563 39117
Time-based 2 11.40 4460 6607 28050 3562 39117

Table 5: Summary of Results

The commands which do the time-based lattice expansion and rescoring are shown below:

HLRescore -T 1 -D -C rescore config.cfg -w -n TrigramLM.lm -z ∼/TModel data/S file -S
test rescore.scp new dict.list

HLRescore -T 1 -D -C rescore config.cfg -f -i recout tri2.mlf -S test rescore.scp new dict.list

The overall working of the modified code is shown in Figure 1, with the modifications noted
in brackets.

4 Results

The lattices were generated using the tool HVite considering the top 20 hypotheses.

The recognition result using the trigram language model is shown in Table 2. The recognition
result using two time-based language models are shown in Tables 3 and 4. The first is the model
documented in [5] (the June 13 model). The second is a slightly refined model (the July 3 model)
where the chi-squared-statistic is multiplied by .5 before computing p, the value of k is .35 instead
of .3, and 1-second buckets were used instead of .5 second buckets in the range from 4 seconds to
8 seconds, and a 1.5 second bucket is used for 8 seconds to 9.5 seconds.

As can be seen from the table, the time-based language model was able to recognize 30 more
words as compared to the standard trigram language model.

The overall results are summarized in Table 5.

Acknowledgments

We thank Alejandro Vega for help with Switchboard and SRILM, and David Novick for comments.
This work was supported in part by the Defense Advance Projects Research Agency and the
National Science Foundation under award IIS-0415150.

13

Appendix A: Evaluation Process Summary

This section summarizes the process of evaluating a time-based language model in terms of its
ability to improve the recognition results obtained by HTK. Also the process of generating the
forced alignments is given.

In the typical case, this will involve the desire to test the utility of a refined time-based model;
specifically the desire to test on a new S-ratio file (aka a dump file). These files are typically
generated using the -tb-dump option to the locally modified version of SRILM’s ngram program.

The data files mentioned below are in ∼nkiran/HMM training, with copies in ∼nigel/rescore.
The executables, in particular HLRescore and HResults, are in ∼nkiran/Desktop/htk/bin .

1. Start with the word lattices generated by HTK using the simple bigram language model
and the test set. These are the files in ∼nkiran/Desktop/backup/lattice/ directory, which should
only change if HVite is run on a different test set, so they are read-only. HLRescore needs a copy
of these that it can overwrite, so our first step is to copy all of these to a working directory.

rm -r lattices-tmp

cp -r lattice lattices-tmp

chmod 644 lattices-tmp/*

This has to be done afresh every time, to avoid inadvertently rescoring lattices which have
already been rescored.

2. It is necessary to specify for HLRescore where to find the lattice files. test rescore.scp is
the master list of all the files in lattice, but the files to operate on are the copies in lattice-tmp.
If the lattice-list.scp file is not already up-to-date, it is necessary to copy test rescore.scp to that
location and then edit lattice-list.scp to change the directory parts of the paths to the correct
location, here lattices-tmp.

cp test rescore.scp lattice-list.scp

emacs lattice-list.scp

3. The next step is to actually rescore the lattices.

HLRescore -T 1 -D -C rescore config.cfg -w -n TrigramLM.lm -z dump-july3 -S lattice-list.scp
new dict.list

The -z option specifies the file of S-ratios. This rescoring takes a couple of minutes. The result
is that the files in lattices-tmp are overwritten.

4. The next step is to run a search to find the best paths through these lattices:

HLRescore -T 1 -D -C rescore config.cfg -f -i recout.mlf -S lattice-list.scp -p 0.0 -s 5.0
new dict.list

Note that there is both a -S option and a -s option. After a minute or so this creates the file
recout.mlf, which contains the recognition results.

5. Now the recognition results can be compared to those in the transcripts. Since the tran-

14

scripts are in the directory mfcc, it is necessary to first edit recout.mlf to replace all references
to lattice-list with mfcc.

emacs recout.mlf

Finally HResults gives the statistics:

HResults tiedlist recout.mlf

This gives the %correct words and the other statistics.

Note: if running this command results in a Fatal Error: 6550 HTK Format error, then a file
needs to be fixed. To find out where, run the command with the -T 10 option to see the name
of the mfc file where the error occurs. In the corresponding transcription file there may be arabic
numerals; if so, replace them with the corresponding English word. For example, the number 8
should appear as EIGHT in the transcription file.

Appendix B: Forced Alignment

This appendix summarizes how HVite can be made to compute the forced alignments for the
utterances, perhaps as a preliminary step in the generation of a time-based model for new corpus.

1. First the MFCC files need to be generated for the utterances whose time alignments are
desired. For this first we need to generate the list of audio files whose time alignments are desired.
An example of this kind of file is given in ∼nkiran/HMM Training/test copy.scp.

2. After the list of the files has been generated, the following command generates the MFCC
files:

HCopy -T 1 -C copy.cfg -S test copy.scp

This command will generate the MFCC files. The label files corresponding to the audio files
should also be in the same directory as the MFCC files and should have the same file name as
the corresponding MFCC file but the extension should be .lab.

3. Running the following command will generate the time aligned files with the extension .rec
and they will be written to the same directory as the MFCC and label files.

HVite -a -b sil -o SW -C comp.cfg -H hmm40/macros -H hmm40/hmmdefs -S abc.scp
new dict.list tiedlist

where abc.scp is the list of the MFCC files whose time alignments are to be generated. An
example of this kind of file is given in ∼nkiran/HMM Training/test.scp.

The output transcriptions can be written to an MLF using the -i option.

References

[1] Clark, Herbert H., Speaking in Time. Speech Communication, 36, pp 5–13, 2002.

15

[2] Manually Corrected Switchboard Word Alignments. January 29, 2003. ISIP, Mississippi
State University. retrieved from http://www. ece.msstate.edu/research/isip/projects/ switch-
board/

[3] Godfrey, J. J., Holliman, E. C., & McDaniel J. Switchboard: Telephone speech corpus for
research and development. Proceedings of ICASSP, pp. 517-520, 1992.

[4] Stolcke, Andreas. SRILM - An Extensible Language Modeling Toolkit, in Proc. Intl. Conf.
Spoken Language Processing, 2002.

[5] Ward, Nigel G. and Vega, Alejandro
Modeling the Effects on Time-into-Utterance on Word Probabilities. Interspeech 2008, to
appear.

[6] The HTK Book, from http://htk.eng.cam.ac.uk/docs/docs.shtml

