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Abstract. The web is a rich environment for exchanging spatial in-
formation. When spatial information is shared in the form of images,
i.e., maps, these images almost never come with meta-information about
how they were generated. This kind of meta-information is often called
knowledge provenance. Access to knowledge provenance may facilitate
users to make informed decisions about the quality of maps. In this pa-
per, we propose TrustMap, a new approach for enhancing maps with
trust recommendations. For a given map, TrustMap can generate rec-
ommendations from the knowledge provenance and a network of trust
relations between sources of information used to derive the map. The
paper describes a TrustMap implementation.

1 Introduction

Despite the increase of use of maps, scientists can rarely count on mechanisms
allowing them to inspect the maps, understand how the maps were generated,
and thus supporting their decision about accepting or not the maps as reliable
artifacts. For example, in cyber-environments such as the web, maps are often
shared as formatted documents (e.g., PDF files), image files (e.g., PNG, JPG
and GIF files), or in more sophisticated scenarios, as web applications (e.g., web
mapping). Either way, maps almost never come with information that enable
map users to make an informed decision about the quality of the maps that they
are about to use.

This picture of how scientist share maps would not be so critical if maps were
free of inaccuracies and imperfections. It is sure that most imperfections would
not be critical to scientists who are using the maps to learn about some macro-
aspects of a given region of interest. For other scientists, however, inaccuracies
and imperfections can be very harmful to their scientific endeavor, e.g., can lead
to incorrect drilling plans, unsound bridge structures, etc. The combined use of
geographical information systems (GIS) and cyber-infrastructure (CI) may just
aggravate the problem of assessing maps as quality scientific products since these
technologies can facilitate the integration of data coming from multiple sources
and multiple services. Further, maps originally derived from a restrict set of
information sources would now rely on a multitude of people, organizations,
sensors and instruments involved in the production of a new generation of maps.



Keeping track of information sources contributing to the generation of maps
is a key activity if we want scientists to accept maps in the future. The meta-
information that is used to keep track of these sources is often called provenance

information or just provenance. Provenance is an important part of solutions
enabling scientists to inspect maps but it is not enough to assure that most
scientists would be able to better accept maps. In this paper, we propose a new
approach for enhancing maps with trust recommendations. Trust recommenda-
tions is a partial and lightweight solution for the problem of accepting maps.

The rest of the paper is organized as follows. Section 2 introduces a use case
that illustrates the need for trust recommendations for maps. Section 2.1 shows
a gravity map and its corresponding trust map. Section 3 describes the key
technologies and infrastructure supporting the generation the trust maps. With
the help of the infrastructure, Section 4 describes and discuss possible methods
for generating trust maps. Section 5 presents related work. Section 6 summarizes
the main contributions of the paper.

2 TrustMap Use Case

Figure 1 shows an example of a gravity contour map used here to illustrate com-
mon trust issues related to maps. In this use case, scientists may use gravity
data to get a rough idea of the subterranean features that exist within some
region. Geoscientists are often only concerned with anomalies, or spikes in the
data since these anomalies indicate the presence of a water table or oil reserve.
For example, the region in Figure 1 identified by a big oval has lower gravity
readings than the rest of the map. However, these anomalies may be imperfec-
tions introduced during the process of merging and filtering data. With the use
of provenance, one may be able to inspect the process and thus figure out po-
tential sources of imperfections. With the use of provenance and trust, one may
be able to decide whether to further investigate the area of interest with more
expensive techniques, e.g., by drilling or using controlled explosions to create a
higher-resolution tomography of the region.

This process of generating and accepting the map as a valid scientific artifact,
which begins by scientists providing a region or interest or footprint, specified
in terms of latitude and longitude, is defined by the sequence of tasks below:

1. Gather raw geo-referenced point data (possibly from multiple sources) in the
region

2. Merge point data coming from distinct sources
3. Filter raw point data to remove duplicate data
4. Create a uniformly distributed dataset by applying a gridding algorithm

(e.g., nearest neighbor extrapolation algorithm or the minimal curvature
algorithm)

5. Create a contoured rendering of the uniformly distributed dataset

In a cyber-infrastructure setting, each one of the five tasks above can be



Fig. 1. Snapshot of a gravity contour map.

realized by a web service. This set of web services is piped or chained together1;
the output of one service would be forwarded as the input to the next service
specified in the workflow, such as in [11].

In these types of situations where multiple workflows can satisfy a single
type of request, the set of results generated by each workflow are returned to the
scientist. As in any question/answer scenario, it is up to the scientist to determine
which result to use. This situation is no different from how users interact with
Web search engines. A single query often yields thousands of results, yet the
burden is placed on the user to determine which answer is most appropriate.
The challenge of accepting a scientific artifact is one of the main reasons that
applications should be able to provide some trust recommendations for their
results as further discussed in the following section.

2.1 TrustMap In Use

A TrustMap is an optional map that can be overlaid with the map of concern and
be used to provide trust recommendations for map users. For example, Figure 2
shows a TrustMap for the gravity contour map in Figure 1. TrustMaps can be
generated as map annotations in XML and be used by TrustMap browsers. In

1 This gravity map generation workflow is available for on-line use at
http://iw.cs.utep.edu:8080/service-output/probeit/clientapplet.html



our current TrustMap implementation, we use ProbeIt! [4] to browse TrustMaps.
ProbeIt is also responsible for invoking the workflow responsible for creating
TrustMaps.

Fig. 2. TrustMap for the gravity contour map in Figure 1.

The area of interest previously identified in Figure 1 is shown in Figure 2.
We can see that no trust information is available for the selected area in the
TrustMap, indicating that no trust evidence could be found for the sources of
the information used derive the selected part of the map. This is an important
result probably more interesting than the fact that the sources for the area of
interest have some trust recommendation. In fact, this may indicate that the
map user may consider not using the map or may consider the use of alternate
sources. The exact interpretation of this lack of trust recommendations is very
subjective in the sense that the lack of trust recommendation does not mean
the presence of anything intentionally wrong (according to the current approach
used to gather trust evidence, as described in Section 3.2). This lack of trust
information, however, may indicate that more effort may be required for one
to understand how the map was created and to eventually accept the gravity
contour map as a trustworthy artifact.

Trust is a complex concept with multiple aspects such as degrees of trust,
distrust, ignorance, and inconsistencies with respect to one or multiple informa-
tion sources [8, 7, 12, 2]. The current TrustMap approach relies on aggregated
trust values established from co-authorship between scientists. Evidence, how-
ever, will not be restricted to co-authorship information. As the infrastructure for
gathering trust information evolves, trust evidence will expand to include other



information such as citations and collaboration in funded projects. This means
that TrustMaps provide information about how much a larger social network,
e.g., a scientific community, may perceive and trust a given scientist and that no
information about the scientist just means the lack of evidence that scientists
in the social network trust the scientist. More problematic is the meaning of
trust values, which in our case, are basically used for comparison. Therefore, we
cannot say that source A is not trustworthy because his/her trust score is 0.321.
But we can say that, with the current evidences of trust, source A may be more
trustworthy than source B, that has a trust score of 0.227. With this notion of
sources than can be more or less trustworthy than other, we can observe the
following:

– Lower trust or no trust: further investigation may be required before the
scientist accepts the map.

– Higher trust: further investigation may not be required because information
used for rendering areas of interest come from sources regarded as trustwor-
thy by their social networks.

In the following sections we describe the tools, infrastructure, and methods
used to generate trust maps.

3 Underlying Technologies

A trust map is a data layer that can be overlaid on contour maps. TrustMap
datasets can be generated simply by replacing measured or derived values in
a dataset with corresponding trust ratings. The process by which these trust
ratings are obtained and associated with each measured or derived value are
described in the following subsections.

3.1 Capturing Map Provenance

The Inference Web [13, 14] is a knowledge provenance infrastructure for conclu-
sions derived from inference engines which supports inter-operable explanations
of sources (i.e. sources published on the Web), assumptions, learned information,
and answers associated with derived conclusions, that can provide users with a
level of trust regarding those conclusions. The ultimate goal of the Inference
Web is the same as the goal of the gravity data scenario which is to provide
users with an understanding of how results are derived by providing them with
an accurate account of the derivation process and the information sources used
(i.e. knowledge provenance [17]).

Inference Web provides the Proof Markup Language (PML) [16] to encode
justification information about basically any kind of response produced by agents.
PML is an RDF based language defined by a rich ontology of provenance and
justification concepts which describe the various elements of automatically gen-
erated proofs. Without getting into the details of the main concepts supporting



PML, we can say that PML justifications are graphs with the edges always point-
ing towards the final justification conclusion. PML justifications can also be used
to store provenance about associated information sources. PML itself is defined
in OWL [3, 15] thus supporting the distribution of proofs throughout the Web.
Each PML component, which is not yet defined here, can reside in a uniquely
identified document published on the Web separately from the others.

3.2 Capturing Trust Network Meta-Information

In this paper we use an approach called CI-Learner to extract trust network
information from the web. The approach starts from a given scientific commu-
nity’s main web portal finding scientists working for organizations affiliated to
the scientific community in discourse. Scientists (people) are found through Or-
ganizations’ portal(s) in the field of discourse and stored in the sets P of people,
and O of organizations. Organizations collect information about people; thus,
the task can be accomplished if we proceed from the organization to find peo-
ple. Trust relationships between the scientists (i.e. set L) are determined by the
co-authorship of joint publications (i.e. set D) between people we found already
in set P . This is, we query for a person’s publications and keep track of publica-
tions that have two or more authors from P . Further sources of evidence of trust
between scientists will be added as the infrastructure in support of CI-Learner
evolves.

Computing the aggregate trust values for the identified networks (sets P , O,
D and L, is straightforward using EigenTrust [9], we need to construct a matrix
CT using local trust relations (i.e. set L) where Cij represents the number of
joint publications between personi and personj ; and an m-vector e initialized
to 1/m, where m is the number of people in our network. The resulting vector t

contains the global trust values for each member in our network.

4 TrustMap Generation

General situation: description and Monte-Carlo technique. Let us denote the
data points in our gravity map by d1, . . . , dn. These points correspond to the
output of the step 4 of the process identified in Section 2. In the probabilistic
approach, we assume that we know the probabilistic degree of trust – i.e., the
probabilities p1, . . . , pn that the corresponding data points are not outliers2. We
want to analyze how the possibility that some of these data points are actually
outliers affects the results of data processing.

A natural way to perform this analysis is to use a Monte-Carlo approach,
i.e., to perform a large number of simulations of these outliers, and to observe
how the result of data processing changes. In each simulation k, 1 ≤ k ≤ N , we
use the computer-based random number generators to keep each data point di

2 The TrustMap generation process described in this section is a simplification of the
actual implementation due to this assumption. In most practical cases, we may not
know the degree of trust of some points in the map, as discussed in Section 2.1.



with probability pi. As a result, we get a subset S(k) ⊆ {di} of the original set
of data points; we then apply our data processing algorithm to this subset S(k),
and produce the result r(k). The values r(k) corresponding to different iteration
provide an (approximate) description of how the possibility of outliers affects
the result of data processing.

As usual in statistical analysis, we can use the mean r̄ =
1

N
·

N
∑

k=1

r(k) and

the standard deviation σ =

√

√

√

√

1

N
·

N
∑

k=1

(r(k) − r̄)2 of these values to get a good

picture of the corresponding effect.

Limitations of Monte-Carlo approach. The main limitations of the Monte-Carlo
approach is caused by the known fact that its accuracy is ∼ 1/

√
N . Thus, to get

an accuracy of 10%, we need to perform 100 iterations, etc. This is already a
nuisance for accuracy, but for trust, this accuracy issue often makes this approach
really impractical. For example, if the probability of an outlier is 1% (a very
realistic number in good quality maps), then to correctly gauge the effect of
these outliers we must have 1/

√
N � 1%, i.e., we must have more than 10,000

repetitions of (already time consuming) data processing program.

It is therefore desirable to develop faster (and more accurate) algorithms for
predicting the effect of trust on the results of data processing.

Case study: nearest neighbor extrapolation. In this paper, on the example of
a simple map extrapolation algorithm (namely, the K nearest neighbors algo-
rithm), we will show how the resulting trust can be estimated in reasonable
time.

In this algorithm, we start with the results v1, . . . , vn of measuring the values
of a physical field at several points x1, . . . , xn. To estimate the value v(x) of this
field in a generic point x, we take K closest points pi1 , . . . , piK

and take the

average
1

K
· (vi1 + . . .+ viK

) of the corresponding values as the desired estimate.

Simplest case K = 1: formulas and linear-time algorithm. To show how to
estimate the effect of trust on this extrapolation result, let us start with the
simplest case when as an estimate for v(x), we simply take the value of v at the
closest point.

Let us assume that the points are already ordered, so that x1 is the closest
point to x, x2 is second closest, etc. Under these notations, with probability
p1, the value v1 is correct (not an outlier) and is thus taken as the desired
estimate for v(x). The value v2 is taken if v1 is an outlier (the probability of
which is 1 − p1) and v2 is not (the probability of this is p2). Since different

measurements are assumed to be independent, the probability P
(1)
2 of selecting

v2 as an estimate (i.e., selecting x2 as the closest point) is equal to (1− p1) · p2.



Similarly, the probability P
(1)
k of selecting the value vk is equal to πk−1 · pk,

where πj
def
=

j
∏

i=1

(1 − pi).

Computing each value P
(1)
k requires k multiplications, so if we compute all

these probabilities by simply following the above formulas, we will need a total
of 1 + 2 + . . . + n ∼ n2 computation steps. We can actually compute all these
values in linear time O(n) if we:

– sequentially compute the values π0 = 1, πj+1 = πj · (1 − pj+1),
– and then compute all n values Pk = πk−1 · pk.

In the same linear time O(n), we can compute the mean v(1) =
n
∑

k=1

P
(1)
k · vk,

the second moment M (1) =
n
∑

k=1

P
(1)
k · v2

k, and the standard deviation σ(1) =
√

M (1) − (v(1))2.

Linear-time algorithm for K = 2. Let us show that similar linear-time algo-
rithms can be proposed for K ≥ 2. Let us start with K = 2. In this case, the
estimate is the average of the closest and the second closest values. Thus, the
mean value of this estimate can be computed as the average of the mean value
of the closest value and the mean value of the second closest value (similarly,
the second moment is a similar average). We already know how to compute the
mean of the closest values in linear time. Let us show that we can compute the
mean of the second closest values in linear time as well.

The value vk is the second closest if this value is correct, one of the previous
values vi (i < k) is also correct, and all the others are outliers. For each i, the
probability of this is equal to (1−p1)·. . .·(1−pi−1)·pi ·(1−pi+1)·. . .·(1−pk−1)·pk.
In terms of our notation πj , we can describe this probability as πk−1 · pk · oi,

where we denoted oi
def
= pi/(1−pi) – the “odds” corresponding to the probability

pi. Thus, the overall probability P
(2)
k that xk is the second closest point is equal

to the sum of these probabilities corresponding to i = 1, 2, . . . , k − 1, i.e., to

P
(2)
k = πk−1 · pk · s(1)

k−1, where s
(1)
j

def
=

j
∑

i=1

oj .

Similarly to the case K = 1, the literal use of this formula requires time
O(n2), but all these probabilities can be computed in linear time if we:

– sequentially compute the values π0 = 1, s
(1)
0 = 0, πj+1 = πj · (1 − pj+1),

s
(1)
j+1 = s

(1)
j + pj+1/(1 − pj+1),

– and then compute all n values P
(2)
k = πk−1 · pk · s(1)

k−1.

In the same linear time O(n), we can compute the mean, the second moment,
and the standard deviation – a scalar characteristic of the effect of trust on the
estimated value v(x).



Linear-time algorithm for K = 3. For K = 3, we estimate v(x) is the average of
the values of v in the closest, second closest, and the third closest points. Thus,
to find this estimate (and to find the mean and the standard deviation of this

estimate), we must be able to compute the probability P
(3)
k that xk is the third

closest point. Similar to the case K = 2, we conclude that P
(3)
k = πk−1 ·pk ·s(2)

k−1,

where s
(3)
j

def
=

∑

i1<i2≤j

oi1 · oi2 .

Here, the literal use of this formula require time O(n2) for computing each

sum s
(3)
j and thus, an even larger overall time O(n3). However, it is possible to

compute all these probabilities in linear time. Indeed, once can easily check that
the only new pairs (i1 < i2) added when we increase j by 1 are the pairs in which

i2 = j + 1. Thus, the difference ∆s
(2)
j+1

def
= s

(2)
j+1 − s

(2)
j has the form oj+1 ·

j
∑

i=1

oi,

i.e., the form ∆s
(2)
j+1 = oj+1 · s(1)

j . So, all the probabilities P
(3)
k can be computed

in linear time if we:

– first sequentially compute the values π0 = 1, s
(1)
0 = 0, πj+1 = πj · (1− pj+1),

s
(1)
j+1 = s

(1)
j + pj+1/(1 − pj+1),

– then s
(2)
0 = 0, s

(2)
j+1 = s

(2)
j + oj+1 · s(1)

j ,

– and finally, all n values P
(3)
k = πk−1 · pk · s(2)

k−1.

Linear-time algorithm for a general K. For an arbitrary K, we estimate v(x) is
the average of the values of v in the closest, second closest, . . . , and the K-th
closest points. Thus, to find this estimate (and to find the mean and the standard

deviation of this estimate), we must be able to compute the probability P
(J)
k ,

J = 1, . . . , K, that xk is the J-th closest point. Similar to the case K = 2, we

conclude that P
(J)
k = πk−1 ·pk ·s(J−1)

k−1 , where s
(J−1)
j

def
=

∑

i1<...<iJ−1≤j

oi1 ·. . .·oiJ−1
.

Here, s
(J)
j+1 = s

(J)
j +oj+1 ·s(J−1)

j . Thus, all the probabilities P
(J)
k can be computed

in linear time if we:

– first sequentially compute the values π0 = 1, s
(1)
0 = 0, πj+1 = πj · (1− pj+1),

s
(1)
j+1 = s

(1)
j + pj+1/(1 − pj+1),

– then the values s
(2)
0 = 0, s

(2)
j+1 = s

(2)
j + oj+1 · s(1)

j ,

– then the values s
(3)
0 = 0, s

(3)
j+1 = s

(3)
j + oj+1 · s(2)

j ,
– . . .
– then the values s

(J)
j+1 = s

(J)
j + oj+1 · s(J−1)

j ,
– . . .
– then the values s

(K−1)
j+1 = s

(K−1)
j + oj+1 · s(K−2)

j ,

– and finally, all n values P
(J)
k = πk−1 · pk · s(J−1)

k−1 for all k and J = 1, . . . , K.

There are K linear-time steps, so, for all K, we can indeed compute the effect
of trust in linear time O(n).



Comment. The exact formulas require that we consider all n map points. How-
ever, the probability that the k-th point is the closest is proportional to the
probability πk−1 of k small values 1 − pi. Even if each of these values is 10%,
very fast the product becomes negligibly small. Thus, in practice, to find the ef-
fects on v(x), we only need to consider a few neighboring points of this point x.

5 Related Work and Discussion

The uses of provenance and trust are dictated by the goals of the particular sys-
tems; because various dimensions of provenance can be used to achieve various
goals, there is no one use fits all. For instance, a first category of provenance
systems aim at providing users with a sort of “history of changes” associated
with some workflow, thus their view of provenance differs from that of a second
category of provenance systems, which aim at providing provenance for use of
debugging, or understanding an unexpected result. A third category of prove-
nance systems record events that are well suited for re-executing the workflow
it is derived from. From this point of view, the TrustMap approach is more
appropriate for the second category of provenance systems.

VisTrails, a provenance and data exploration system, provides an infras-
tructure for systematically capturing provenance related to the evolution of a
workflow [5]. VisTrails users edit workflows while the system records the various
modifications being applied. In the context of this system, provenance informa-
tion refers to the modifications or history of changes made to particular work-
flow in order to derive a new workflow; modifications include, adding, deleting
or replacing workflow processes. VisTrails provides a novel way to render this
history of modifications. A treelike structure provides a representation for prove-
nance where nodes represent a version of some workflow and edges represent the
modification applied to a workflow. Upon accessing a particular node of the
provenance tree, users of VisTrails are provided with a rendering of the scientific
result which was generated as a result of the workflow associated with the node.
In the context of VisTrails, only workflows that generate visualizations are tar-
geted, however the authors describe how this system could be transformed to
handle the general case as provided by Probe-It!; to provide a framework that
can manage and graphically render any scientific result ranging from processed
datasets to complex visualizations.

MyGrid, from the e-science initiative, tracks data and process provenance of
workflow executions. Authors of MyGrid draw an analogy between the type of
provenance they record for in-silico experiments and the kind of information that
a scientist records in a notebook describing where, how and why experimental
results were generated [20]. From these recordings, scientists are able to operate
in three basic modes: (i) debug, (ii) check validity, and (iii) update mode, which
refer to situations when, a result is of low quality and the source of error must be
identified, when a result is novel and must be verified for correctness, or when
a workflow has been updated and its previous versions are requested. Based
on particular user roles, the appropriate dimension of provenance is presented,



knowledge, organization, data, or process level [20]. MyGrid is yet another sys-
tem that supports different tasks or uses of provenance, thus there are multiple
“modes” that users can operate in that effectively show only provenance rele-
vant for a particular task. We believe that all levels of provenance are required
in order for scientists to identify the quality of complex results.

Currently, MyGrid RDF provenance is viewed using Haystack [18]. Haystack
displays the provenance log as a labeled directed graph tailored to the needs of a
specific user; only relevant provenance elements related to the role of the specific
user browsing the provenance are rendered. In this scenario, connections be-
tween different resources are rendered allowing users to realize the relationships
between provenance elements such as inputs/outputs and applied processes and
thus realize the execution trace. MyGrid however is moving towards presenting
provenance as a set of linked documents, which are browsed similarly to HTML
documents on the Web. In this case, each provenance document is just a piece
of the whole, thus providing users with local views of the provenance graph.

The Earth Science System Workbench (ESSW) is another effort at capturing
and presenting scientific results to users [6]. Upon user requests, ESSW lever-
ages a suite of Notebook tools that can display both the scientific result and the
associated provenance. Stored scientific visualizations such as swaths [6] are ren-
dered in HTML upon request; the request is in the form of a query. Additionally,
ESSW leverages GraphViz [10] in order to graphically render the execution trace
in the form of a directed graph, where nodes are data objects and edges define
relationships between objects, similarly to how Probe-It! renders justifications.

Karma [19] is a non-obtrusive provenance recorder for scientific results from
Indiana University. Karma, unlike ESSW provides an in-house approach for ren-
dering provenance; an algorithm accurately pieces together a directed acyclic
graph that describes the data or process provenance. Karma is primarily tar-
geted at capturing provenance associated with service oriented workflows, thus
rich provenance associated with Web service invocations are captured by the
system.

On the commercial side, ArcGIS from ESRI allows users to both develop and
execute workflows (or “models” as called by ArcGIS). From a workflow, users
have access to the final result, i.e., a map, intermediate results, and meta-data
associated with the source data. Additionally, all these elements associated with
a model can be visualized. ArcGIS tools draw no distinction between executable
models and execution traces of models; no view of a model’s execution trace is
provided, only the model itself. Therefore, ArcGIS may not necessarily support
provenance visualization and trust recommendations as defined in this paper.
However the model provides certain features such as data point visualization
which can be used to analyze final results and thus identify and explain map
imperfections.

This study on provenance and trust is an attempt to verify the effectiveness of
new methods for quality assessment other than the more traditional approaches
such as uncertainty propagation or error-model development, which we believe
are complimentary to provenance visualization. In 1991, the National Center



for Geographic Information and Analysis (NCGIA), held a four day meeting,
in which GIS and spatial data expert met and tried to come to a consensus
on the definition spatial quality and the different factors that contribute to it.
Additionally, the participants expressed their thoughts on how quality could be
visualized; some of the participants even suggested that users of GIS systems, as
well as being able to visualize target data, should also be provided with visual-
izations of the error model associated with that data. However, the majority felt
that when applicable, datasets should be visualized as some graphic or image
rather than in its raw tabular for, thus enabling researchers to identify aberrant
data more rapidly [1]. The discussion at that time did not appear to move into
a more complex notion of trust as presented in this paper.

6 Conclusions

This paper described the TrustMap approach for trust recommendations in sup-
port of a map generated from a real end-to-end, cyber-infrastructure based ap-
plication. The paper described the techniques and infrastructure required for
the generation of trust recommendations. Requirements include the use of map
provenance information encoded in the Proof markup Language to identify the
multiples sources of information used to derive the map; the use of CI-Learner
to extract social networks from scientific portals that include people and organi-
zation identified as information source for the map; and the use of EigenTurst to
compute aggregated trust values for the sources. With the identification of the
map provenance, sources, and degree of trust on the sources, the paper described
some approaches for computing trust recommendations.

Acknowledgments

This work was supported in part by NSF grant HRD-0734825 and by DHS grant
2008-ST-062-000007.

References

1. K. Beard, Barbara, Buttenfield, and W. Mackaness. Visualization of the Quality
of Spatial Information: Closing Report. Technical report, University of Maine and
University of New York, 1994.

2. M. D. Cock and P. Pinheiro da Silva. A Many Valued Representation and Propa-
gation of Trust and Distrust. In In Proceedings of International Workshop on Fuzzy
Logic and Applications (WILF2005), pages 108–113, Crema, Italy, 2006. Springer.

3. M. Dean and G. Schreiber. OWL web ontology language reference. Technical
report, W3C, 2004.

4. N. Del Rio and P. Pinheiro da Silva. Probe-it! visualization support for prove-
nance. In Proceedings of the Second International Symposium on Visual Computing
(ISVC 2), pages 732–741, Lake Tahoe, NV, 2007. Springer.



5. J. Freire, C. T. Silva, S. P. Callahan, E. Santos, C. E. Scheidegger, and H. T. Vo.
Managing Rapidly-Evolving Scientific Workflows. In Proceedings of the Interna-
tional Provenance and Annotation Workshop (IPAW), 2006. (to appear).

6. J. Frew and R. Bose. Earth System Science Workbench: A Data Management
Infrastructure for Earth Science Products. In Proceedings of the 13th International
Conference on Scientific and Statistical Database Management, pages 180–189,
Fairfax, VA, July 2001.

7. R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust and
distrust. In Proceedings of the 13th international conference on World Wide Web,
pages 403–412. ACM Press, 2004.

8. A. Jøsang, R. Ismail, and C. Boyd. A survey of trust and reputation systems for
online service provision. In Decision Support Systems (to appear), 2006.

9. S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The eigentrust algorithm
for reputation management in p2p networks. In Proceedings of the 12th interna-
tional conference on World Wide Web, 2003.

10. A. R. Labs. AT&T Graphiz. http://www.graphviz.com.
11. B. Ludas̈cher and et al. Scientific Workflow Management and the Kepler System.

Concurrency and Computation: Practice & Experience, 2005. Special Issue on
Scientific Workflows.

12. P. Massa and P. Avesani. Trust-aware collaborative filtering for recommender sys-
tems. In Proceedings of the Federated International Conference On The Move to
Meaningful Internet: CoopIS, DOA, ODBASE, pages 492–508, 2004.

13. D. L. McGuinness and P. Pinheiro da Silva. Infrastructure for Web Explanations.
In D. Fensel, K. Sycara, and J. Mylopoulos, editors, Proceedings of 2nd Interna-
tional Semantic Web Conference (ISWC2003), LNCS-2870, pages 113–129, Sani-
bel, FL, USA, October 2003. Springer.

14. D. L. McGuinness and P. Pinheiro da Silva. Explaining Answers from the Seman-
tic Web. Journal of Web Semantics, 1(4):397–413, October 2004.

15. D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language Overview.
Technical report, World Wide Web Consortium (W3C), February 10 2004. Rec-
ommendation.

16. P. Pinheiro da Silva, D. L. McGuinness, and R. Fikes. A Proof Markup Language
for Semantic Web Services. Information Systems, 31(4-5):381–395, 2006.

17. P. Pinheiro da Silva, D. L. McGuinness, and R. McCool. Knowledge Provenance
Infrastructure. IEEE Data Engineering Bulletin, 25(2):179–227, December 2003.

18. D. Quan, D. Huynh, and D. Karger. Haystack: A platform for authoring end user
semantic Web applications. In Proceedings of the International Semantic Web
Conference (ISWC), pages 738–753, 2003.

19. Y. L. Simmhan, B. Pale, and D. Gannon. A Survey of Data Provenance Tech-
niques. Technical Report IUB-CS-TR618, Computer Science Department, Indiana
University, USA, 2005.

20. J. Zhao, C. Wroe, C. Goble, R. S. andq D. Quan, and M. Greenweed. Using Se-
mantic Web Technologies for Representing E-science Provenance. In Proceedings
of the 3rd International Semantic Web Conference, pages 92–106, November 2004.

This article was processed using the LATEX macro package with LLNCS style


