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Abstract. One of the important problems of semantic web is checking
whether two datasets describe the same quantity. The existing solution
to this problem is to use these datasets’ ontologies to deduce that these
datasets indeed represent the same quantity. However, even when ontolo-
gies seem to confirm the identify of the two corresponding quantities, it is
still possible that in reality, we deal with somewhat different quantities.
A natural way to check the identity is to compare the numerical values of
the measurement results: if they are close (within measurement errors),
then most probably we deal with the same quantity, else we most proba-
bly deal with different ones. In this paper, we show how to perform this
checking, and how to use similar techniques to estimate the uncertainty
of the results of data processing.

Key words: semantic web, ontology, uncertainty, probabilistic ap-
proach, Maximum Entropy approach, data processing, safety factors

1 Checking Whether Two Datasets Represent the Same
Data: A Problem

Formulation of the problem. In the semantic web, data are often encoded in
Resource Description Framework (RDF) [9]. In RDF, every piece of information
is represented as a triple consisting of a subject, a predicate, and an object. For
example, when we describe the result of measuring the gravitation field, the
coordinates at which we perform the measurements for a subject, a predicate
is a term indicating that the measured quantity is a gravitational field (e.g., a
term hasGravityReading), an the actual measurement result is an object.

In general, an RDF-based scientific dataset can be viewed as a (large) graph
of RDF triples. One of the hard-to-solve problems is that triples in two different
datasets using the same predicate hasGravityReading may not mean the same
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thing just because the predicates have the same name. One way to check this is
to use semantics, i.e., to specify the meanings of the terms used in both datasets
by an appropriate ontology, and then use reasoning to verify that the mean-
ing of the terms is indeed the same. In the gravity example, we conclude that
the predicate hasGravityReading has the same meaning in both datasets if in
both datasets, this meaning coincides with sweet:hasGravityReading, the mean-
ing of this term in one of the the Semantic Web for Earth and Environmental
Terminology (SWEET) ontologies [10] that deals with gravity.

Need to take uncertainty into account. Even when ontologies seem to infer that
we are dealing with the same concept, there is still a chance that the two datasets
talk about slightly different concepts. To clarify the situation, we can use the
fact that often, the two datasets contain the values measured at the same (or
almost the same) locations. In such cases, to confirm that we are indeed dealing
with the same concept, we can compare the corresponding measurement results
x′1, . . . , x

′
n and x′′1 , . . . , x′′n. Due to measurement uncertainty, the measured values

x′i and x′′i are, in general, slightly different.
The question is: Based on the semantically annotated measurement results

and the known information about the measurement uncertainty, how can we use
the uncertainty information to either reinforce or question whether two datasets
namely representing the same data may not be the same data.

2 Checking Whether Two Datasets Represent the Same
Data: Towards a Solution

Probabilistic approach to measurement uncertainty. To answer the above ques-
tion, we must start by analyzing how the measurement uncertainty is repre-
sented. In this paper, we consider the traditional probabilistic way of describing
measurement uncertainty.

In the engineering and scientific practice, we usually assume that for each
measuring instrument, we know the probability distribution of different values
of measurement error ∆x′i

def= x′i−xi. This assumption is often reasonable, since
we can calibrate each measuring instrument by comparing the results of this
measuring instrument with the results of a “standard” (much more accurate)
one. The differences between the corresponding measurement results form the
sample from which we can extract the desired distribution.

Often, after the calibration, it turns out that the tested measuring instrument
is somewhat biased in the sense that the mean value of the measurement error
is different from 0. In such cases, the instrument is usually re-calibrated – by
subtracting this bias (mean) from all the measurement results – to make sure
that the mean is 0. Thus, without losing generality, we can also assume that the
mean value of the measurement error is 0: E[∆x′i] = 0.

The degree to which the measured value x′i differs from the actual value xi

is usually measured by the standard deviation σ′i
def=

√
E[(∆x′i)2]. In addition to
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standard deviation, we can also estimate other characteristics of the correspond-
ing probability distribution, e.g., its third central moment (skewness) describes
the degree of a asymmetry), the fourth central moment (excess) describes the
“heaviness” of the distribution’s tails, etc.

Gaussian distribution: justification and consequences. The measurement error is
usually caused by a large number of different independent factors. It is known
that under certain reasonable conditions, the joint effect of a large number of
small independent factors has a probability distribution which is close to Gaus-
sian; the corresponding results – known as Central Limit Theorems [11] – are
the main reason why Gaussian (normal) distribution is indeed widely spread in
practice.

As a result, it is reasonable to assume that the distribution for ∆x′i is Gaus-
sian. It is known that a Gaussian distribution is uniquely determined by its mean
and its standard deviation. Since the mean value of the measurement error is 0,
to describe the measurement uncertainty, it is sufficient to describe the standard
deviation σ′i.

Towards a solution. We do not know the actual values xi, we only know the
measurement results x′i and x′′i from the two datasets. For each i, the difference
between these measurement results can be described in terms of the measurement
errors:

∆xi
def= x′i − x′′i = (x′i − xi)− (x′′i − xi) = ∆x′i −∆x′′i .

It is reasonable to assume that this difference is also normally distributed. Since
the mean values of ∆x′i and ∆x′′i are zeros, the mean value of their difference
∆xi is also 0, so it is sufficient to find the standard deviation σi =

√
Vi of ∆xi.

In general, for the sum of two Gaussian variables, we have

σ2
i = (σ′i)

2 + (σ′′i )2 + 2ri · σ′i · σ′′i ,

where ri =
E[∆x′i ·∆x′′i ]

σ′i · σ′′i
is the correlation between the i-th measurement errors.

It is known that the correlation ri can take all possible values from the interval
[−1, 1]:

– the value ri = 1 corresponds to the maximal possible (perfect) positive
correlation, when ∆x′′i = a ·∆x′i + b for some a > 0;

– the value ri = 0 corresponds to the case when measurement errors are inde-
pendent;

– the value ri = −1 corresponds to the maximal possible (perfect) negative
correlation, when ∆x′′i = a ·∆x′i + b for some a < 0.

Other values correspond to imperfect correlation. The problem is that usually,
we have no information about the correlation between measurement errors from
different datasets.
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First idea: assume independence. A usual practical approach to situations in
which we have no information about possible correlations is to assume that the
measurement errors are independent.

A possible (somewhat informal) justification of this assumption is as follows.
Each correlation ri can take any value from the interval [−1, 1]. We would like
to choose a single value rij from this interval.

We have no information why some values are more reasonable than others,
whether non-negative correlation is more probable or non-positive correlation
is more probable. Thus, our information is invariant with respect to the change
ri → −ri, and hence, the selected correlation value ri must be invariant w.r.t. the
same transformation. Thus, we must have ri = −ri, thence ri = 0. A somewhat
more formal justification of this selection can be obtained from the Maximum
Entropy approach (see the following text). Under the independence assumption,
we have (σi)2 = (σ′i)

2 + (σ′′i )2.
Once we know the values, we can use the χ2 criterion (see, e.g., [11]) to

check whether with given degree of confidence α, the observed differences are
consistent with the assumption that these differences are normally distributed
with standard deviations σi:

n∑

i=1

(∆xi)2

(σi)2
≤ χ2

n,α.

If this inequality is satisfied, i.e., if
n∑

i=1

(∆xi)2

(σ′i)2 + (σ′′i )2
≤ χ2

n,α,

then we conclude that the two datasets indeed describe the same quantity. If this
inequality is not satisfied, then most probably, the datasets describe somewhat
different quantities.

On the other hand, there is another possibility: that the two datasets do
describe the same quantity, but the measurement errors are indeed correlated.

An alternative idea: worst-case estimations. If the above inequality holds for
some values σi, then it holds for larger values σi as well. To take into account
the possibility of correlations, we should only reject the similarity hypothesis
when the above inequality does not hold even for the largest possible values σi.

Since |ri| ≤ 1, we have (σi)2 ≤ Vi
def= (σ′i)

2 + (σ′′i )2 + 2σ′i · σ′′i . The value Vi

is attained for ∆x′′i = −σ′′i
σ′i
·∆x′i. So, the largest possible value of σ2

i is equal to

Vi. One can easily check that Vi = (σ′i + σ′′i )2. Thus, in this case, if
n∑

i=1

(
∆xi

σ′i + σ′′i

)2

≤ χ2
n,α,

then we conclude that the two datasets indeed describe the same quantity. If this
inequality is not satisfied, then most probably, the datasets describe somewhat
different quantities.
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Conclusion. In this section, we considered the following question: Based on the
semantically annotated measurement results and the known information about
the measurement uncertainty, how can we use the uncertainty information to
either reinforce or question whether two datasets namely representing the same
data may not be the same data.

Specifically, we assume the some values from the two datasets contain the
results of measuring the same quantity at the same location and/or moment of
time. Let n denote the total number of such measurements, let x′1, . . . , x

′
n denote

the corresponding results from the first dataset, and let x′′1 , . . . , x′′n denote the
measurement results from the second dataset. We assume that we know the
standard deviations σ′i and σ′′i of these measurements, and that we have no
information about possible correlation between the corresponding measurement
errors. In this case, we apply the Maximum Entropy approach, and conclude that

if
n∑

i=1

(∆xi)2

(σ′i)2 + (σ′′i )2
≤ χ2

n,α, where χ2
n,α ≈ n is the value of the χ2-criterion for

the desired certainty α, then this reinforces the original conclusion that the two
datasets represent the same data. If the above inequality is not satisfied, then we
conclude that either the two datasets represent different data (or, alternatively,
that the measurement uncertainty values σ′i and σ′′i are underestimated).

If we have reasons to suspect that the measurement errors corresponding to
two databases may be correlated, then can be more cautious and reinforce the

original conclusion even when a weaker inequality is satisfied:
n∑

i=1

(
∆xi

σ′i + σ′′i

)2

≤
χ2

n,α.

3 Estimating Uncertainty of the Results of Data
Processing: Introduction to the Problem

So far, we have considered an important current problem of semantic web: how
to check whether two datasets describe the same quantity. A similar approach
turns out to be useful also in solving similar problems related to the future use of
semantic web for data processing: namely, the problem of estimating uncertainty
of the results of data processing.

Need for data processing. In many practical situations, we are interested in the
value of a physical quantity y which is difficult (or even impossible) to measure
directly. For example, in geophysics, we would like to know the density and the
velocity of sound at different geographic locations and different depths.

Since it is difficult to measure y directly, a natural solution is to measure y
indirectly:

– first, we measure easier-to-measure auxiliary quantities x1, . . . , xn which are
related to y by a known algorithmic dependence y = f(x1, . . . , xn);

– then, we apply the algorithm f to the results x̃1, . . . , x̃n of these auxiliary
measurements and produce the desired estimate ỹ = f(x̃1, . . . , x̃n) for y.
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For example, to measure the velocity of sound at different locations and at
different depths, we set up explosions and measure the time during which the
sound waves generated by these explosions travel to different locations. Similarly,
to measure densities at different locations, we can measure the local variations
of the gravitational field generated by the different densities; see, e.g., [7].

Need for estimating uncertainty of the result of data processing. Measurements
are never 100% accurate: the result x̃i of measuring a physical quantity is, in
general, different from the actual (unknown) value xi of this quantity. Due to
this uncertainty, the result ỹ = f(x̃1, . . . , x̃n) of data processing is, in general,
different from the ideal value y = f(x1, . . . , xn) of the desired quantity y.

Often, there is another reason why the estimate ỹ is different from the actual
value y: usually, the dependence y = f(x1, . . . , xn) is only approximately known
and/or y may also depend on the values of some other quantities whose values we
do not know. In this paper, we mainly concentrate on the situations in which the
dependence f is known with high accuracy and for which, therefore, uncertainty
in y is mainly due to the uncertainty of measuring xi. For example, in the above
geophysical example, we have a pretty good physical understanding of how the
sound propagates through a solid body; however, since we only can only measure
travel times with some uncertainty, we can only get the resulting velocities with
uncertainty. To use our techniques in other situations, we must also take into
account the uncertainty with which we know the dependence f .

In situations in which the uncertainty in f can be ignored, the resulting
uncertainty in y is mainly caused by the uncertainties in xi.

Linearization. Measurement errors ∆xi are usually relatively small. As a result,
terms which are quadratic and of higher order in terms of ∆xi can be usually
safely ignored. For example, if ∆xi ≈ 10%, then (∆xi)2 ≈ 1% ¿ 10%. The
resulting linearization of the dependence of ∆y on ∆xi can be used to simplify
computations.

Specifically, by definition of the measurement error ∆xi = x̃i − xi, hence
xi = x̃i −∆xi. So, the expression for ∆y takes the form

∆y = ỹ − y = f(x̃1, . . . , x̃i, . . . , x̃n)− f(x1, . . . , xn) =

f(x̃1, . . . , x̃i, . . . , x̃n)− f(x̃1 −∆x1, . . . , x̃i −∆xi, . . . , x̃n −∆xn).

When we expand this expression in Taylor series in terms of ∆xi and only keep
linear terms, we get

y = f(x̃1 −∆x1, . . . , x̃i −∆xi, . . . , x̃n −∆xn) ≈

f(x̃1, . . . , x̃i, . . . , x̃n)−
n∑

i=1

∂f

∂xi
·∆xi

and hence ∆y = ỹ − y =
n∑

i=1

ci ·∆xi, where we denoted ci
def=

∂f

∂xi
.
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Gaussian distribution: justification and consequences. For individual measure-
ments, we can have different types of probability distributions. However, for the
results of data processing, the situation is often different. Indeed, in data pro-
cessing, we usually combine a large number of measurement results with different
measurement errors. We have already mentioned that under certain reasonable
conditions, the joint effect of a large number of small independent factors has a
probability distribution which is close to Gaussian. As a result, it is reasonable
to assume that the distribution for ∆y is Gaussian. Since a Gaussian distribution
is uniquely determined by its mean and its standard deviation, it is sufficient to
find the mean E

def= E[∆y] and the standard deviation σ =
√

V of ∆y, where
V

def= V [∆y] = E[(∆y − E)2].
The mean E[∆y] is easy to estimate: since ∆y is a linear combination of the

measurement errors ∆xi, and the measurement errors are assumed to have 0

mean E[∆xi] = 0, we conclude that E = E[∆y] =
n∑

i=1

ci · E[∆xi] = 0. For the

variance V , we similarly get the formula

V = E[(∆y)2] =
n∑

i=1

n∑

j=1

ci · cj · E[∆xi ·∆xj ].

Here, for i = j, by definition of standard deviation, we have E[(∆xi)2] = σ2
i .

For i 6= j, we have E[∆xi ·∆xj ] = rij · σi · σj , where rij =
E[∆xi ·∆xj ]

σi · σj
is the

correlation between the i-th and the j-th measurement errors. Thus, we have

σ2 = V =
n∑

i=1

c2
i · σ2

i +
∑

i 6=j

rij · ci · cj · σi · σj .

In the traditional data processing, practitioners usually thoroughly analyze
the situation and come up with reasonable estimates for the correlations rij ;
thus, we get reasonable estimates for the the standard deviation σ of the ap-
proximation error ∆y.

Based on the Gaussian character of the distribution, we can conclude, e.g.,
that with probability ≈ 90%, we have |∆y| ≤ 2σ.

4 Estimating Uncertainty of the Results of Data
Processing: Specific Problems of Web Services

Specific problem of uncertainty estimation for web services. Lately, more and
more data processing is performed via web services, where different data at geo-
graphically different locations are automatically brought together and processed
together. This new development leads to additional difficulties in estimating the
uncertainty of the results of data processing.

Indeed, in the traditional data processing, practitioners usually thoroughly
analyze the situation and come up with reasonable estimates for the correlations.
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In the automatic data processing of web services, we often operate without an
easy possibility of such an analysis, and thus, without any information about
possible correlations.

First idea: assume independence. As we have mentioned, a usual practical ap-
proach to situations in which we have no information about possible correlations
is to assume that the measurement errors are independent. Under the indepen-
dence assumption, we have

σ2 = V =
n∑

i=1

c2
i · σ2

i .

Limitation of the independence assumption. The main limitation of the inde-
pendence assumption is that in many practical cases, this assumption leads to a
drastic underestimation of the corresponding uncertainty σ. In particular, this
is the case with the above geophysics example of determining velocities, where
the independence assumption leads to unrealistic estimates of σ ≈ 0.01 km/sec
at depths of 40 km – while a simple difference between two different method of
estimating the velocity leads to differences of the size 1 km/sec or even more [7].

An alternative idea: worst-case estimations. The independence approach is rea-
sonable if we try to find a single most representative set of correlation coefficients
rij , and use this set to estimate uncertainty. Since this approach leads to an un-
derestimation of σ, a natural next idea is to try all possible combinations of the
correlations rij , and to use the worst-case (largest) value of σ as the desired
estimate for the uncertainty of y.

From the fact that |rij | ≤ 1, we can easily conclude that rij · ci · cj · σi · σj ≤
|ci| · |cj | ·σi ·σj , and thus, that V ≤ Vw, where Vw

def=
n∑

i=1

n∑
j=1

|ci| · |cj | ·σi ·σj . One

can easily check that the expression Vw is a full square, i.e., that Vw = σ2
w, where

σw
def=

n∑
i=1

|ci| ·σi. This value can indeed be attained for appropriate correlations.

For example, if we take ξ as a normally distributed random variable with 0 mean
and standard deviation 1, then for ∆xi = ∆i · sign(ci) · ξ (where sign(a) def= 1 for
a > 0 and sign(a) def= −1 for a < 0), we get rij = sign(ci) · sign(cj), therefore,
rij · ci · cj · σi · σj = |ci| · |cj | · σi · σj and thus, V = Vw.

So, in the worst-case approach, we return σw as the desired estimate for the
uncertainty of y.

Comment: relation to interval computations. It is worth mentioning that from

the computational viewpoint, a similar formula ∆ =
n∑

i=1

|ci| · ∆i describes the

largest possible value of |∆y| in the interval computations case, when we do not
have any information about the probabilities of different values ∆xi, we only
know that ∆xi ∈ [−∆i,∆i] for some known values ∆i. Thus, to transform the
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values σi into the worst-case estimate σw, we can use the techniques developed
in interval computations to transform the values of ∆i into the estimate ∆; see,
e.g. [4].

Limitation of the worst-case approach. The main limitation of the independence
assumption is that in many practical cases, this assumption leads to a drastic
overestimation of the corresponding uncertainty σ. In particular, this is the case
with the above geophysics example of determining velocities, where the worst-
case approach leads to useless estimates of σw À 10 km/sec at depths of 40 km
– while without any measurements, we know that σw ≤ 8 km/sec [7].

In the following section, we describe a new approach that will lead us to
more adequate estimates. This approach is based on the Maximum Entropy
techniques.

5 A New Approach Based on Maximum Entropy
Techniques

Maximum Entropy techniques: reminder. In the traditional error estimation for
the result of data processing, we know the means (they are 0s), we know the
standard deviations σi, we know the correlations rij , and thus (under the Gaus-
sian assumption), we know the actual n-dimensional distribution on the set of
all possible of measurement errors (∆x1, . . . , ∆xn).

The main problem of uncertainty estimation for web services is that we often
do not know the values of the correlations rij . As a result, instead of a sin-
gle probability distribution in the n-dimensional space, we have many possible
probability distributions corresponding to different possible combinations of the
correlations rij .

This non-uniqueness situation is reasonably typical in mathematical statis-
tics. A traditional statistical approach to the situation when several prob-
ability distributions are possible is to select the “most uncertain” distribu-
tion, i.e., the distribution which has the largest possible value of the entropy
S

def= − ∫
ρ(x) · ln(ρ(x)) dx, where ρ(x) denotes the probability density. For de-

tails on this Maximum Entropy approach and its relation to Laplace’s principle
of indifference, see, e.g., [1, 5, 6].

It is known that for a single variable x1, among all distributions located on
a given interval, the entropy is the largest when this distribution is uniform on
this interval.

In general, if we know the marginal distributions ρi(xi) of several random
variables ξi, and we do not have any information about their correlation, then
the maximum entropy approach leads to the selection of a distribution in which
all these variables are independent: ρ(x1, . . . , xn) = ρ1(x1) · . . . · ρn(xn). This
is how the independence assumption is usually justified in the foundations of
statistics.

In particular, if we only know that each of n random variables ξi is located on
a certain interval xi = [xi, xi], then we can similarly conclude that the distribu-
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tion with the largest value of the entropy is the one which is uniformly distributed
in the corresponding box x1 × . . . × xi × . . . × xn, i.e., a distribution in which
each variable ξi is uniformly distributed on the corresponding interval [∆i,∆i],
and variables corresponding to different inputs are statistically independent.

Comment: relation to interval uncertainty. This is indeed one of the main ways
how interval uncertainty is treated in engineering practice: if we only know that
the value of some variable is in the interval [xi, xi], and we have no informa-
tion about the probabilities, then we assume that the variable xi is uniformly
distributed on this interval, and that different variables xi are independent.

A straightforward use of maximum entropy techniques leads to underestimation.
As we have mentioned, a straightforward use of the Maximum Entropy technique
leads to the independence assumption and thus, often, to underestimation of the
uncertainty in y.

New idea. Instead of trying to find a single combination of values rij , let us find
a single probability distribution on the set of all possible values of rij for i 6= j.

Derivations based on the new idea. Since rij = rji, it is sufficient to describe the
values rij for i < j. The only information that we have about each value rij is
that rij ∈ [−1, 1]. Thus, in line with the above consequences of the Maximum
Entropy approach, we assume that each value rij is uniformly distributed on the
interval [−1, 1], and that different values rij are independent random variables.

For the following computations, we use the fact that for the uniform distri-
bution on the interval [−1, 1], the mean is 0, and the variance is 1/3.

For large n, the resulting estimate for the variance

V =
n∑

i=1

c2
i · σ2

i + 2
∑

i<j

rij · ci · cj · σi · σj

is the sum of large number of independent small random variables. Therefore, due
to the Central Limit theorem, the resulting distribution of V is close to Gaussian.
Thus, we can safely assume that the variable V has a Gaussian distribution.

In general, the mean of a linear combination ξ =
∑

ai · ξ of n independent
random variables with means Ei and variances Vi is equal to

∑
ai ·Ei, and the

variance of ξ is equal to
∑

a2
i ·Vi. Thus, based on the known mean and variance

of each of the independent random variables rij , we can compute the mean EV

and the variance VV of the corresponding random variable V . Specifically, the

mean EV is equal to EV =
n∑

i=1

c2
i · σ2

i , i.e., to the variance Vind corresponding to

the case of independent measurement errors. The variance VV of V is equal to

VV =
4
3
·
∑

i<j

c2
i · c2

j · σ2
i · σ2

j . The expression for VV can be rewritten as

VV =
2
3
·
∑

i 6=j

c2
i · c2

j · σ2
i · σ2

j =
2
3
·
(

n∑

i=1

c2
i · σ2

i

)2

− 2
3
·

n∑

i=1

c4
i · σ4

i .
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We are interested in the case when we process a large number of data points,

i.e., when n is large. For large n, the sum
n∑

i=1

c2
i ·σ2

i is proportional to n and thus,

its square is proportional to n2. On the other hand, the second sum
n∑

i=1

c4
i · σ4

i

is proportional to n and is, thus, much smaller than the square term – which
is of size O(n2). Thus, we can safely ignore the second sum, and conclude that

VV ≈ 2
3
·
(

n∑

i=1

c2
i · σ2

i

)2

, and thus, that the standard deviation σV of the value

V is (approximately) equal to σV =
√

2
3
·

n∑
i=1

c2
i · σ2

i , i.e., to σV =
√

2
3
· Vind.

Thus, in line with the general properties of the Gaussian distribution, we
can conclude with the corresponding probability, the actual value V is below the

value Ṽ = EV +k0·σV =

(
1 + k0 ·

√
2
3

)
·Vind. Hence, we can use Ṽ as the desired

“almost” worst-case estimates for the variance of the results of web services, and

we can the square root σ̃ =
√

Ṽ =

√
1 + k0 ·

√
2
3
· σind of the variance estimate

as the desired estimate for the standard deviation for ∆y, where σind is the
estimate corresponding to the assumption of independent measurement errors.

Conclusion. For independent measurement errors, the standard deviation σi of

the result ỹ = f(x̃1, . . . , x̃n) of data processing is equal to σind =

√
n∑

i=1

c2
i · σ2

i ,

where σi is the standard deviation of the i-th measurement result x̃i and ci =
∂f

∂xi
(x̃1, . . . , x̃n).

For the case when we do not have any information about the dependence
of different measurement errors, it is reasonable to conclude that the standard

deviation σ of y is bounded by the value σ̃ =

√
1 + k0 ·

√
2
3
· σind. Here, the

value k0 determines the probability with which this conclusion holds:

– for k0 = 2, the inequality σ ≤ 1.62 · σind holds with probability 95%;
– for k0 = 3, the inequality σ ≤ 1.86 · σind holds with probability 99.95%;
– for k0 = 6, the inequality σ ≤ 2.43 ·σind holds with probability 1−0.5 ·10−6.

In order words, to take into account possible correlations between the measure-
ment errors, we must multiply the estimate based on the independence assump-
tion by a constant factor depending on the desired reliability of this estimate.

Cases when this estimate makes physical sense: relation to the engineering idea
of safety factors. A similar idea has been used in engineering for several cen-
turies: e.g., to take uncertainty into account, engineers have multiplied the de-
sired strength of a building by an empirical constant factor called safety factor,
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usually from 1.5-2 for regular building to 3-4 for more critical constructions;
see, e.g., [2, 3]. So, our factors are in good accordance with the empirical values
obtained from the engineering practice.

Cases when other estimates are needed. The above estimates do not always make
physical sense. For example, as we have mentioned, for the geophysical problem,
the estimates based on the independence assumption are too low, and even if we
multiply these estimates by a factor of 1.65-2.43, the results will still be too low.

From the physical viewpoint, this underestimation is cased by the fact that
the measurement errors are positively correlated. For such cases, an alternative
approach have been proposed in [7].
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