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Abstract. It is known that interval-valued fuzzy sets provide a more
adequate description of expert uncertainty than the more traditional
“type-1” (number-valued) fuzzy techniques. In the current approaches
for using interval-valued fuzzy techniques, it is usually assumed that all
fuzzy sets m(x) ∈ [m(x), m(x)] are possible. In this paper, we show that
it is reasonable to restrict ourselves only to fuzzy numbers m(x), i.e.,
“unimodal” fuzzy sets. We also describe feasible algorithms for imple-
menting thus modified intelligent control.
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1 Introduction

Need for intelligent control. In many practical control situations, there is
a small number of experts skilled in the corresponding control. Since there are
only a few such skilled experts, they are unable to personally control all needed
situations. It is therefore desirable to design an automated system that would
implement their expertise.

Need to use fuzzy sets. Experts are often only able to describe their control by
using imprecise (fuzzy) words from natural language such as “small” or “close
to 0”. To translate such knowledge into a numerical strategy, Zadeh invented
fuzzy logic. For each natural-language property P like “small” and for every
possible value x of the corresponding quantity, an expert is often not 100%
certain whether x satisfies the property P . We describe his or her certainty by a
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degree m(x) from the interval [0, 1]. These degrees form a fuzzy set. To be a more
precise, a fuzzy set is usually defined as a function m which maps all possible
values of the corresponding quantity into the interval [0, 1]; see, e.g., [2, 7]. The
function m is also called a membership function.

“Unimodular” fuzzy sets – fuzzy numbers. Usually, fuzzy sets are “uni-
modular” in the sense that the corresponding membership function m(x) first
(non-strictly) increases (usually, from 0 to 1), and then (non-strictly) decreases
(usually, from 1 to 0). Such fuzzy sets are also known as fuzzy numbers.
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Need for a defuzzification. Based on the expert’s rules and the formulas of
fuzzy logic, we translate the fuzzy sets corresponding to the natural-language
terms into a fuzzy set that describes reasonable control values. Since we want a
single control values, we must use a special defuzzification procedure.

Usually, a centroid defuzzification is used, in which we transform a member-
ship function m(x) into the “centroid” value

u =
∫

x ·m(x) dx∫
m(x) dx

. (1)

Need for interval-valued fuzzy sets. In practice, just like an expert cannot
be 100% sure whether a given value x is small, this same expert cannot describe
her degree of certainty by an exact number. At best, she can produce an interval
[m(x),m(x)] of possible values. As a result, we get interval-valued fuzzy sets;
see, e.g., [5, 6].

-¡
¡

¡
¡

¡
¡

¡
¡

¡

¡
¡

¡
¡

¡
¡

¡

HHHHHHHHHHHHHHHHHH

HHHHHHHHHHHHHH x

6m(x)

1

0



3

The resulting interval-valued fuzzy set can be viewed as a class of all fuzzy
sets m for which, for every x, the value m(x) is within this interval:
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How to defuzzify an interval-valued fuzzy set. As a result of defuzzifying
an interval-valued fuzzy set [m(x),m(x)], it is thus reasonable to take the interval
formed by the results of defuzzifying all fuzzy sets m(x) ∈ [m(x), m(x)].

Efficient algorithms have been designed for computing this interval; see, e.g.,
[3–6]. These algorithms and the main ideas behind these intervals are presented
in the following text.

Problem. As we will see, the endpoints of these intervals are sometimes only
attained for un-natural fuzzy sets – which are not fuzzy numbers.

What we do in this paper. In this paper, we propose to restrict ourselves to fuzzy
numbers m(x), and we design a feasible algorithm for computing the resulting
(narrower) interval.

2 Algorithm for Defuzzification of Interval-Valued Fuzzy
Sets: Reminder

Need to describe the algorithm and its motivations. Since our objec-
tive is to explain the problems with the existing defuzzification algorithm for
interval-valued fuzzy sets, and to propose a modified algorithm that solves these
problems, let us first describe this algorithm – and the motivations behind this
algorithm.

How can we represent a generic membership function in a computer.
We are interested in producing the algorithm for defuzzification. The input to
this algorithm is a membership function. So, to describe the algorithm, we first
need to describe how we can represent a generic membership function m(x) in
a computer.

Some membership functions are determined by their analytical (or algorith-
mic) expression. For example, a piece-wise linear membership function pictured
above can be represented by explicit formulas for its linear parts. However, for a
generic membership function, there is no analytical or algorithmic expressions.
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Instead, from experts, we get the degrees m(xi) to which different values xi are
possible. In practice, we can only ask a finite number of questions to an expert,
so we have only finitely many values xi.

It is therefore reasonable to represent the “input” membership functions –
describing such terms as “small” – by their values at a finite number of points.

Usually, a membership function m(x) is represented by its values mi
def= m(xi)

on a uniform grid xi = x0 + i · h for some h > 0.

How to describe centroid defuzzification under this representation.
When we know the values mi = m(xi) of a function m(x) on a grid, a natural
way to approximate an integral

∫
m(x) dx of this function is by using the corre-

sponding integral sum:
∫

m(x) dx ≈
n∑

i=1

m(xi) ·∆xi, where ∆xi = xi+1−xi = h.

In other words, the resulting integral sum is simply proportional to the sum of

the corresponding values:
∫

m(x) dx ≈ h ·
n∑

i=1

mi.

Similarly, the integral in the numerator of the centroid formula can be ap-

proximated as
∫

x ·m(x) dx ≈ h ·
n∑

i=1

xi ·mi. When we divide this integral sum by

the previous one, the factors h in the numerator and in the denominator cancel
each other, so we end up with the following formula for the result u of centroid
defuzzification:

u =

n∑
i=1

xi ·mi

n∑
i=1

mi

. (2)

Towards defuzzication for interval-valued fuzzy sets. In the interval-
valued case, for every i, instead of the exact value of mi, we only know the
interval [mi, mi] of possible values of mi, where mi

def= m(xi) and mi
def= m(xi).

For different values mi ∈ [mi, mi], we get, in general, different values of u.
Our objective is to find the range of possible value of u when mi ∈ [mi,mi].

The function (2) is continuous; thus, its range on a connected closed bounded
box [m1, m1]× . . .× [mn, mn] is an interval. We will denote the endpoints of this
interval by u and u. Thus, to find the range, it is sufficient to find the smallest
possible and the largest possible values of the expression (2) under the condition
mi ∈ [mi, mi].

Derivation of the formula for u. Let us start with the maximum. Let
m̃1, . . . , m̃n be the values at which the maximum is attained. It is well known,
from calculus, that when maximum is attained inside the interval m̃i ∈ (mi, mi),

then the corresponding partial derivative
∂u

∂mi
is equal to 0.
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When the maximum is attained at m̃i = mi, then we cannot have
∂u

∂mi
> 0,

since then, for some small ε > 0, the value at mi = m̃i + ε will be even larger.

Thus, we must have
∂u

∂mi
≤ 0.

Similarly, when the maximum is attained at m̃i = mi, then we cannot have
∂u

∂mi
< 0, since then, for some small ε > 0, the value at mi = m̃i − ε will be

even larger. Thus, we must have
∂u

∂mi
≥ 0.

The partial derivative of the expression (2) is straightforward to compute: it
is equal to

∂

∂mi




n∑
j=1

xj ·mj

n∑
j=1

mj


 =

xi ·
(

n∑
j=1

mj

)
−

n∑
j=1

xj ·mj

(
n∑

j=1

mj

)2 =
xi − u
n∑

j=1

mj

.

Since all the values of mj of the membership function are non-negative, the sign
of the partial derivative coincides with the sign of the difference xi − u.

Thus, we arrive at the following conclusions:

– if mi < m̃i < mi, then xi = u;
– if m̃i = mi, then xi ≤ u;
– if m̃i = mi, then xi ≥ u.

So, if xi < u, we cannot have mi < m̃i < mi and we cannot have m̃i = mi,
so the only remaining possibility is m̃i = mi.

Similarly, if xi > u, we cannot have mi < m̃i < mi and we cannot have
m̃i = mi, so the only remaining possibility is m̃i = mi.

It should be mentioned that when xi = u, then replacing m̃i with any other
value mi ∈ [mi, mi] does not change the expression (2) and thus, for this partic-
ular i, we can pick any value mi ∈ [mi, mi].

Thus, we arrive at the following formula.

Resulting formula for u. In the discrete case, the maximum u is attained
when we choose mi = mi for all i for which xi < u and mi = mi for all i for
which xi ≥ u:

u =

∑
i:xi<u

xi ·mi +
∑

j:xj≥u

xj ·mj

∑
i:xi<u

mi +
∑

j:xj≥u

mj
. (3)

Similarly, in the continuous case, the maximum u is attained when we choose
m(x) = m(x) for all x < u and m(x) = m(x) for all x ≥ u:

u =

u∫
−∞

x ·m(x) dx +
∞∫
u

x ·m(x) dx

u∫
−∞

m(x) dx +
∞∫
u

m(x) dx

. (4)
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Resulting formula for u. Similarly, we can conclude that in the discrete case,
the minimum u is attained when we choose mi = mi for all i for which xi < u
and mi = mi for all i for which xi ≥ u:

u =

∑
i:xi<u

xi ·mi +
∑

j:xj≥u

xj ·mj

∑
i:xi<u

mi +
∑

j:xj≥u

mj

. (5)

In the continuous case, the minimum u is attained when we choose m(x) = m(x)
for all x < u and m(x) = m(x) for all x ≥ u:

u =

u∫
−∞

x ·m(x) dx +
∞∫
u

x ·m(x) dx

u∫
−∞

m(x) dx +
∞∫
u

m(x) dx

. (6)
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How can we actually compute u and u: analytical case. For the case when
m(x) and m(x) are given by analytical formulas, we can explicitly integrate both
numerator and denominator and get algebraic equations for the unknown values
u or u.
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How can we actually compute u and u: towards an algorithm for the
general case. How can we perform these computations in the general case? The
above formulas (3) and (5) require that we know u and u in order to find the
appropriate values mi ∈ [mi, mi]. Thus, the above formulas do not directly lead
to an efficient algorithm for computing u and u.

The possibility to efficiently compute u and u comes from the fact that, e.g.,
in the formula (3), all we need to know is where exactly u is in comparison with
the values x1 < x2 < . . . < xn. For simplicity, let us supplement these values
with x0 = −∞ and xn+1 = +∞. Then, the real line is divided into n + 1 (finite
or infinite) intervals (xk, xk+1], k = 0, 1, . . . , n. So, to find u, it is sufficient to
try all these n + 1 intervals.

We will describe the arguments in details for the case of the maximum. For
the minimum, the arguments are similar.

If xk < u ≤ xk+1, then the formula (3) can be rewritten as u = uk
def=

Nk

Dk

,

where

Nk
def=

k∑

i=1

xi ·mi +
n∑

j=k+1

xj ·mj ,

and

Dk
def=

k∑

i=1

mi +
n∑

j=k+1

mi.

We only need to consider values k for which xk < uk ≤ xk+1.
So, we compute the ratios uk for all k, keep only those ratios for which the

inequality xk < uk ≤ xk+1 is satisfied, and then return the largest of the kept
ratios uk as the desired value of u.

Computational complexity of the resulting algorithm: discussion. How
many computational steps do we need to perform these computations? For the
standard defuzzification (2), we need to perform a liner number of steps O(n): n
multiplications and n− 1 additions to compute the numerator, n− 1 additions
to compute the denominator, and 1 division to compute the ratio u. Let us show
that we can compute u in linear time as well.

For k = 0, we can compute N0 and D0 in linear time. Then, when we move
from Nk to Nk+1 (or from Dk to Dk+1), we only to change one term, so we only
need a finite number of steps. Thus, to find all n ratios, we only need a linear
number of steps.

Let us summarize the resulting algorithm.

Algorithm for computing u.

– First, we compute N0 =
n∑

j=1

xj ·mj and D0 =
n∑

j=1

mj .

– Then, for k = 1, 2, . . . , n, we compute Nk+1 = Nk − xk · (mk − mk) and
Dk+1 = Dk − (mk −mk).
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– For each k, we compute the ratio uk =
Nk

Dk

, and check whether

xk < uk ≤ uk+1;

if this inequality is satisfied, we keep uk as a possible value.
– The largest of these possible values is then returned as u.

Comment. A similar efficient (linear time) algorithm can be used to compute u.

Algorithm for computing u.

– First, we compute N0 =
n∑

j=1

xj ·mj and D0 =
n∑

j=1

mj .

– Then, for k = 1, 2, . . . , n, we compute Nk+1 = Nk + xk · (mk − mk) and
Dk+1 = Dk + (mk −mk).

– For each k, we compute the ratio uk =
Nk

Dk

, and check whether

xk < uk ≤ uk+1;

if this inequality is satisfied, we keep uk as a possible value.
– The smallest of these possible values is then returned as u.

3 Towards a More Adequate Defuzzification

The problem. The problem is that,

– as we have mentioned earlier, it is often reasonable to restrict ourselves to
fuzzy numbers (unimodal fuzzy sets),

– while, as we have seen, the maximum and/or minimum of the value u is
sometimes attained at a membership function which is not unimodal.

It is therefore desirable to find the maximum and the minimum of u only among
unimodal values mi, i.e., values which mi first (non-strictly) increase) and then
(non-strictly) decreases.

The problem reformulated in precise mathematical terms. In precise
terms, we are only interested in finding the maximum and the minimum of
the expression (2) among all the values m1, . . . , mn for which, for some “mode
location” ` = 1, 2 . . . , n, we have

m1 ≤ m2 . . . ≤ m`−1 < m` ≥ m`+1 ≥ . . . ≥ mn−1 ≥ mn.

Let us denote the corresponding minimum and maximum by ua and ua

(where a stands for “adequate”).

Towards a solution of the problem. Let us fix the values ua and ` and see
how we can use the inequalities corresponding to this value.
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When xi < ua, then, as we mentioned earlier, the derivative
∂u

∂mi
is negative

and thus, we cannot decrease m̃i. In the past, we only had one restriction: that
mi ≥ mi. Now, we have additional restrictions: e.g., for i ≤ `, that mi ≥ mj for
all j < i. Thus, the fact that we cannot decrease mi means that either m̃i = mi

or that m̃i = m̃j for some j < i. In the second case, for m̃j , we can repeat
the same argument, and eventually, we will find that m̃i = m̃j for some value
j which cannot be decreased because it is equal to m̃j = mj . Thus, we have
m̃i = mj .

In general, since i ≤ `, we have m̃i ≥ m̃j ≥ mj . Thus, we have m̃i ≥
max(m1, . . . , mi). Since we concluded that m̃i is equal to one of these lower
endpoints, it cannot be larger than the largest of them, so we have m̃i =
max(m1, . . . , mi).

For i > `, we may also have m̃i = mj for some j for which xj > va. In this
case, the values mk between i and j are constant.

Thus, the “past-mode” part (i > `) of the optimal solution can be divided
into three zones:

– first, there is a zone [`, s] (s for start) before va where we have

m̃i = max(mi, . . . ,ms);

– then, there is a zone [e, n] (e for end) past va where we have

m̃i = min(mi, . . . , mn);

– finally, in the zone between s and e, the values are constant.

So, to describe all such solutions, it is sufficient to try all possible values of three
indices: `, s and e.
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Resulting algorithm for computing ua.

– First, for all i and j, we compute m−
ij

def= max(mi, . . . , mj) and m+
ij

def=
min(mi, . . . , mj). For each i, computing the next value m±

ij from the pre-
vious one requires requires one step, all these values can be computed in
time O(n2).



10

– Second, for each of n3 possible combinations of three integers ` ≤ s < e, we
take mi = m−

1i for i < `, mi = m−is for ` ≤ i ≤ s, mi = m+
in for i ≥ e, and

mi = const ∈ [me,ms] for i ∈ (e, s).
– We check whether all these values satisfy the conditions mi ∈ [mi,mi], and

if yes, we compute the ratio u.
– The largest of these values is returned as the desired upper bound ua.

Computational complexity. For each of O(n3) combinations of values, we
need linear time to compute the ratio u. Thus, totally, we need O(n3) · O(n) =
O(n4) steps. This is still polynomial time, i.e., this algorithm is still feasible; see,
e.g., [1].

Comment. A similar algorithm can be described for computing ua.

Algorithm for computing ua.

– For each of n3 possible combinations of three integers s ≤ e ≤ `, we take
mi = m−

in for i > `, mi = m−si for s ≤ i ≤ `, mi = m+
1i for i ≤ s, and

mi ∈ [me,ms] for i ∈ (e, s).
– We check whether all these values satisfy the conditions mi ∈ [mi,mi], and

if yes, we compute the ratio u.
– The smallest of these values is returned as the desired lower bound ua.
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