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In many engineering problems, we face multi-objective optimization, with several objective functions f1, . . . , fn. We want
to provide the user with the Pareto set – set of all possible solutions x which cannot be improved in all categories (i.e.,
for which fj(x

′) ≥ fj(x) for all j and fj(x
′) > fj(x) for some j is impossible). The user should be able to select

an appropriate trade-off between, say, cost and durability. We extend the general results about the (verified) algorithmic
computability of maxima locations to show that Pareto sets can also computed.
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1. Introduction

In engineering problems, we are usually interested in find-
ing the solution which is the best under given constraints.
In many practical problems, an objective function f(x) is
explicitly given. In this case, “the best” means that we
want to find a solution which maximizes the value of this
objective function, i.e., a solution x for which the value
f(x) cannot be improved – i.e., for which the inequality
f(x′) > f(x) is impossible.

Usually, if there are several such optimizing solu-
tions, the user will be able to select a one with the largest
possible value of some other important objective function.
For example, if we have several plant designs x with the
same expected profit f(x), it may be reasonable to select
the most environmentally friendly of these design. In view
of the possibility (and importance) of the additional user
choice, it is desirable not just to present the user with a
single optimizing solution x, but rather present the user
with the entire set of all possible optimizing solutions.

In many practical situations, there are efficient al-
gorithms for computing this optimizing set. However, it
is known that in general, the problem of computing the

optimizing set is not algorithmically decidable (see, e.g.,
(Kreinovich, Lakeyev, Rohn, and Kahl, 1998)). This un-
decidability result is caused not so much by the complex-
ity of the problem, but rather by the idealization that we
made when we assumed that we know the exact expres-
sion f(x) for the objective function. Of course, in prac-
tice, we rarely know such an expression. Usually, the
known expression f̃(x) describes the actual (unknown)
objective function f(x) only approximately, with some
accuracy ε > 0: |f(x) − f̃(x)| ≤ ε. In this case, the
only information that we have about the actual objective
function f(x) is that for every x, its value belongs to the
interval f(x) def= [f̃(x)− ε, f̃(x)+ ε]. Different objective
functions f(x) from this “function interval” attain their
maxima, in general, at different points x. It is therefore
reasonable to provide the user with the set of all possible
optimizing solutions corresponding to all possible func-
tions f(x) ∈ f(x). As we will show in this paper, this set
can be algorithmically computed – if we take into account
that the accuracy ε is also not exactly known.

The above description is still somewhat idealized, be-
cause it assumes that we have a single objective function
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that we are trying to maximize – albeit an imprecisely
known one. In other words, we assume that we have
already agreed how to combine different characteristics
describing different aspects of the problem into a single
numerical quantity. In practice, we usually have several
objective functions f1(x), . . . , fn(x) describing different
aspects of the possible solution x, such as profit, environ-
mental friendliness, safety, etc. Ideally, we should maxi-
mize the values of all these characteristics, but in reality,
there is often a trade-off: e.g., to achieve more environ-
mental friendliness, it is often necessary to slightly de-
crease the profit; there is a similar trade-off between cost
and durability.

In many situations, the user does not have a clear a
priori idea which trade-offs are beneficial and which are
not; in other words, the user does not have a single com-
bined objective function f(x) that would enable him or
her to make an ultimate decision. In such situations, it
is reasonable to present the user with the set of all possi-
ble solutions – and let the user decided between different
possible solutions from this set. The only possible solu-
tions x that we do not want to present to the user are so-
lutions x which can be improved in all the senses, i.e.,
solutions for which, for some other solution x′, we have
fj(x) ≤ fj(x′) for all j and fj(x) < fj(x′) for some j.
The set of all such “non-improvable” solution is known as
the Pareto set. The problem is how to compute the Pareto
set.

This problem is known to be computationally dif-
ficult; see, e.g., (Ruzika and Wiecek, 2005). Efficient
algorithms are only known for specific classes of prob-
lems: e.g., for special location problems (Nickel and
Puerto, 2005) and for problems with linear objective func-
tions (Figueira, Greco, and Ehrgott, 2004). This difficulty
has an explanation: in the above idealized formulation,
when we know the exact expressions for all the objec-
tive functions f1(x), . . . , fn(x), this problem becomes, in
general, algorithmically unsolvable.

In practice, as we have mentioned, we know each
of these functions fj(x) only with some accuracy εj . It
turns out that if we appropriately take this uncertainty
into account, then (verified) algorithms for computing
the resulting Pareto set become possible. Such algo-
rithms were described, for the case of n = 2 objec-
tive functions fj defined on bounded subsets of Rm, in
(Fernández, Tóth, Plastria, and Pelegrín, 2006; Fernández
and Tóth, 2006; Tóth and Fernández, 2006; Fernández and
Tóth, 2007; Fernández and Tóth, to appear). In this paper,
we extend these algorithms to the general case of arbitrary
computable objective functions defined on a general com-
putable set X .

2. Towards the algorithmic formulation of
the problem: what is a computable set,
what is a computable function

In a multi-criterion optimization problem, we have the set
of alternatives X , we have several objective functions

fj : X → R,

and we are interested in describing the Pareto set – or
some other similar notion of a solution. In order to analyze
this problem from the algorithmic viewpoint, we need to
know how this information is represented in a computer,
i.e., from the computational viewpoint. In other words, we
must start with a “computable” set X and “computable”
functions fj , and we must generate the computable Pareto
set S.

The notions of computable numbers, computable
sets, and computable functions are known; they form the
so-called computable mathematics (also known as con-
structive mathematics); see, e.g., (Beeson, 1985; Bishop
and Bridges, 1985; Kushner, 1985; Beeson, 1987; Aberth,
2007). However, these notions are not unique: depend-
ing on the practical application, we may end up with dif-
ferent notions of constructive sets, constructive numbers,
etc. Let us therefore analyze our problem from the com-
putational viewpoint and see which definitions naturally
appear.

Let us start with the representation of a set. The eas-
iest set to represent in a computer is a finite set X =
{x1, . . . , xm}: the finite set can be (and usually is) simply
represented by listing all its elements x1, . . . , xm.

In real life, however, the set of alternatives is usually
infinite, with one or more parameters which can take any
values from certain intervals. In this case, it is not possible
to exactly list all possible alternatives. It is also not pos-
sible to exactly produce the optimal solution to the opti-
mization problem – e.g., to produce the exact real number,
we need to describe infinitely many digits, and a computer
can only produce finitely many digits in any given time in-
terval. In such cases, we can only generate an approxima-
tion to the optimal solution. For the notion of the approx-
imation to be meaningful, we must be able, for every two
given alternatives x, x′ ∈ X , to describe how close these
alternatives are. In other words, we need to be able to de-
scribe the distance d(x, x′) between every two elements,
i.e., the set X must be a metric space.

For given two elements x and x′, the distance
d(x, x′) is a real number. We cannot always compute this
number exactly – this would require infinitely many bits,
but we need to be able to compute the value of this metric
with an arbitrary accuracy. In other words, the values of
the distance must be a computable number in the follow-
ing precise sense.

This real number can also only be computed with
some accuracy. It is reasonable to say that a real number is
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computable if we can compute it with any given accuracy.

Definition 1. By a computable real number, we mean a
pair 〈x,U〉, where x is a real number, and the algorithm
U , given a natural number k, produces a rational number
rk for which |x− rk| ≤ 2−k.

Remark 1. For example,
√

2 is a computable real num-
ber because we can compute it with any given accuracy.
Inside the computer, a computable number is represented
by the algorithm U . So, when we say that we can compute
something (e.g., x2) based on the computable real number
input x, we mean that, based on the algorithm U approx-
imating the real number x, we can generate an algorithm
approximating x2.

It is known that standard arithmetic operations can
be performed on computable real numbers: the sum, the
difference, the product, etc., of two computable real num-
bers are computable as well. Similarly, for every com-
putable real number x, the values sin(x), exp(x), ln(x),
etc., are also computable; see, e.g., (Beeson, 1985; Bishop
and Bridges, 1985; Kushner, 1985; Beeson, 1987; Aberth,
2007).

Similarly, we can describe the notion of a computable
set: we cannot list exactly all the elements of this set, but
we should be able, for any given accuracy ε = 2−k, to
list all the elements with this accuracy, i.e., to produce
a finite list {x1, . . . , xk} that represents all the elements
from the set X with the accuracy ε. In other words, for
every element x ∈ X , there is an ε-close element from
this finite list, i.e., an element xi for which d(x, xi) ≤ ε.
Such a finite list is called an ε-net.

We must also be able to effectively compute the dis-
tance between any two listed elements – whether they are
listed for the same accuracy 2−k or for two different ac-
curacies 2−k 6= 2−k′ . Thus, we arrive at the following
definitions.

Definition 2. Let 〈X, d〉 be a metric space, and let ε > 0
be a real number. A finite set {x1, . . . , xk} ⊆ X is called
an ε-net for X if for every x ∈ X , there exists an i for
which d(x, xi) ≤ ε.

Definition 3. By a computable set, we mean a metric
space 〈X, d〉 equipped with two algorithms:

• an algorithm that, given a natural number k, produces
a (finite) 2−k-net Xk for X; and

• an algorithm that for every two elements x ∈ Xk

and x′ ∈ Xk′ , computes the distance d(x, x′) (i.e.,
for any integer m > 0, computes a rational number
which is 2−m-close to d(x, x′)).

Remark 2. For complete metric spaces, the existence
of a finite ε-net for every ε > 0 is equivalent to compact-
ness. Because of this, what we call computable sets are
sometimes called computable compact sets.

Remark 3. No additional information is required about
the elements of each finite set

Xk = {xk,1, xk,2, . . . , xk,mk
}.

Each element xk,l can be represented, e.g., by its indices
k and l.

Example 1. The simplest examples of computable sets
are:

• A non-degenerate interval [a, a], with a < a. For
such an interval, we can take, as Xk, the set of all
rational numbers of the type p/2k (with integer p)
from this interval.

• A non-degenerate multi-interval (box) [a1, a1]×. . .×
[am, am] with ai < ai and the sup metric

d((a1, . . . , am), (a′1, . . . , a
′
m)) =

max
i=1,...,m

|ai − a′i|.

We can take, as Xk, the set of all rational-valued
points (p1/2k, . . . , pm/2k) from this box.

For the Euclidean distance, we can choose a similar set but
with coordinates of the type pi/2k+k0 , where 2k0 >

√
m.

A computable element can be now naturally defined
as an element which can be approximated with any given
accuracy.

Definition 4. Let 〈X, d〉 be a computable metric space,
with 2−k-net Xk. By a computable element of X , we
mean a pair 〈x,U〉, where x ∈ x and U is an algorithm
that, given an integer k > 0, produces an element rk ∈ Xk

for which d(x, xk) ≤ 2−k.

Remark 4. One can easily see that for the interval [a, a],
computable elements are simply computable real numbers
from this interval. Similarly, for the m-dimensional box,
computable elements are simply tuples of computable
numbers (a1, . . . , am) from this box.

To complete the description of a (multi-criteria) op-
timization problem, we also need to define the notion of
a computable function f from a computable set to real
numbers. Intuitively, we must be able, given an arbitrary
computable element x ∈ X , to compute the value f(x).
In the computer, a computable element is given by its 2−l-
approximations rl. Thus, the only way to compute f(x)
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with a given accuracy 2−k is to compute the value f(rl)
for an appropriate approximation rl to x.

For example, since in the computer, the value
√

2 is
represented only approximately, to compute sin(

√
2) with

a given accuracy, we must know with what accuracy we
must determine

√
2 to get the desired accuracy in sin(

√
2).

So, we arrive at the following definition.

Definition 5. By a computable function from a com-
putable set 〈X, d〉 (with 2−k-nets Xk) to real numbers,
we mean a function f : X → R which is equipped with
two algorithms:

• an algorithm that, given a natural number k and an el-
ement x ∈ Xk, computes the value f(x) (i.e., for any
integer m > 0, computes a rational number which is
2−m-close to f(x));

• an algorithm that, given a natural number k, produces
a natural number l for which d(x, x′) ≤ 2−l implies
|f(x)− f(x′)| ≤ 2−k.

Remark 5. As we have mentioned earlier, all stan-
dard computer-implemented functions such as √, exp,
sin, ln, etc., are computable in this sense. In particu-
lar, the possibility to find l from k is based on the fact
that most of these functions have a Lipschitz property
|f(x)− f(x′)| ≤ L · d(x, x′) for a known L.

It is also known that a composition of computable
functions is also computable. Thus, all practical objective
functions are computable in this sense.

Now, we have all the desired definitions, so we are
ready to start the analysis of our problem – of computing
the Pareto set.

3. Computing the optimum set
Before we analyze the general problem of computing the
Pareto set, let us analyze the simplest case when we have
only one objective function f1 = f . In this case, the prob-
lem of computing the Pareto set turns into a problem of
computing the optimum set in the following sense:

Definition 6. Let f : X → R be a function. We say that
an element x0 ∈ X is optimal if there exists no x ∈ X
for which f(x) > f(x0). The set M(f) of all optimal
elements is called the optimum set.

Remark 6. It is usually assumed that the objective func-
tion f is continuous. Continuous objective functions de-
scribe the usual consequences of different actions, since
usually a small change in the solution only leads to a small
change in the consequences.

In principle, there are some cases when the objec-
tive function is not continuous. For example, for some
undesired side products of an industrial process, there is

usually a threshold beyond which heavy fines start. In
such situations, however, the desire is to avoid exceeding
this threshold. Thus, the environmentally proper way of
handling these situations is not to incorporate these fines
into the profit estimates, but rather to avoid such undesir-
able situations altogether, and to view these restrictions as
constraints that limit the set X of possible solutions. On
thus restricted set, the objective function is continuous.

So, in the following text, we assume that all func-
tions f are continuous, i.e., that f ∈ C(X), where C(X)
denotes the set of all continuous functions f : X → R.

The problem of finding the optimum set M(f) is, in
general, algorithmically impossible to solve. For exam-
ple, in (Kreinovich, 1975; Kreinovich, 1979; Kreinovich
et al., 1998), it has been proven that no algorithm is pos-
sible that, given a computable polynomial of one variable
which attains its optimum at exactly two points, will re-
turn these two optimizing points.

There are economic-relevant versions of this algo-
rithmic impossibility result. For example, in (Nachbar and
Zame, 1996), it is proven that even in the idealized con-
flict situations in which we know the opponent’s strategy
– and in which, thus, our gain f(x) is uniquely determine
by our response x – it is, in general, algorithmically im-
possible to compute the optimal response to this strategy,
i.e., a response that maximizes the expected gain f(x).

Good news is that, in practice, we only know the ob-
jective function f(x) with some uncertainty ε > 0; in
other words, we know a function f̃(x), and we know that
the actual (unknown) objective function differs from f̃(x)
by no more than ε.

Definition 7. Let 〈X, d〉 be a metric space.

• By a function interval over X , we mean a pair f =
〈f̃ , ε〉, where f̃ : X → R is a continuous function
and ε > 0 is a real number.

• We say that a function f : X → R belongs to the
interval f = 〈f̃ , ε〉 if |f(x)− f̃(x)| ≤ ε for all x.

Definition 8. Let f = 〈f̃ , ε〉 be a function interval. By
its optimum set, we mean the set of all the points where at
least one continuous function f ∈ f attains it maximum,
i.e., the set

Mε(f̃) = M(f) def=
⋃

f ∈ f ∩ C(X)
M(f).

From the purely mathematical viewpoint, this defini-
tion correctly describes our intuitive ideas. However, as
we will show, from the computational viewpoint, this def-
inition is much more complex than the definition of the
optimum set M(f) and, thus, needs to be simplified.
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Indeed, we defined an optimal element x0 ∈ M(f)
as an element for which f(x) > f(x0) is impossible, i.e.,
for which f(x0) ≥ f(x) for all x ∈ X . Thus, to check
that a given solution x is optimal, we can simply check
that f(x0) ≥ f(x) for all x ∈ X . So, we need to search
over all elements of X .

If we literally apply our new definition, them, to
check that x0 is an optimal element, we must first find
an appropriate function f ∈ f and then check that for this
selected function f , we have f(x0) ≥ f(x) for all x ∈ X .
So, we need to search over not only all elements of X , but
also over all possible functions f ∈ f .

It turns out that the above definition can indeed be
simplified.

Definition 9. Let f̃ : X → R be a function, and ∆ > 0
be a real number. We say that an element x0 ∈ X is ∆-
optimal if f̃(x0) ≥ f̃(x)−∆ for all x ∈ X .

Proposition 1. For every continuous function f̃ : X → R
and for every ε > 0, an element x0 ∈ X belongs to the
optimum set Mε(f) if and only if it is (2 ·ε)-optimal for f̃ .

Thus, the set Mε(f̃) can be described as the set of
all the elements x0 ∈ X which are (2 · ε)-optimal for the
nominal objective function f̃ .

With this reformulation, checking whether a given el-
ement x0 belongs to the optimal set Mε(f̃) indeed be-
comes not more difficult than checking whether x0 ∈
M(f): it is sufficient to search over all elements x ∈ X ,
and to check that f̃(x0) ≥ f̃(x) − 2 · ε for all these ele-
ments.

Proof. Let us first show that if x0 ∈ Mε(f̃), i.e., if x0 is
optimal for some function f for which

|f(x)− f̃(x)| ≤ ε,

then f̃(x0) ≥ f̃(x)− 2 · ε for all x ∈ X . Indeed, since x0

is optimal for f , we have f(x0) ≥ f(x). From

|f(x0)− f̃(x0)| ≤ ε

and
|f(x)− f̃(x)| ≤ ε,

we conclude that f̃(x0) ≥ f(x0)− ε and that

f(x) ≥ f̃(x)− ε.

Thus,
f̃(x0) ≥ f(x0)− ε ≥ f(x)− ε ≥
(f̃(x)− ε)− ε = f̃(x)− 2 · ε.

Vice versa, let x0 ∈ X be an element for which
f̃(x0) ≥ f̃(x) − 2 · ε for all x ∈ X . Let us prove that

there exists a function f ∈ f for which x0 is optimal.
Indeed, as such a function f , we can take

f(x) def= min(g(x), h(x)),

where

g(x) def= f̃(x) + ε ·max(1− d(x0, x), 0);

h(x) def= f̃(x0) + ε.

For x = x0, we have

f(x0) = g(x0) = h(x0) = f̃(x0) + ε;

for all other elements x ∈ X , we have

f(x) ≤ h(x) = f̃(x0) + ε.

Thus, we indeed have f(x0) ≥ f(x) for all x ∈ X – i.e.,
x0 is indeed optimal for f .

To complete our proof, we must prove that f ∈ f ,
i.e., that |f(x) − f̃(x)| ≤ ε for all x ∈ X . Indeed, f(x)
is defined as the minimum of two expressions g(x) and
h(x). The first expression g(x) adds, to f̃(x), a value
ε multiplied by a coefficient max(1 − d(x0, x), 0). We
always have

0 ≤ max(1− d(x0, x), 0) ≤ 1− d(x0, x) ≤ 1

and thus,

0 ≤ max(1− d(x0, x), 0) ≤ 1.

So, if the minimum f(x) is equal to the first expression
g(x), we do get |f(x)− f̃(x)| ≤ ε.

What if the minimum f(x) is equal to the second ex-
pression h(x) = f̃(x0) + ε? Since h(x) ≤ g(x), i.e.,

f̃(x0) + ε ≤ f̃(x) + ε ·max(1− d(x0, x), 0),

we have
f(x) = h(x) = f̃(x0) + ε ≤

f̃(x) + ε ·max(1− d(x0, x), 0) ≤ f̃(x) + ε,

so
f(x) ≤ f̃(x) + ε.

From our assumption f̃(x0) ≥ f̃(x)− 2 · ε, we conclude
that

f(x) = f̃(x0) + ε ≥ (f̃(x)− 2 · ε) + ε = f̃(x)− ε,

so
f(x) ≥ f̃(x)− ε.

Thus, when f(x) = h(x), we also have

|f(x)− f̃(x)| ≤ ε.
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The proposition is proven. ¥

The upper bound ε of the approximation error is also
only know with uncertainty. At best, we know an interval
[ε, ε] for this bound. The larger ε, the largest the corre-
sponding function interval f = 〈f̃ , ε〉 and thus, the larger
the optimum set Mε(f̃); so, if ε ≤ ε ≤ ε, we have

Mε(f̃) ⊆ Mε(f̃) ⊆ Mε(f̃).

Because of this relation, the following theorem provides
the desired algorithm for computing the optimum set:

Theorem 1. There exists an algorithm that, given a com-
putable function f̃ from a computable set X to real num-
bers and two rational numbers 0 < ε < ε, produces a
finite list of elements L ⊆ X and a rational number δ > 0
with the following two properties:

• If x0 ∈ Mε(f̃), then d(x0, x) ≤ δ for some x ∈ L.

• If d(x0, x) ≤ δ for some x ∈ L, then x0 ∈ Mε(f̃).

The list L and the accuracy δ provide a descrip-
tion of the desired optimum set. Specifically, the de-
sired optimum set is approximated by the set of all the
elements which are δ-close to one of the elements from
the given list, i.e., by the union of the corresponding balls
Bδ(x) def= {x′ : d(x, x′) ≤ δ}:

Mε(f̃) ⊆
⋃

x∈L

Bδ(x) ⊆ Mε(f̃).

Proof. The main idea of the proof is that we take a fi-
nite approximation to X , an approximation to f̃ , find the
“optimum set” for the corresponding approximate prob-
lem, and then show that this solution to the approximate
problem is indeed the desired approximation to the actual
optimum set M(f).

Let us find the appropriate approximation to the set
X . The difference ∆ε

def= ε− ε is a positive rational num-
ber. Since comparing two rational numbers is straightfor-
ward, we can thus find the smallest natural number k for

which 2−k ≤ ∆ε

4
.

By using an algorithm from the definition of a com-
putable function f̃ , we can find a natural number l for
which d(x, x′) ≤ 2−l implies |f̃(x) − f̃(x′)| ≤ 2−k.
By using an algorithm from the definition of a com-
putable set, we can algorithmically find a 2−l-net Xl =
{xl,1, . . . , xl,ml

} for the metric space X . This finite set
Xl will be our approximation to the actual set X . (As we
will see later, the value l is selected so as to provide the
desired approximation accuracy for the resulting optimum
set.)

The next step is to approximate the given real-valued
function f̃ : X → R by a rational-valued function de-
fined on the finite set Xl. By using an algorithm from
the definition of a computable function, for each element
xl,i ∈ Xl, we can compute a rational number yi which is
2−k-close to f̃(xl,i), i.e., for which |yi − f̃(xl,i)| ≤ 2−k.
As the desired approximation, we can now take a function
that assigns, to each element xl,i ∈ Xl, the corresponding
rational number yi.

Let us now find the optimum set for the resulting ap-
proximate problem. In the original problem, we had an
interval [ε, ε] of possible values of ε. To define our ap-

proximate set, let us take the midpoint ε̃
def=

ε + ε

2
of this

interval.
In view of Proposition 1, for the approximate prob-

lem, the optimum set can be described as follows. First,
we find the set I of all the indices i for which

yi ≥ yi′ − 2 · ε̃
for all i′ = 1, . . . ,ml. Then, we take the set

L = {xl,i : i ∈ I}
of the corresponding elements xl,i ∈ Xl.

Let us show that this finite list satisfies the desired
two properties for δ = 2−l.

Let us start our proof with the second property. We
want to prove that if for some x0 ∈ X and for some i ∈
I , we have d(x0, xl,i) ≤ 2−l, then x0 ∈ Mε(f̃), i.e.,
f̃(x0) ≥ f̃(x) − 2 · ε for all x ∈ X . Indeed, let x ∈ X .
Since Xl = {xl,1, . . . , xl,ml

} is a 2−l-net, there exists an
i′ for which d(x, xl,i′) ≤ 2−l. Due to our choice of l, we
can conclude that |f̃(x) − f̃(xl,i′)| ≤ 2−k. Due to our
choice of yi′ , we have |yi′ − f̃(xl,i′)| ≤ 2−k and thus,

|f̃(x)−yi′ | ≤ |f̃(x)− f̃(xl,i′)|+|yi′− f̃(xl,i′)| ≤ 2·2−k,

and
yi′ ≥ f̃(x)− 2 · 2−k.

Similarly, from d(x0, xl,i) ≤ 2−l, we conclude that
|f̃(x0) − f̃(xl,i)| ≤ 2−k. Due to our choice of yi, we
have |yi − f̃(xl,i)| ≤ 2−k and thus,

|f̃(x0)−yi| ≤ |f̃(x0)− f̃(xl,i)|+ |yi− f̃(xl,i)| ≤ 2 ·2−k,

and
f̃(x0) ≥ yi − 2 · 2−k.

From yi ≥ yi′ − 2 · ε̃ and yi′ ≥ f̃(x) − 2 · 2−k, we can
now conclude that

f̃(x0) ≥ yi − 2 · 2−k ≥ yi′ − 2 · 2−k − 2 · ε̃ ≥

f̃(x)− 4 · 2−k − 2 · ε̃.
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By our choice of k, we have 4 · 2−k ≤ ∆ε, hence

f̃(x0) ≥ f̃(x)−∆ε− 2 · ε̃.

By definition, ∆ε = ε− ε and 2 · ε̃ = ε + ε, so we have

f̃(x0) ≥ f̃(x)− (ε− ε)− (ε + ε) = f̃(x)− 2 · ε.

The second property is proven.

Let us now prove the first property. We want to prove
that if x0 ∈ Mε(f̃), i.e., if f̃(x0) ≥ f̃(x) − 2 · ε for all
x ∈ X , then d(x0, xl,i) ≤ δ = 2−l for some i ∈ I .

Indeed, since Xl is an 2−l-net, there exists an ele-
ment xl,i ∈ Xl for which d(x0, xl,i) ≤ δ = 2−l. We need
to prove that i ∈ I , i.e., that yi ≥ yi′ − 2 · ε̃ for all i′.

By definition of the value yi, we have

|yi − f̃(xl,i)| ≤ 2−k,

so yi ≥ f̃(xl,i) − 2−k. By the choice of l, from
d(x0, xl,i) ≤ 2−l, we conclude that

|f̃(x0)− f̃(xl,i)| ≤ 2−k,

hence f̃(xl,i) ≥ f̃(x0)− 2−k. Combining this inequality
with yi ≥ f̃(xl,i)− 2−k, we conclude that

yi ≥ (f̃(x0)− 2−k)− 2−k = f̃(x0)− 2 · 2−k.

We assumed that f̃(x0) ≥ f̃(x) − 2 · ε for all x ∈ X;
in particular, this is true for x = xl,i′ . Thus, we have
f̃(x0) ≥ f̃(xl,i′) − 2 · ε. Combining this inequality with
yi ≥ f̃(x0)− 2 · 2−k, we conclude that

yi ≥ f̃(x0)− 2 · 2−k ≥ (f̃(xl,i′)− 2 · ε)− 2 · 2−k.

By definition of the value yi′ , we have

|yi′ − f̃(xl,i′)| ≤ 2−k,

so f̃(xl,i′) ≥ yi′ − 2−k. Thus, we have

yi ≥ f̃(xl,i′)−2·ε−2·2−k ≥ (yi′−2−k)−2·ε−2·2−k =

yi′ − 2 · ε− 3 · 2−k.

We have selected k so that 4 · 2−k ≤ ∆ε, hence

3 · 2−k < 4 · 2−k ≤ ∆ε,

and
yi ≥ yi′ − 2 · ε−∆ε.

Substituting ∆ε = ε− ε into this inequality, we conclude
that

yi ≥ yi′ − 2 · ε− (ε− ε) = yi′ − (ε + ε).

By definition of ε̃, we have ε + ε = 2 · ε̃, so we get the
desired inequality

yi ≥ yi′ − 2 · ε̃.

¥

Remark 7. We want to emphasize that while, to the
best of our knowledge, Theorem 1 is new, it is fully in
line with the general understanding of specialists in com-
putable mathematics. Its proof, while somewhat techni-
cally cumbersome, naturally follows from the known re-
sults of computable mathematics. The reason why we
have presented this result and its proof in all the detail
is that Theorem 1 provides a pattern following which we
prove the main result of this paper – Theorem 2 on com-
putability of general Pareto sets. It would have been much
more difficult to understand the general proof of Theo-
rem 2 without first going through the particular case n = 1
– case in which the notion of the Pareto set turns into a
simpler notion of the optimum set.

Remark 8. Once we established that the algorithm ex-
ists, the natural next question is: how efficient is this al-
gorithm? Since the above algorithm requires that we con-
sider all the elements of the corresponding ε-net, its num-
ber of steps grows as the number of these elements. For an
m-dimensional box this number is ≈ V/εm, so it grows
exponentially with the dimension m of the box.

This is, however, acceptable, since in general, the
optimization problems are NP-hard (Kreinovich et al.,
1998), and therefore, the worst-case exponential time is
inevitable (unless, of course, it turns out that, contrary to
the expectations of most computer scientists, P = NP and
thus, all such problems can be solved in feasible (polyno-
mial) times).

It is worth mentioning that, as mentioned in (Nachbar
and Zame, 1996), in the conflict situations in which the ex-
act optimal strategy is not algorithmically computable, it
is possible to compute an “approximate” ε-optimal strat-
egy. However, for small ε, the computation of this ε-
optimal strategy requires the analysis of all possible com-
binations of m moves for some large integer m – hence,
requires the computation time that exponentially grows
with m.

Remark 9. In the above text, we assume that we know
the objective function f(x) with given absolute accuracy,
i.e., that we know that the actual (unknown) objective
function f(x) satisfies the inequality |f(x) − f̃(x)| ≤ ε

for a given function f̃(x).
In some practical situations, we know the non-

negative function f(x) with relative uncertainty, i.e., we
know that the actual (unknown) objective function f(x)
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satisfies the inequality
∣∣∣∣∣
f(x)− f̃(x)

f̃(x)

∣∣∣∣∣ ≤ ε

for a given function f̃(x). For example, we may know
f(x) with an accuracy 10% (ε = 0.1) or 5% (ε = 0.05).

These situations can be reduced to the case of abso-
lute uncertainty if we switch to a logarithmic space, i.e., if
we consider a new objective function F (x) def= ln(f(x)).
This change does not affect the optimum set – since the
logarithm is a strictly increasing function, the functions
f(x) and F (x) attain their maxima at exactly the same
points: M(f) = M(F ). The above relative-accuracy re-
striction on f(x) has the form

1− ε ≤ f(x)

f̃(x)
≤ 1 + ε.

By taking the logarithms of all three parts of this inequal-
ity, we get an equivalent inequality

ln(1− ε) ≤ F (x)− F∼(x) ≤ ln(1 + ε),

where we denoted F∼(x) def= ln(f̃(x)). This inequality, in
its turn, can be reformulated as

F∼(x) + ln(1− ε) ≤ F (x) ≤ F∼(x) + ln(1 + ε),

i.e., as the condition that for every x, the (unknown) value
F (x) belongs to the interval

[F∼(x) + ln(1− ε), F∼(x) + ln(1 + ε)].

The width w
def= ln(1 + ε) − ln(1 − ε) of this interval is

the same for all x, so we can take the midpoint

F̃ (x) def= F∼(x) +
ln(1 + ε) + ln(1− ε)

2

of this interval and describe the above inequality in the
equivalent form

|F (x)− F̃ (x)| ≤ ε′,

where ε′ def= w/2 is the interval’s radius (half-width).
This is exactly the inequality with which we started

our absolute-accuracy case analysis. So, we can indeed
reduce the solution of a relative-accuracy problem to the
absolute-accuracy case.

4. Computing Pareto sets: general case
Now we are ready to deal with the general problem of
computing the Pareto set.

Definition 10. Let X be a set and let fj : X → R,
j = 1, 2, . . . , n, be functions from X to real numbers.

We say that an element x0 ∈ X is Pareto-optimal if there
exists no x ∈ X for which fj(x) ≥ fj(x0) for all j and
fj(x) > fj(x0) for some j. The set P (f1, . . . , fn) of all
Pareto-optimal elements is called the Pareto set.

In practice, we only know each of the objective func-
tions fj with some accuracy εj > 0.

Definition 11. Let f j = 〈f̃j , εj〉, j = 1, 2, . . . , n,
be function intervals. By the Pareto set corresponding
to these function intervals, we mean the set of all the
points which are Pareto-optimal for at least one combi-
nation fj ∈ f j , i.e., the set

Pε1,...,εn
(f̃1, . . . , f̃n) = P (f1, . . . , fn) def=

⋃

f1 ∈ f1 ∩ C(X), . . . , fn ∈ fn ∩ C(X)
P (f1, . . . , fn).

Similarly to the case of the optimum set, we can sim-
plify this definition. In original definition of a Pareto-
optimal element x0, for every x ∈ X , we cannot have
fj(x) ≥ fj(x) for all j and fj(x) > fj(x) for some j.
Thus, for every x ∈ X , either there exists an j for which
fj(x) < fj(x0), or we have fj(x) ≤ fj(x0) for all j.
Thus, a natural “∆”-version of this definition takes the
following form:

Definition 12. Let X be a set, let f̃1, . . . , f̃n be functions
from the set X to real numbers, and let ∆1, . . . , ∆n be
positive real numbers. We say that an element x0 ∈ X
is (∆1, . . . , ∆n)-Pareto optimal if for every x ∈ X , there
exists an index j for which f̃j(x0) ≥ f̃j(x)−∆j .

For the general Pareto sets, we no longer have exact
equivalence between this “∆”-definition and the definition
of the Pareto set for the sequence of function intervals, but
we have an “almost” equivalence in the following precise
sense:

Proposition 2. Let X be a metric space, let f̃1, . . . , f̃n

be continuous functions from X to real numbers, and let
ε1, . . . , εn be positive real numbers. Then the following
two properties hold:

• If an element x0 belongs to the Pareto set
Pε1,...,εn(f̃1, . . . , f̃n), then it is (2 · ε1, . . . , 2 · εn)-
Pareto optimal for the functions f̃1, . . . , f̃n.

• If for some values ε′1 < ε1, . . . , ε
′
n < εn, an element

x0 ∈ X is (2 · ε′1, . . . , 2 · ε′n)-Pareto optimal for the
functions f̃1, . . . , f̃n, then x0 belongs to the Pareto
set Pε1,...,εn(f̃1, . . . , f̃n).

We say that this is “almost” equivalence since we can
take the values ε′j arbitrarily close to εj .
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Proof. Let us first show that if

x0 ∈ Pε1,...,εn
(f̃1, . . . , f̃n),

i.e., if x0 is optimal for some functions f1, . . . , fn for
which

|fj(x)− f̃j(x)| ≤ εj ,

then x0 is (2 · ε1, . . . , 2 · εn)-Pareto optimal for the func-
tions f̃1, . . . , f̃n, i.e., for every x ∈ X , there exists an
index j for which f̃j(x0) ≥ f̃j(x)− 2 · εj .

Indeed, let us pick an arbitrary element x ∈ X . Since
x0 is Pareto-optimal for the functions f1, . . . , fn, either
there exists an j for which fj(x0) > fj(x) or for every j,
we have fj(x0) ≥ fj(x). In both cases, we have fj(x0) ≥
fj(x) for some j. From

|fj(x0)− f̃j(x0)| ≤ εj

and
|fj(x)− f̃j(x)| ≤ εj ,

we conclude that f̃j(x0) ≥ fj(x0)− εj and that

fj(x) ≥ f̃j(x)− εj .

Thus,

f̃j(x0) ≥ fj(x0)− εj ≥ fj(x)− εj ≥

(f̃j(x)− εj)− εj = f̃j(x)− 2 · εj .

Vice versa, let ε′j < εj , and let x0 ∈ X be an element
for which, for every x ∈ X , there exists an index j for
which f̃j(x0) ≥ f̃j(x)−2·ε′j . Let us prove that there exist
functions fj ∈ f j for which x0 is Pareto-optimal, i.e., for
which for every x ∈ X , either there exists a j for which
fj(x0) > fj(x), or for all j, we have fj(x0) ≥ fj(x).

Indeed, we can take

fj(x) def= min(gj(x), hj(x))+

(εj − ε′j) ·max(1− d(x0, x), 0),

where

gj(x) def= f̃j(x) + ε′j ·max(1− d(x0, x), 0);

hj(x) def= f̃j(x0) + ε′j .

For every x ∈ X , there exists an index j for which
f̃j(x0) ≥ f̃j(x) − 2 · ε′j . Let us prove that for this same
index j, we have fj(x0) > fj(x). Indeed, for x = x0, we
have gj(x0) = hj(x0) = f̃j(x0) + ε′j and

max(1− d(x0, x), 0) = 1,

thus,

fj(x0) = f̃j(x0) + ε′j + (εj − ε′j) = f̃j(x0) + εj .

For all other elements x ∈ X , we have d(x0, x) > 0 hence
1− d(x, x0) < 1 and max(1− d(x, x0), 0) < 1. Thus,

fj(x) ≤ hj(x) + (εj − ε′j) ·max(1− d(x0, x), 0) <

hj(x) + (εj − ε′j) = (f̃j(x0) + ε′j) + (εj − ε′j) =

f̃j(x0) + εj = fj(x0).

So, for this j, we indeed have fj(x0) > fj(x) – i.e., x0 is
indeed Pareto-optimal for (f1, . . . , fn).

To complete our proof, we must prove that for every
j, we have fj ∈ f j , i.e., that |fj(x)− f̃j(x)| ≤ εj for all
x ∈ X .

Indeed, we have already proved, in our proof of
Proposition 1, that

|min(gj(x), hj(x))− f̃j(x)| ≤ ε′j .

The difference (εj − ε′j) ·max(1 − d(x0, x), 0) between
fj(x) and min(gj(x), hj(x)) is bounded by εj − ε′j :

|fj(x)−min(gj(x), hj(x))| ≤ εj − ε′j .

Thus, we have

|fj(x)− f̃j(x)| ≤ |fj(x)−min(gj(x), hj(x))|+

|min(gj(x), hj(x))− f̃j(x)| ≤ (εj − ε′j) + ε′j = εj .

The proposition is proven. ¥

Theorem 2. There exists an algorithm that, given n com-
putable functions f̃1, . . . , f̃n from a computable set X to
real numbers and 2n rational numbers 0 < εj < εj ,
j = 1, . . . , n, produces a finite list of elements L ⊆ X
and a rational number δ > 0 with the following two prop-
erties:

• If x0 ∈ Pε1,...,εn
(f̃1, . . . , f̃n), then d(x0, x) ≤ δ for

some x ∈ L.

• If d(x0, x) ≤ δ for some x ∈ L, then

x0 ∈ Pε1,...,εn(f̃1, . . . , f̃n).

The list L and the accuracy δ provide a description of
the desired Pareto set. Specifically, the desired optimum
set is approximated by the set of all the elements which
are δ-close to one of the elements from the given list, i.e.,
by the union of the corresponding balls

Pε1,...,εn
(f̃1, . . . , f̃n) ⊆

⋃

x∈L

Bδ(x) ⊆ Pε1,...,εn(f̃1, . . . , f̃n).
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Proof. The main idea of the proof is the same as for
the optimum set: we take a finite approximation to X ,
an approximation to f̃ , find the “Pareto set” for the cor-
responding approximate problem, and then show that this
solution to the approximate problem is indeed the desired
approximation to the actual Pareto set P (f1, . . . , fn).

Let us find the appropriate approximation to the set
X . For every j, the difference ∆εj

def= εj−εj is a positive
rational number. Since comparing two rational numbers
is straightforward, we can thus find the smallest natural

number kj for which 2−kj ≤ ∆εj

8
.

By using an algorithm from the definition of a com-
putable function f̃j , we can find a natural number lj for
which d(x, x′) ≤ 2−lj implies |f̃j(x) − f̃j(x′)| ≤ 2−kj .

Thus, for the largest l
def= max(l1, . . . , ln) of this natural

numbers, we have the following property: d(x, x′) ≤ 2−l

implies |f̃j(x)− f̃j(x′)| ≤ 2−kj for all j = 1, . . . , n.
By using an algorithm from the definition of a com-

putable set, we can algorithmically find a 2−l-net Xl =
{xl,1, . . . , xl,ml

} for the metric space X . This finite set
Xl will be our approximation to the actual set X .

The next step is to approximate each given real-
valued function f̃j : X → R by a rational-valued function
defined on the finite set Xl. By using an algorithm from
the definition of a computable function, for each element
xl,i ∈ Xl and for each j = 1, . . . , n, we can compute a
rational number yi,j which is 2−kj -close to f̃j(xl,i), i.e.,
for which |yi,j− f̃j(xl,i)| ≤ 2−kj . As the desired approx-
imation to the function f̃j , we can now take a function
that assigns, to each element xl,i ∈ Xl, the corresponding
rational number yi,j .

Let us now find the Pareto set for the resulting ap-
proximate problem. In the original problem, for every
j = 1, . . . , n, we have an interval [εj , εj ] of possible val-
ues of εj . To define our approximate set, let us take the

midpoint ε̃j
def=

εj + εj

2
of this interval.

In view of Proposition 2, for the approximate prob-
lem, the optimum set can be described as follows. First,
we find the set I of all the indices i for which, for every
i′ = 1, . . . , ml, there exists a j for which

yi,j ≥ yi′,j − 2 · ε̃j .

Then, we take the set

L = {xl,i : i ∈ I}

of the corresponding elements xl,i ∈ Xl.
Let us show that this finite list satisfies the desired

two properties for δ = 2−l.

Let us start our proof with the second property. We
want to prove that if for some x0 ∈ X and for some i ∈ I ,

we have d(x0, xl,i) ≤ 2−l, then

x0 ∈ Pε1,...,εn
(f̃1, . . . , f̃n).

For that, in view of Proposition 2, it is sufficient to prove
that for some values ε′j < εj (j = 1, . . . , n), for every
x ∈ X , there exists a j for which f̃j(x0) ≥ f̃j(x)− 2 · ε′j .

Indeed, let x ∈ X . Since Xl = {xl,1, . . . , xl,ml
} is

a 2−l-net, there exists an i′ for which d(x, xl,i′) ≤ 2−l.
Since i ∈ I , there exists a j for which yi,j ≥ yi′,j − 2 · ε̃j .
Due to our choice of l, we can conclude that

|f̃j(x)− f̃j(xl,i′)| ≤ 2−kj .

Due to our choice of yi′,j , we have

|yi′,j − f̃j(xl,i′)| ≤ 2−kj

and thus,

|f̃j(x)− yi′,j | ≤ |f̃j(x)− f̃j(xl,i′)|+ |yi′,j − f̃j(xl,i′)| ≤

2 · 2−kj ,

and
yi′,j ≥ f̃j(x)− 2 · 2−kj .

Similarly, from d(x0, xl,i) ≤ 2−l, we conclude that
|f̃j(x0) − f̃j(xl,i)| ≤ 2−kj . Due to our choice of yi,j ,
we have |yi,j − f̃j(xl,i)| ≤ 2−kj and thus,

|f̃j(x0)− yi,j | ≤ |f̃j(x0)− f̃j(xl,i)|+ |yi,j − f̃j(xl,i)| ≤

2 · 2−kj ,

and
f̃j(x0) ≥ yi,j − 2 · 2−kj .

From yi,j ≥ yi′,j − 2 · ε̃ and yi′,j ≥ f̃j(x)− 2 · 2−kj , we
can now conclude that

f̃j(x0) ≥ yi,j − 2 · 2−kj ≥ yi′,j − 2 · 2−kj − 2 · ε̃j ≥

f̃j(x)− 4 · 2−kj − 2 · ε̃j .

By our choice of kj , we have 4 · 2−kj ≤ 1
2
·∆εj , hence

f̃j(x0) ≥ f̃j(x)− 1
2
·∆εj − 2 · ε̃j .

By definition, ∆εj = εj − εj and 2 · ε̃j = εj + εj , so we
have

f̃j(x0) ≥ f̃j(x)− 1
2
·(εj−εj)−(εj +εj) = f̃j(x)−2 ·ε′j ,

where
ε′j =

3
4
εj +

1
4
εj < εj .

The second property is proven.
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Let us now prove the first property. We want to prove
that if x0 ∈ Pε1,...,εn

(f̃1, . . . , f̃n), then

d(x0, xl,i) ≤ δ = 2−l

for some i ∈ I .
Indeed, let x0 ∈ Pε1,...,εn

(f̃1, . . . , f̃n). Due to
Proposition 2, this implies that x0 is (2 · ε1, . . . , 2 · εn)-
Pareto optimal for the functions f̃1, . . . , f̃n, i.e., that for
every x ∈ X , there exists a j for which

f̃j(x0) ≥ f̃j(x)− 2 · εj .

In particular, such a j exist for every x = xl,i′ ∈ Xl, i.e.,
that for every i′, there exists a j for which

f̃j(x0) ≥ f̃j(xl,i′)− 2 · εj .

Since Xl is an 2−l-net, there exists an element

xl,i ∈ Xl

for which d(x0, xl,i) ≤ δ = 2−l. To prove the first prop-
erty, it is sufficient to prove that i ∈ I , i.e., that for every
i′, there exists a j for which yi,j ≥ yi′,j − 2 · ε̃j . We will
show that this inequality indeed holds for the above j, for
which f̃j(x0) ≥ f̃j(xl,i′)− 2 · εj .

By definition of the value yi,j , we have

|yi,j − f̃j(xl,i)| ≤ 2−kj ,

so yi,j ≥ f̃j(xl,i) − 2−kj . By the choice of l, from
d(x0, xl,i) ≤ 2−l, we conclude that

|f̃j(x0)− f̃j(xl,i)| ≤ 2−kj ,

hence f̃j(xl,i) ≥ f̃j(x0)− 2−kj . Combining this inequal-
ity with yi,j ≥ f̃j(xl,i)− 2−kj , we conclude that

yi,j ≥ (f̃j(x0)− 2−kj )− 2−kj = f̃j(x0)− 2 · 2−kj .

Combining this inequality with f̃j(x0) ≥ f̃j(xl,i′)−2 ·εj ,
we conclude that

yi,j ≥ f̃j(x0)− 2 · 2−kj ≥ (f̃j(xl,i′)− 2 · εj)− 2 · 2−kj .

By definition of the value yi′,j , we have

|yi′,j − f̃j(xl,i′)| ≤ 2−kj ,

so f̃j(xl,i′) ≥ yi′,j − 2−kj . Thus, we have

yi,j ≥ f̃j(xl,i′)− 2 · εj − 2 · 2−kj ≥

(yi′,j − 2−kj )− 2 · εj − 2 · 2−kj =

yi′,j − 2 · εj − 3 · 2−kj .

We have selected kj so that 8 · 2−kj ≤ ∆εj , hence

3 · 2−kj < 8 · 2−kj ≤ ∆εj ,

and
yi,j ≥ yi′,j − 2 · εj −∆εj .

Substituting ∆εj = εj − εj into this inequality, we con-
clude that

yi,j ≥ yi′,j − 2 · εj − (εj − εj) = yi′,j − (εj + εj).

By definition of ε̃j , we have εj + εj = 2 · ε̃j , so we get
the desired inequality

yi,j ≥ yi′,j − 2 · ε̃j .

¥

Remark 10. Similarly to the computation of maximum
sets, the above algorithm requires that we consider all the
elements of the corresponding ε-net, and thus, its number
of steps grows exponentially with the dimension m of the
box. While (as we have mentioned) we cannot decrease
the computation time in all the cases (unless P=NP), it
is possible to make this algorithm more efficient in some
cases.

Some of the ideas of how to speed up this algorithm
are described in (Fernández and Tóth, 2007).
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