
Intelligence Techniques Are Needed to Further Enhance the
Advantage of Groups with Diversity in Problem Solving

Oscar Castillo, Patricia Melin, J. Esteban Gamez, Vladik Kreinovich, and Olga Kosheleva

Abstract—In practice, there are many examples when the
diversity in a group enhances the group’s ability to solve prob-
lems – and thus, leads to more efficient groups, firms, schools,
etc. Several papers, starting with the pioneering research by
Scott E. Page from the University of Michigan at Ann Arbor,
provide a theoretical justification for this known empirical
phenomenon. However, when the general advise of increasing
diversity is transformed into simple-to-follow algorithmic rules
(like quotas), the result is not always successful. In this paper,
we prove that the problem of designing the most efficient group
is computationally difficult (NP-hard). Thus, in general, it is not
possible to come up with simple algorithmic rules for designing
such groups: to design optimal groups, we need to combine
standard optimization techniques with intelligent techniques
that use expert knowledge.

I. INTRODUCTION TO THE PROBLEM

In real life, there are many examples that diversity in
a group enhances the group’s ability to solve problems –
and thus, leads to more efficient groups, firms, schools,
etc. Several papers, starting with the pioneering research
by Scott E. Page from the University of Michigan at Ann
Arbor, provide a theoretical justification for this known
empirical phenomenon; see, e.g., [2], [6] and references
therein. Specifically, these papers have shown that groups
of diverse problem solvers can outperform groups of high-
ability problem solvers.

The word can is here (and in the title of the paper [2]) for a
good reason: when the general advise of increasing diversity
is transformed into simple-to-follow algorithmic rules (like
quotas), the result is not always successful.

In this paper, we consider the problem of designing the
most efficient group as a precise optimization problem. We
show that this optimization problem is computationally dif-
ficult (NP-hard). Thus, in general, it is not possible to come
up with simple algorithmic rules for designing such groups:
to design optimal groups, we need to combine standard
optimization techniques with intelligent techniques that use
expert knowledge.

Comment. Similar results are known: e.g., the problem of
maximizing diversity and the problem of finding a group

Oscar Castillo and Patricia Melin are with Tijuana Institute of Technology,
mailing address P.O. Box 4207, Chula Vista, CA 91909, USA, emails
ocastillo@hafsamx.org and epmelin@hafsamx.org. J. Esteban Gamez,
Vladik Kreinovich (Department of Computer Science), and Olga Kosheleva
(Department of Teacher Education) are with the University of Texas at
El Paso, El Paso, TX 79968, USA, emails vladik@utep.edu and ol-
gak@utep.edu.

This work was supported in part by NSF grant HRD-0734825 and by
Grant 1 T36 GM078000-01 from the National Institutes of Health.

which is most representative of the population are both NP-
hard [1], [4]. In this paper, we extent these results further
– from gauging and maintaining the degree of diversity to
gauging and maintaining the positive effects of diversity –
such as the increased ability of a group to solve problems.

II. TOWARDS FORMULATION OF THE PROBLEM IN EXACT
TERMS

Let us assume that we have a population consisting of
n individuals. From this population {1, . . . , n}, we need to
select a group G ⊆ {1, . . . , n} which is the most efficient in
solving a given problem.

In mathematical terms, to describe a group G, we must
describe, for each individual i (i = 1, . . . , n), whether this
individual is selected for this group or not. In computational
terms, for each i = 1, . . . , n, we thus need to select a Boolean
(“true”-“false”) value xi for which:
• xi =“true” means that we select the i-th individual into

the group, and
• xi =“false” means that we do not select the i-th

individual into the group.
Inside the computer, “true” is usually represented as 1, while
“false” is usually represented as 0. Thus, we can describe
each group by selecting, for each i = 1, . . . , n, a value xi ∈
{0, 1} for which
• xi = 1 means that we select the i-th individual into the

group, and
• xi = 0 means that we do not select the i-th individual

into the group.
In order to select the most efficient group, we must

describe how the group’s efficiency p depends on the se-
lections xi.

For simple mechanical tasks like digging trenches or doing
simple menial work, people perform these tasks individually.
For such tasks, the efficiency p of a group is simply the sum
of the productivity values pi of all the individuals who form
this group G:

p =
∑

i∈G

pi.

In terms of the variables xi, this formula means that we add
pi if xi = 1 and that we do not add pi if xi = 0. In other
words, this formula can be described as

p =
n∑

i=1

pi · xi.

In this simple model, the more people work on a project, the
larger the productivity.

Most practical problems are not that simple. In solving
these problems, interaction between the individuals can en-
hance their productivity. In mathematical terms, this means
that
• in addition to the above terms pi · xi which are linear

in xi,
• we also have terms

pij · xi · xj , i 6= j,

which are quadratic in xi; these terms describe pair-wise
interaction between the individuals;

• we may also have cubic terms

pijk · xi · xj · xk

which describe triple interactions,
• and we can also have higher order terms, which describe

the effect of larger subgroups.
In other words, in general, the formula describing the pro-
ductivity of a group takes a more complex form

p =
n∑

i=1

pi · xi +
∑

i 6=j

pij · xi · xj +

For example, for a group consisting of two individuals, i
and j, the productivity is equal to

p = pi + pj + pij + . . .

It should be mentioned that interaction is not always
helpful. For example, if we are interested in solving a
complex problem, and we bring together two individuals with
similar ways of thinking and with similar skills, then there
is not much that these individuals can learn from each other.

In some cases, they may speed up the process by dividing
the testing of possible approaches between themselves. In
such cases, they can solve the problem twice faster, the
productivity increases twice – so there is, in effect, no
interaction terms pij .

In other cases, when the problem is not easy to subdivide,
the fact that we have two similar solvers solving the same
problem does not help at all – the overall time is the same
as for each individual solver. In this case, p ≈ pi ≈ pj and
thus p < pi + pj , i.e., pij < 0.

On the hand, in a diverse group, individuals complement
each other, learn from each other, and as a result, their
productivity increases above what would have happened if
they worked on their own: p > pi + pj , so pij > 0.

Such “negative” and “positive” interactions (i.e., pij <
0 and pij > 0) are not just a negative possibility – this
is exactly the reason why, as we have mentioned, groups
of diverse problem solvers can outperform groups of high-
ability problem solvers.

Because of the interaction, the problem of selecting the
optimal group becomes non-trivial. In this paper, we show
that the problem of selecting an optimal group is compu-
tationally difficult (NP-hard). Moreover, we will show that
this problem is NP-hard already if we take into account the

simplest possible non-linear terms – i.e., quadratic terms. In
other words, the problem becomes NP-hard already for the
following productivity expression:

p =
n∑

i=1

pi · xi +
n∑

i 6=j

pij · xi · xj .

So, we arrive at the following problem.

Definition 1. By a problem of selecting the most efficient
group, we mean the following problem. We are given:

• an integer n > 0;
• rational numbers p1, . . . , pn, and
• rational numbers rij , 1 ≤ i, j ≤ n, i 6= j.

We must find the combination of n values
x1 ∈ {0, 1}, . . . , xn ∈ {0, 1} for which the expression

p =
n∑

i=1

pi · xi +
∑

i6=j

pij · xi · xj

is the largest possible.

Instead of trying to find the most efficient group, we can
also formulate a less ambitious problem of finding a group
with a given efficiency.

Definition 2. By a problem of selecting a group with a given
efficiency, we mean the following problem. We are given:

• an integer n > 0;
• rational numbers p1, . . . , pn,
• rational numbers rij , 1 ≤ i, j ≤ n, i 6= j, and
• a rational value p0.

We must find the combination of n values
x1 ∈ {0, 1}, . . . , xn ∈ {0, 1} for which

p
def=

n∑

i=1

pi · xi +
∑

i 6=j

pij · xi · xj ≥ p0.

III. MAIN RESULTS

Proposition 1. The problem of selecting the most efficient
group is NP-hard.

Proposition 2. The problem of selecting a group with a given
efficiency is NP-hard.

The following sections contain a brief reminder of what
NP-hardness means and the proof of the statements.

IV. WHAT IS NP-HARDNESS: A BRIEF INFORMAL
REMINDER

Informally, a problem P0 is called NP-hard if it is at least
as hard as all other problems from a certain reasonable class.
Let us describe this notion in more detail.

A. When is an Algorithm Feasible?

The notion of NP-hardness is related to the known fact
that some algorithms are feasible and some are not. Whether
an algorithm is feasible or not depends on how many
computational steps it needs.

For example, if for some input x of length len(x) = n,
an algorithm requires 2n computational steps, then for an
input of a reasonable length n ≈ 300, we would need
2300 computational steps. Even if we use a hypothetical
computer for which each step takes the smallest physically
possible time (the time during which light passes through
the smallest known elementary particle), we would still need
more computational steps than can be performed during the
(approximately 20 billion years) lifetime of our Universe.

A similar estimate can be obtained for an arbitrary algo-
rithm whose running time t(n) on inputs of length n grows
at least as an exponential function, i.e., for which, for some
c > 0, t(n) ≥ exp(c·n) for all n. As a result, such algorithms
(called exponential-time) are usually considered not feasible.

Comment. The fact that an algorithm is not feasible, does
not mean that it can never be applied: it simply means that
there are cases when its running time will be too large for
this algorithm to be practical; for other inputs, this algorithm
can be quite useful.

On the other hand, if the running time grows only as a
polynomial of n (i.e., if an algorithm is polynomial-time),
then the algorithm is usually quite feasible.

As a result of the above two examples, researchers have
arrived at the following idea: An algorithm U is called
feasible if and only if it is polynomial-time, i.e., if and
only if there exists a polynomial P (n) such that for every
input x of length len(x), the computational time tU (x) of
the algorithm U on the input x is bounded by P (len(x)):
tU (x) ≤ P (len(x)).

In most practical cases, this idea adequately describes
our intuitive notion of feasibility: polynomial-time algorithms
are usually feasible, and non-polynomial-time algorithms are
usually not feasible. However, the reader should be warned
that in some (rare) cases, it does not work:
• Some algorithms are polynomial-time but not feasible:

e.g., if the running time of an algorithm is 10300 ·n, this
algorithm is polynomial-time, but, clearly, not feasible.

• Vice versa, there exist algorithms whose computation
time grows, say, as exp(0.000 . . . 01 · len(x)). Legally
speaking, such algorithms are exponential time and thus,
not feasible, but for all practical purposes, they are quite
feasible.

It is therefore desirable to look for a better formalization
of feasibility, but as of now, “polynomial-time” is the best
known description of feasibility.

Definition 3. An algorithm U is called feasible if there exists
a polynomial P (n) such that for every input x, the running
time tU (x) of this algorithm does not exceed P (len(x)),

where by len(x), we denoted the length of the input x (i.e.,
the number of bits that form this input).

B. When is a Problem Tractable?

At first glance, now, that we have a definition of a feasible
algorithm, we can describe which problems are tractable and
which problems are intractable: If there exists a polynomial-
time algorithm that solves all instances of a problem, this
problem is tractable, otherwise, it is intractable.

In some cases, this ideal solution is possible, and we either
have an explicit polynomial-time algorithm, or we have a
proof that no polynomial-time algorithm is possible.

Unfortunately, in many cases, we do not know whether
a polynomial-time algorithm exists or not. This does not
mean, however, that the situation is hopeless: instead of
the missing ideal information about intractability, we have
another information that is almost as good.

Namely, for some cases, we do not know whether the
problem can be solved in polynomial time or not, but we
do know that this problem is as hard as practical problems
can get: if we can solve this problem easily, then we would
have an algorithm that solves all problems easily, and the
existence of such universal solves-everything-fast algorithm
is very doubtful. We can, therefore, call such “hard” problems
intractable.

In order to formulate this notion in precise terms, we must
describe what we mean by a problem, and what we mean by
the ability to reduce other problems to this one.

What is a practical problem? When we say that there is a
practical problem, we usually mean that:
• we have some information (we will denote its computer

representation by x), and
• we know the relationship R(x, y) between the known

information x and the desired object y.
In the computer, everything is represented by a binary
sequence (i.e., sequence of 0’s and 1’s), so we will assume
that x and y are binary sequences.

In this section, we will trace all the ideas on two examples,
one taken from mathematics and one taken from physics.
• (Example from mathematics) We are given a mathemat-

ical statement x. The desired object y is either a proof
of x, or a “disproof” of x (i.e., a proof of “not x”).
Here, R(x, y) means that y is a proof either of x, or of
“not x”.

• (Example from physics) x is the results of the ex-
periments, and the desired y is the formula that fits
all these data. Imagine that we have a series of
measurements of voltage and current: e.g., x consists
of the following pairs (x(k)

1 , x
(k)
2), 1 ≤ k ≤ 10:

(1.0, 2.0), (2.0, 4.0), . . . , (10.0, 20.0); we want to find a
formula that is consistent with these experiments (e.g.,
y is the formula x2 = 2 · x1).

For a problem to be practically meaningful, we must have
a way to check whether the proposed solution is correct.
In other words, we must assume that there exists a feasible
algorithm that checks R(x, y) (given x and y). If no such

feasible algorithm exists, then there is no criterion to decide
whether we achieved a solution or not.

Another requirement for a real-life problem is that in such
problems, we usually know an upper bound for the length
len(y) of the description of y. In the above examples:
• In the mathematical problem, a proof must be not too

huge, else it is impossible to check whether it is a proof
or not.

• In the physical problem, it makes no sense to have a for-
mula x2 = f(x1, C1, . . . , C40) with, say, 40 parameters
to describe the results (x(1)

1 , x
(1)
2), . . . , (x(10)

1 , x
(10)
2) of

10 experiments, for two reasons:
• First, one of the goals of physics is to discover

the laws of nature. If the number of parameters
exceeds the number of experimental data, then no
matter what dependency f(x1, C1, . . .) we choose,
in order to determine Ci, we have, say, 10 equations
with 40 unknowns. Such under-determined system
usually has a solution, so the fact that, say, a linear
formula with many parameters fits all the experi-
mental data does not mean that the dependency is
proven to be linear: a quadratic or cubic formula
with as many parameters will fit the same data as
well.

• Second, another goal of physics (definitely related
to the first one) is to find a way to compress the
data, so that we will not need to store all billions of
experimental results in order to make predictions.
A dependency y that requires more storage space
than the original data x is clearly not satisfying this
goal.

In all cases, it is necessary for a user to be able to read the
desired solution symbol-after-symbol, and the time required
for that reading must be feasible. In the previous section, we
have formalized “feasible time” as a time that is bounded by
some polynomial of len(x). The reading time is proportional
to the length len(y) of the answer y. Therefore, the fact the
reading time is bounded by a polynomial of len(x) means
that the length of the output y is also bounded by some
polynomial of len(x), i.e., that len(y) ≤ PL(len(x)) for
some polynomial PL.

So, we arrive at the following formulation of a problem:

Definition 4. By a general practical problem (or simply a
problem, for short), we mean a pair 〈R, PL〉, where R(x, y)
is a feasible algorithm that transforms two binary sequences
into a Boolean value (“true” or “false”), and PL is a
polynomial.

Definition 5. By an instance of a (general) problem 〈R, PL〉,
we mean the following problem:

GIVEN: a binary sequence x.
GENERATE
• either y such that R(x, y) is true and len(y) ≤

PL(len(x)),
• or, if such a y does not exist, a message saying that

there are no solutions.

For example, for the general mathematical problem de-
scribed above, an instance would be: given a statement, find
its proof or disproof.

Comments. What we called “general practical problems”
is usually described as “problems from the class NP” (to
separate them from more complicated problems in which the
solution may not be easily verifiable). Problems for which
there is a feasible algorithm that solves all instances are
called tractable, easily solvable, or “problems from the class
P” (P from Polynomial). It is widely believed that not all
(general practical) problems are easily solvable (i.e., that
NP 6=P), but it has never been proved.

One way to solve an NP problem is to check R(x, y)
for all binary sequences y with len(y) ≤ PL(len(x)).
This algorithm (called British Museum algorithm) requires
2PL(len(x)) checks. This algorithm takes exponential time and
is therefore, not feasible.

C. Reducing a Problem to Another One

Let us start with an example. Suppose that we can have
an algorithm that checks whether a given system of linear
inequalities

ai1 · x1 + . . . + aim · xm ≥ bi, 1 ≤ i ≤ n,

with known aij and bi, has a solution. A problem of checking
whether a given system of inequalities and equalities ck1 ·
x1 + . . .+ ckm ·xm = dk is consistent can be reduced to the
problem of checking inequalities if we replace each equality
by two inequalities: ck1 · x1 + . . . + ckm · xm ≥ dk and
(−ck1) · x1 + . . . + (−ckm) · xm ≥ −dj (the latter being
equivalent to ck1 · x1 + . . . + ckm · xm ≤ dk).

In general, we can say that a problem P = 〈R,PL〉
can be reduced to a problem P ′ = 〈R′, P ′L〉 if there exist
three feasible algorithms U1, U2, and U3 with the following
properties:
• The (feasible) algorithm U1 transforms each input x of

the first problem into an input of the second problem.
• The (feasible) algorithm U2 transforms each solution y

of the first problem into the solution of the correspond-
ing case of the second problem: i.e., if R(x, y) is true,
then R′(U1(x), U2(y)) is also true.

• The (feasible) algorithm U3 transforms each solution
y′ of the corresponding instance of the second prob-
lem into the solution of the first problem: i.e., if
R′(U1(x), y′) is true, then R(x, U3(y′)) is also true.

(In the above example, U1 transforms each equality into two
inequalities, and U2 and U3 simply do not change the values
xi at all.)

If there exists a reduction, then an instance x of the first
problem is solvable if and only if the corresponding instance
U1(x) of the second problem is solvable. Moreover, if we
can actually solve the second instance (and find a solution
y′), we will then be able to find a solution to the original
instance x of the first problem (as U3(y′)). Thus, if we have a
feasible algorithm for solving the second problem, we would

thus design a feasible algorithm for solving the first problem
as well.

Comment. We only described the simplest way of reducing
one problem to another one: when a single instance of the
first problem is reduced to a single instance of the second
problem. In some cases, we cannot reduce to a single case,
but we can reduce to several cases, solving which helps us
solve the original instance of the first problem.

Definition 6.
• A problem (not necessarily from the class NP) is called

NP-hard if every problem from the class NP can be
reduced to it.

• If a problem from the class NP is NP-hard, it is called
NP-complete.

If a problem P is NP-hard, then every feasible algorithm
for solving this problem P would lead to feasible algorithms
for solving all problems from the class NP, and this is
generally believed to be hardly possible.
• For example, mathematicians believe that not only there

is no algorithm for checking whether a given statement
is provable or not (the famous Gödel’s theorem has
proven that), but also they believe that there is no
feasible way to find a proof of a given statement even
if we restrict the lengths of possible proofs. (In other
words, mathematicians believe that computers cannot
completely replace them.)

• Similarly, physicists believe that what they are doing
cannot be completely replaced by computers.

In view of this belief, NP-hard problems are also called
intractable.

Comment. It should be noted that although most scientists
believe that intractable problems are not feasible, we still
cannot prove (or disprove) this fact. If a NP-hard problem
can be solved by a feasible algorithm, then (by definition
of NP-hardness) all problems from the class NP will be
solvable by feasible algorithms and thus, P=NP. Vice versa,
if P=NP, then all problems from the class NP (including all
NP-complete problems) can be solved by polynomial-time
(feasible) algorithms.

So, if P 6=NP (which is a common belief), then the fact that
the problem is NP-hard means that no matter what algorithm
we use, there will always be some cases for which the running
time grows faster than any polynomial. Therefore, for these
cases, the problem is truly intractable.

D. Examples of NP-Hard Problems

Historically the NP-complete problem proved to be NP-
complete was the so-called propositional satisfiability (3-
SAT) problem for 3−CNF formulas.

This problem consists of the following: Suppose that
an integer v is fixed, and a formula F of the type
F1&F2& . . . &Fk is given, where each of the expressions
Fj has the form a ∨ b or a ∨ b ∨ c, and a, b, c are either the

variables z1, . . . , zv , or their negations ¬z1, . . . ,¬zv (these
a, b, c, . . . are called literals)

For example, we can take a formula (z1∨¬z2)&(¬z1∨
z2 ∨ ¬z3).

If we assign arbitrary Boolean values (“true” or “false”) to
v variables z1, . . . , zv , then, applying the standard logical
rules, we get the truth value of F . We say that a formula F
is satisfiable if there exist truth values z1, . . . , zv for which
the truth value of the expression F is “true”. The problem
is: given F , check whether it is satisfiable.

In the subset sum problem, given n integers s1, . . . , sn, we
must check whether there exist values x1, . . . , xn ∈ {−1, 1}
for which s1 · x1 + . . . + sn · xn = 0.

V. TOWARDS A PROOF: HOW NP-HARDNESS IS
USUALLY PROVED

The original proof of NP-hardness of certain problems P0

is rather complex, because it is based on explicitly proving
that every problem from the class NP can be reduced to the
problem P0. However, once we have proven NP-hardness of
a problem P0, the proof of NP-hardness of other problems
P1 is much easier.

Indeed, from the above description of a reduction, one can
easily see that reduction is a transitive relation: if a problem
P can be reduced to a problem P0, and the problem P0 can
be reduced to a problem P1, then, by combining these two
reductions, we can prove that P can be reduced to P1.

Thus, to prove that a new problem P1 is NP-hard, it is
sufficient to prove that one of the known NP-hard problems
P0 can be reduced to this problem P1. Indeed, since P0 is
NP-hard, every other problem P from the class NP can be
reduced to this problem P0. Since P0 can be reduced to P1,
we can now conclude, by transitivity, that every problem P
from the class NP can be reduced to this problem P1 – i.e.,
that the problem P1 is indeed NP-hard.

Comment. As a consequence of the definition of NP-
hardness, we can conclude that if a problem P0 is NP-hard,
then every more general problem P1 is also NP-hard.

Indeed, the fact that P0 is NP-hard means that every
instance p of every problem P can be reduced to some
instance p0 of the problem P0. Since the problem P1 is
more general than the problem P0, every instance p0 of the
problem P0 is also an instance of the more general problem
P1.

Thus, every instance p of every problem P can be reduced
to some instance p0 of the problem P1 – i.e., that the more
general problem P1 is indeed NP-hard.

VI. REDUCTION IN OUR PROOF: TO SUBSET SUM, A
KNOWN NP-HARD PROBLEM

We prove NP-hardness of our problem by reducing a
known NP-hard problem to it: namely, a subset sum problem,
in which we are given n positive integers s1, . . . , sn, and we
must find the signs εi ∈ {−1, 1} for which

n∑

i=1

εi · si = 0;

see, e.g., [7].
A reduction means that to every instance s1, . . . , sn of

the subset sum problem, we must assign (in a feasible, i.e.,
polynomial-time way) an instance of our problem in such a
way that the solution to the new instance will lead to the
solution of the original instance.

VII. REDUCTION: IDEA

In our reduction, we would like to transform each variable
εi from the subset sum problem into a variable xi from our
problem, so that our problem (formulated in terms of xi) is
optimal if and only if the original problem has a solution.

For that, we need to transform each variable xi which
takes the values 0 and 1 into a variable εi that takes values
−1 and 1 (and vice versa). The simplest way to perform
this reduction is to take a linear function εi = a · xi + b,
where the coefficients a and b are selected in such as way
that a · 0 + b = −1 and a · 1 + b = 1. In other words, we
have b = −1 and a + b = 1. Substituting b = −1 into the
equation a + b = 1, we conclude that a = 2, i.e., that

εi = 2 · xi − 1.

Let us select an integer p0 > 0 and consider the formula

p = p0 −
(

n∑

i=1

εi · si

)2

.

This expression is always ≤ p0, and it attains the value p0

if and only if
n∑

i=1

εi · si = 0. In terms of xi, we have

p = p0 −
(

n∑

i=1

(2 · xi − 1) · si

)2

,

i.e.,

p = p0 −
(

n∑

i=1

xi · (2 · si)− s0

)2

,

where we denoted

s0
def=

n∑

i=1

si.

By using the formula for the square of the difference, we
conclude that

p = p0 −
(

n∑

i=1

xi · (2 · si)

)2

+

2 · s0 ·
n∑

i=1

xi · (2 · si)− s2
0,

i.e.,

p = p0 −
(

n∑

i=1

xi · (2 · si)

)2

+

n∑

i=1

xi · (4 · s0 · si)− s2
0.

The square of the sum takes the form
(

n∑

i=1

xi · (2 · si)

)2

=

n∑

i=1

x2
i · (4 · s2

i) +
∑

i 6=j

(4 · si · sj) · xi · xj .

Since xi = 0 or xi = 1, we always have x2
i = xi and thus,

(
n∑

i=1

xi · (2 · si)

)2

=

n∑

i=1

xi · (4 · s2
i) +

∑

i 6=j

(4 · si · sj) · xi · xj .

Substituting this expression into the above formula for p, we
get

p = p0 −
n∑

i=1

xi · (4 · s2
i)−

∑

i 6=j

(4 · si · sj) · xi · xj+

n∑

i=1

xi · (4 · s0 · si)− s2
0.

By grouping together terms independent on xi and terms
proportional to pi, we get

p = (p0 − s2
0) +

n∑

i=1

xi · (4 · s0 · si − 4 · s2
i)+

∑

i 6=j

(−4 · si · sj) · xi · xj .

Thus, if we choose
p0 = s2

0,

then the above expression takes the desired form

p =
n∑

i=1

pi · xi +
∑

i 6=j

pij · xi · xj ,

with
pi = 4 · s0 · si − 4 · s2

i

and
pij = −4 · si · sj .

VIII. RESULTING REDUCTION

To each particular case of the subset sum problem, de-
scribed by parameters s1, . . . , sn, we assign the following
particular case of our problem. First, we compute

p0 = s0 =
n∑

i=1

si;

then, we compute

pi = 4 · s0 · si − 4 · s2
i ; pij = −4 · si · sj .

For these values, the quadratic function

p =
n∑

i=1

pi · xi +
∑

i6=j

pij · xi · xj

has the form

p = p0 −
(

n∑

i=1

εi · si

)2

,

where εi = 2 · xi − 1 ∈ {−1, 1}.
The above argument shows that for this selection, the

quadratic function p attains the value p0 = s0 if and only if

the original instance of the subset sum problem
n∑

i=1

εi ·si = 0

has a solution with εi ∈ {−1, 1}, and thus, with

xi =
εi + 1

2
∈ {0, 1}.

The reduction is proven, so our problem is indeed NP-hard.

Comment. Strictly speaking, we have proved NP-hardness
of a specific choice of the quadratic function p(x1, . . . , xn).
However, we have already mentioned earlier that if a problem
P0 is NP-hard, then a more general problem P1 is NP-hard
as well. Thus, we have indeed proved that the (more general)
problem is also NP-hard.

IX. CONCLUSIONS

One of the applications of fuzzy techniques is to formalize
the meaning of words from natural language such as “effi-
cient”, “diverse”, etc. The main idea behind fuzzy techniques

is that they formalize expert knowledge expressed by words
from natural language; see, e.g, [3], [5].

In this paper, we have shown that if we do not use this
knowledge, i.e., if we only use the data, then selecting the
most efficient group (or even selecting a group with a given
efficiency) becomes a computationally difficult (NP-hard)
problem. Thus, the need to select such groups in reasonable
time justifies the use of fuzzy (intelligent) techniques – and,
moreover, the need to combine intelligent techniques with
more traditional optimization techniques.

REFERENCES

[1] J. E. Gamez, F. Modave, and O. Kosheleva, “Selecting the Most Repre-
sentative Sample is NP-Hard: Need for Expert (Fuzzy) Knowledge”,
Proceedings of the IEEE World Congress on Computational Intelli-
gence WCCI’2008, Hong Kong, China, June 1–6, 2008, pp. 1069–
1074.

[2] L. Hong and S. E. Page, “Groups of diverse problem solvers can
outperform groups of high-ability problem solvers”, Proceedings of
the National Academy of Sciences, 2004, Vol. 101, No. 46. pp. 16385–
16389.

[3] G. Klir and B. Yuan, Fuzzy sets and fuzzy logic: theory and applica-
tions. Prentice Hall, Upper Saddle River, New Jersey, 1995.

[4] C. C. Kuo, F. Glover, and K. S. Dhir, “Analyzing and modeling
the maximum diversity problem by zero-one programming”, Decision
Sciences, vol. 24, no. 6, pp. 1171–1185, 1993.

[5] H. T. Nguyen and E. A. Walker, A first course in fuzzy logic, CRC
Press, Boca Raton, Florida, 2005.

[6] S. E. Page, The Difference: How the Power of Diversity Creates Better
Groups, Firms, Schools, and Societies, Princeton University Press,
Princeton, New Jersey, 2007.

[7] C. H. Papadimitriou, Computational Complexity, Addison Wesley, San
Diego, 1994.

