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Abstract

Detecting arcing faults is an important but difficult-to-solve practi-
cal problem. Many existing methods of arc detection are based upon
acquiring a signal that is proportional to current and then making an
analysis of the signal’s power spectrum (or, equivalently, its covariance
function). Since the power spectrum, i.e., the absolute values of the
Fourier transform, carries only partial information about the signal, a
natural question is: why should we restrict ourselves to the use of this
partial information? A related question is caused by the fact that even
the most efficient methods still miss some arcing faults and/or lead to
false detection; what methods should we use to improve the quality of
arc detection?

Our analysis is much more general than the arc detection problem
and can be used to justify and select detection methods in other applied
problems as well.
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1 Introduction

Electrical systems sometimes start an unplanned “arcing”, i.e., producing an
electric connection in the normally nonconducting media (e.g., in the air).
Arcing can be a result of an unplanned connection between two wires, or the
result of an electric wire break down or a connector becoming loose.

Unplanned arcing not only disrupts the normal functioning of an electric
system, it can also produce damage. Arcing damage is especially dangerous
in aerospace systems where an arc fault can cause the damage to the wiring
system causing an aircraft to crash. Because of this danger, it is extremely
important to be able to detect the arcing based on the observed electric current
or its rate of change; see, e.g., [9]. The corresponding signal will be denoted
by x(t).

Arcing is very difficult to detect because every individual arc is different.
The material makeup of the wires and of the insulation, air pressure, and arc
severity all affect the arc behavior. As a result, arcs are difficult to model,
difficult to predict, and difficult to detect.

The problem of detecting unplanned arcs is made even more complex by
the fact that in some practical systems such as brush motors, arc welders, and
arc discharge lamps, there are permissible arcs. Electric switches and relays
are also sources of permissible arcs. For such systems, we must be able to
distinguish between the effect of permissible and unplanned arcs.

Many existing methods of arc detection are based on the analysis of the
signal’s power spectrum P(w) = |#(w)|?, where Z(w) is the Fourier transform
of the signal x(t); see, e.g., [4, 7, 8, 10]. Some of the arc detection methods
use the covariance function A() = [x(t) - z(t — 7) dt.

For example, [2] proposed to use the fact that without the arc, a typical
electrical system may be characterized by linear equations while with an arc,
this is not possible. So, to detects the arc faults, [2] proposes to find the
coefficients of the corresponding linear equations by using the Least Squares
fit — and use the size of the remainder to detect arcs. The Least Square fit for
a signal naturally involves the use of covariance.

While computationally the power spectrum and covariance function are dif-
ferent, from the mathematical viewpoint, they represent the same information
in the sense that they can be easily obtained from each other (see, e.g., [3]):

e the power spectrum is equal to the Fourier transform of the covariance
function, while
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e the covariance function can be obtained from the power spectrum by
using the inverse Fourier transform.

Since the power spectrum, i.e., the absolute values of the Fourier transform,
carries only partial information about the signal, a natural question is: why
should we restrict ourselves to the use of this partial information? A related
question is caused by the fact that even the most efficient methods still miss
some arcing faults and/or lead to false detection; what methods should we use
to improve the quality of arc detection?

Our analysis is much more general than the arc detection problem and can
be used to justify and select detection methods in other applied problems as
well.

Our objective is to be understood both by engineers and by mathemati-
cians. As a result, we start with explaining the corresponding engineering
problem — this part can skipped by an interested engineer. Then, we ex-
plain our mathematical approach in terms that should be understandable to a
working engineer; an interested mathematician can easily skip the derivation
details.

2 Towards a General Method of Event Detec-
tion

We need to be able, given a signal x(t), i.e., a function, to detect a certain
event. In our case study, this event is the presence of an arc, or, for a system
with permissible arcs, the presence of an unplanned arc.

How can we detect a generic event like that? Since we do not have a good
theoretical model for such an event, we have to first gather the signals corre-
sponding to the “normal” situation (where the event did not occur) and signals
corresponding to “abnormal” situation — where this event actually occurred.
There are also borderline situations in which we are not sure whether an event
occurred.

Observed normal signals can be viewed as samples from the set N of all
the signals corresponding to the normal situations, while observed abnormal
signals can be viewed as samples from the set A of all the signals corresponding
to the abnormal situations.

We must be able, given a signal z(t) from the set S of all possible signals,
to distinguish whether the signal belongs to the set IV or to the set A.

It is reasonable to assume that the sets A and N are, in general, disjoint
(= non-intersecting) closed sets in the space S of all possible signals. It is also
reasonable to assume that every two such sets can be contained in disjoint open
neighborhoods. Thus, we can conclude that there exists a function J : S — R
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and a number £ > 0 for which J(z) > ¢ for z € A and J(x) < —¢ for z € N;
see, e.g., [6].

We want to minimize the number of situations when we cannot tell whether
the event occurred or not. Thus, we would like to make the gap between the
normal and abnormal signals as narrow as possible. Ideally, we should therefore
aim for a function J : S — R for which J(z) > 0 for z € A and J(z) < 0
for + € N. In these terms, the question is to find an appropriate function
J:S—R

How can we describe such arbitrary functions?

In principle, there exist events which drastically change the signal; detect-
ing such events is usually reasonably easy. The problem of event detection
becomes difficult when the signals corresponding to the abnormal events are
very similar to the signals corresponding to the normal events. So, for event
detection purposes, it is sufficient to be able to distinguish between close sig-
nals, i.e., signals from a small neighborhood. Within this small neighborhood,
we can expand the function J in Taylor series and keep only a few terms in this
expansion. A signal z(t) is usually represented by its values x(to), x(t1), ...,
x(ty), ..., at different moments of time ty, t; = to+At, to = t;+At, ... Thus, a
general function J(x) can be represented as a general linear (quadratic, cubic,
etc.) function of these variables:

J(z) :ao—i—Zai-x(ti)—l—ZZazj-x(ti)-x(tj)+...

This expression can be further simplified if we take into account that, e.g., the
first sum Y a;-x(¢;) in this expression is an integral sum for the corresponding

(2
integral [ a(t) - z(t) dt. In other words, taking into account the discretization
of the signal, it is, in effect, this integral. Similarly, the second sum is an
integral sum for the corresponding 2-D integral, etc. As a result, we arrive at
the following general expression for J(x):

J(z(t)) :a0+/a1(t) -z (t) dt+/a2(t, s)-x(t)-x(s)dtds+... (1)

In general, the expressions a;(t) and ay(t,s) do not have to be functions in
the normal mathematical sense, we can have “generalized” functions such as
delta-functions §(z); see, e.g., [1, 5] (In mathematical physics, such “general-
ized” functions are sometimes called distributions — not to be confused with
probability distributions.)

It is reasonable to start with the smallest possible number of terms in the
Taylor expansion, and then, if needed, add further terms.

An additional feature of most event detection situations is related to the
fact that the mathematical representation z(t) of the signal depends on the
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choice of the starting moment for measuring time. If, instead of the original
starting moment t = 0, we choose a new moment which is t; seconds later,
then each moment of time described by the value ¢ on the old scale will now be
described by the value ¢’ =t — ¢y in the new scale, and the value ¢’ in the new
scale corresponds to the value ¢t = t' 4+t on the old time scale. Thus, the value
2'(t') of the signal in the new time scale corresponds to the value z(t' + to) in
the old scale: 2/(t') = x(t' +ty). In other words, in the new time scale, instead
of the original function z(t), we have a new function x(t' + ty) (representing
the same signal). In most practical problems (including the problem of arc
detection), there is nothing special about the moment ¢ = 0, so we should
expect that the corresponding functional does not change if we simply change
the time origin: J(z(t)) = J(z(t' + to)).

We will see that this time-invariance leads, in effect, to the justification of
the spectral techniques.

3 First Auxiliary Result: Linear Functionals
are Not Sufficient

As we have mentioned earlier, it is reasonable to start with the Taylor expan-
sion with the smallest possible number of terms, i.e., with a linear expression

J(x(t)) = ao + /al(t) - x(t) dt. (2)

For this expression, time-invariance J(x(t)) = J(x(t+1y)) means that for every
to and for every signal z(t), we have

a0+/a1(t) a(t) dt:ao—l—/al(t)-x(ttho) dt. (3)

By introducing a new variable ¢’ =t + t, (for which ¢t =t — t5 and dt = dt’),
we can transform the integral in the right-hand side into

/al(t' - to) : ZL‘(t/) dt/

Renaming ' into ¢ and canceling the common term g in both sides, we con-
clude that with a linear expression for J,

/al(t) cx(t)dt = /al(t —tp) - x(t) dt, (4)

i.e., that

@0 -t~ ) -atey e =0 (5)
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for all possible signals (). Since this linear function (integral) is 0 for all the
inputs z(t), this means that all the coefficients at this linear expression must
be equal to 0, i.e., that we should have a,(t) = a1(t — ty) for all ¢t and all .

In particular, for ¢, = t, we conclude that a,(t) = a1(0), i.e., that a;(¢) is a

constant: a;(t) = a; o a1(0) for all t. Thus, the general time-invariant linear

expression J(z) takes the form

J(x(t)) = ao + ai - / 2(t) dt.

This expression depends only on the average value [ z(t)dt of the signal z(t).
The time average of the signal x(t) is often zero. For example, in most arc
sensing systems, x(t) is often obtained from a current sense transformer (see,
e.g., [2]), that removes the direct current component. As a result, based on the
time average of the signal, we usually cannot tell whether an event occurred
or not. Definitely we cannot tell based on the time average whether there is
arcing or not.

Thus, linear terms are not enough, so quadratic (or maybe even higher)
terms are needed.

4 Main Result: Quadratic Time-Invariant
Functionals are (Almost) Uniquely Deter-
mined by the Power Spectrum

For the general quadratic functional

J(z(t)) = ag + /al(t) cx(t) dt + /(lg(t, s) - x(t) - z(s)dtds, (6)

time-invariance J(x(t)) = J(x(t + tp)) means that for every t, and for every
signal z(t), we have

ap + / ar(t) - z(t)dt + /CLQ(t, s)-a(t) - xz(s)dtds =

CLO—F/CLl(t)'SC(t—i‘to)dt—i‘/Gz(t,s)'l’(t—i‘to)‘%(S—i—to)dtdS. (7)

By introducing new variables t' =t + ¢y and s’ = s 4 to (for which ¢ = ' — ¢,
s =5 —ty, dt = dt’ and ds = ds’) and canceling the common term ag in both
sides, we conclude that

/al(t) ~x(t) dt + /a2(t, s)-x(t) - x(s)dtds =
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/(ll(t—to)l’(t—l-to)dt-’-/dg(t-to,S-to)I(t+t0)$(8+t0)dtd8, (8)
i.e., that

/ (ar(t) — ar(t — to)) - 2(t) dt+
/(ag(t, s) —ag(t —to,s — tg)) - x(t) - x(s)dtds = 0 (9)

for all possible signals x(t). Since this quadratic function (integral) is 0 for all
the inputs x(¢), this means that all the coefficients at this quadratic expression
must be equal to 0, i.e., that we should have a(t) = a;(t — to) for all ¢ and
all ¢y, and that we should have as(t, s) = as(t — to, s — to) for all ¢, s, and t.
We already know that the condition a;(t) = a1(t — ty) implies that a,(t) is a

constant: ay(t) = ay for all ¢. Similarly, for the second condition, for ¢, = t,

we get as(t, s) = b(s —t), where we denoted b(t) o as(0,t). Thus, the general

time-invariant quadratic functional has the form
J(x(t)) = ao+ ay - /m(t) dt + /b(s —t)-a(t) - x(s)dtds. (10)

By definition of the Fourier transform, the first integral I; o [ x(t) dt is equal
to £(0). This value is always a real number and thus, it can be almost uniquely
determined by the corresponding value |Z(0)|? of the power spectrum — with
the only uncertainty is that from the power spectrum, we cannot determine
the sign of this integral.

The second integral LY fb s—1t)-z(t) - x(s)dtds can be described as

= [y(s) - 2(s)ds, where y(s) & [b(s —t) - x(t)dt is a convolution of the
functlons b(t ) and x( ). The Fourler transform g(w) of y is thus equal to the
product of the Fourier transforms: §(w) = b(w) - #(w).
Due to the Parseval’s (Plancherel) Theorem (see, e.g., [3]),

L= [y a(s)ds = [ 4) () do

(where z*, as usual, means a complex conjugate). Substituting the above
expression for §(w), we conclude that

I = /B(w) C(w) - (w) dw.
Since a - a* = |a|?, we thus get I, = [ b(w 2 dw, so we conclude that

J(x(t)) = ao+ a1 - 2(0) + asg - /l;(w) )2 (w))? dw. (11)

In other words, every time-invariant quadratic functional depends only on the
spectrum |Z(w)|? — and on the value #(0) which is equal to ++/|2(0)]2.
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5 Second Auxiliary Result: Cubic Time-
Invariant Functionals are Not Uniquely De-
termined by the Power Spectrum

In the previous section, we have shown that, in effect, every time-invariant
quadratic functional depends only on the power spectrum. One may think that
the same is true for higher-order functionals as well, but this is not true already
for cubic functionals. For example, let us pick any two positive numbers w; #
wy and define the following simple cubic functional:

J(z) = Re[t(wy) - T(w2) - 2" (w1 + wa)], (12)

where Re(a) denotes the real part of the complex number a. The numerical
value of this functional is not uniquely determined by the power spectrum
|#(w)|?: indeed, if we retain the absolute value (magnitude) |Z(w;)| of the
complex number Z(w;) but change the phase, that will change the value of the
real part and thus, of the functional.

On the other hand, this functional is time-invariant. Indeed, if we replace

z(t) with Tyew(t) oo x(t + o), then the new Fourier transform takes the form

Tnew(w) = Z(w) - e, Thus, for the new function ey (t), the functional has
the value

J(xnew) = Re[i)new(wl) : fnew(WQ) : ff);ew(wl + w?)]> (13)
ie.,

J(Tnew) = Re[Z(wy) - €170 - B(wy) - €721 - 2% (W) + wy) - e T2l o] (14)

Since

iwiy-to iwa-tg —i~(w1+w2)~t0 — 1
)

€ - € - €

we thus conclude that J(zpeyw) = J(x), i.e., that the above cubic functional
J(z) is indeed time-invariant.

6 What This Means for a Practitioner

From an engineering viewpoint, we observe that most existing techniques for
arc detection (and similar detection problems) use quadratic detection criteria.
It turns out that all these methods, in effect, belong to the same class of
methods — method which use the signal’s power spectrum for detection. Our
conclusion is that if we want to further increase the efficiency of the detection
techniques, we need to use higher-order methods.
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