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Abstract

In this paper, we explain what are tensors and how tensors can help
in computing.

1 Why Tensors

One of the main problems of modern computing is that:

• we have to process large amounts of data;

• and therefore, long time required to process this data.

A similar situation occurred in the 19 century physics:

• physicists had to process large amounts of data;

• and, because of the large amount of data, a long time required to process
this data.

We will recall that in the 19 century, the problem was solved by using tensors. It
is therefore a natural idea to also use tensors to solve the problems with modern
computing.
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2 Tensors in Physics: A Brief Reminder

Let us recall how tensors helped the 19 century physics; see, e.g., [6]. Physics
starts with measuring and describing the values of different physical quantities.
It goes on to equations which enable us to predict the values of these quantities.

A measuring instrument usually returns a single numerical value. For some
physical quantities (like mass m), the single measured value is sufficient to
describe the quantity. For other quantities, we need several values. For example,
we need three components Ex, Ey, and Ez to describe the electric field at a given
point. To describe the tension inside a solid body, we need even more values:
we need 6 values σij = σji corresponding to different values 1 ≤ i, j ≤ 3: σ11,
σ22, σ33, σ12, σ23, and σ13.

The problem was that in the 19 century, physicists used a separate equation
for each component of the field. As a result, equations were cumbersome and
difficult to solve.

The main idea of the tensor approach is to describe all the components of a
physical field as a single mathematical object:

• a vector ai,

• or, more generally, a tensor aij , aijk, . . .

As a result, we got simplified equations – and faster computations.
It is worth mentioning that originally, mostly vectors (rank-1 tensors) were

used. However, the 20 century physics has shown that higher-order matrices
are also useful. For example:

• matrices (rank-2 tensors) are actively used in quantum physics,

• higher-order tensors such as the rank-4 curvature tensor Rijkl are actively
used in the General Relativity Theory.

3 From Tensors in Physics to Computing with
Tensors

As we have mentioned earlier, 19 century physics encountered a problem of too
much data. To solve this problem, tensors helped.

Modern computing suffers from a similar problem. A natural idea is that
tensors can help. Two examples justify our optimism:

• modern algorithms for fast multiplication of large matrices; and

• quantum computing.
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4 Modern Algorithm for Multiplying Large Ma-
trices

In many data processing algorithms, we need to multiply large-size matrices:



a11 . . . a1n

. . . . . . . . .
an1 . . . ann







b11 . . . b1n

. . . . . . . . .
bn1 . . . bnn


 =




c11 . . . c1n

. . . . . . . . .
cn1 . . . cnn


 ; (1)

cij = ai1 · b1j + . . . + aik · bkj + . . . + ain · bnj . (2)

There exist many efficient algorithms for matrix multiplication.
The problem is that for large matrix size n, there is no space for both A

and B in the fast (cache) memory. As a result, the existing algorithms require
lots of time-consuming data transfers (“cache misses”) between different parts
of the memory.

An efficient solution to this problem is to represent each matrix as a matrix
of blocks; see, e.g., [2, 10]:

A =




A11 . . . A1m

. . . . . . . . .
Am1 . . . Amm


 , (3)

then
Cαβ = Aα1 ·B1β + . . . + Aαγ ·Bγβ + . . . + Aαm ·Bmβ . (4)

Comment. For general arguments about the need to use non-trivial representa-
tions of 2-D (and multi-dimensional) objects in the computer memory, see, e.g.,
[21, 22].

In the above idea,

• we start with a large matrix A of elements aij ;

• we represent it as a matrix consisting of block sub-matrices Aαβ .

This idea has a natural tensor interpretation:

• each element of the original matrix is now represented as

• an (x, y)-th element of a block Aαβ ,

• i.e., as an element of a rank-4 tensor (Aαβ)xy.

So, in this case, an increase in tensor rank improves efficiency.

Comment. Examples when an increase in tensor rank is beneficial are well
known in physics: e.g., a representation of a rank-1 vector as a rank-2 spinor
works in relativistic quantum physics [6].
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5 Quantum Computing as Computing with Ten-
sors

Classical computation is based on the idea a bit: a system with two states 0 and
1. In quantum physics, due to the superposition principle, we can have states

c0 · |0〉+ c1 · |1〉 (5)

with complex values c0 and c1; such states are called quantum bits, or qubits,
for short.

The meaning of the coefficients c0 and c1 is that they describe the probabil-
ities to measure 0 and 1 in the given state: Prob(0) = |c0|2 and Prob(1) = |c1|2.
Because of this physical interpretations, the values c1 and c1 must satisfy the
constraint |c0|2 + |c1|2 = 1.

For an n-(qu)bit system, a general state has the form

c0...00 · |0 . . . 00〉+ c0...01 · |0 . . . 01〉+ . . . + c1...11 · |1 . . . 11〉. (6)

From this description, one can see that each quantum state of an n-bit system
is, in effect, a tensor ci1...in of rank n.

In these terms, the main advantage of quantum computing is that it can
enable us to store the entire tensor in only n (qu)bits. This advantage explains
the known efficiency of quantum computing. For example:

• we can search in an unsorted list of n elements in time
√

n – which is
much faster than the time n which is needed on non-quantum computers
[8, 9, 15];

• we can factor a large integer in time which does not exceed a polynomial
of the length of this integer – and thus, we can break most existing crypto-
graphic codes like widely used RSA codes which are based on the difficulty
of such a factorization on non-quantum computers [15, 18, 19].

6 New Idea: Tensors to Describe Constraints

A general constraint between n real-valued quantities is a subset S ⊆ Rn. A
natural idea is to represent this subset block-by-block – by enumerating sub-
blocks that contain elements of S.

Each block bi1 . . . in can be described by n indices i1, . . . , in. Thus, we can
describe a constraint by a boolean-valued tensor ti1...in for which:

• ti1...in =“true” if bi1...,in ∩ S 6= ∅; and

• ti1...in =“false” if bi1...,in ∩ S = ∅.
Processing such constraint-related sets can also be naturally described in tensor
terms.

This representation speeds up computations; see, e.g., [3, 4].
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7 Computing with Tensors Can Also Help
Physics

So far, we have shown that tensors can help computing. It is possible that the
relation between tensors and computing can also help physics.

As an example, let us consider Kaluza-Klein-type high-dimensional space-
time models of modern physics; see, e.g., [7, 11, 12, 13, 16, 20]. Einstein’s
original idea [5] was to use “tensors” with integer or circular values to describe
these models. From the mathematical viewpoint, such “tensors” are unusual.
However, in computer terms, integer or circular data types are very natural:
e.g., circular data type means fixed point numbers in which the overflow bits
are ignored. Actually, from the computer viewpoint, integers and circular data
are even more efficient to process than standard real numbers.

8 Remaining Open Problem

One area where tensors naturally appear is an efficient Taylor series approach
to uncertainty propagation; see, e.g., [1, 14, 17]. Specifically, the dependence of
the result y on the inputs x1, . . . , xn is approximated by the Taylor series:

y = c0 +
n∑

i=1

ci · xi +
n∑

i=1

n∑

j=1

cij · xi · xj + . . . (7)

The resulting tensors ci1...ir are symmetric:

ci1...ir = cπ(i1)...π(ir) (8)

for each permutation π. As a result, the standard computer representation leads
to a r! duplication. An important problem is how to decrease this duplication.
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