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Abstract

A disturbing consequence of the traditional thermodynamics is the
possibility of heat death, when the Universe arrives at the state with the
largest possible value of the entropy and all the processes will stop. In
this paper, we show that one possible way to avoid this consequence is to
consider situations in which the entropy never attains its maximum – and
thus, the heat death state is not possible. We show that such situations
can have physical sense – e.g., they naturally appear in boostrap models.

Prediction in physics: general case. In order to formulate the problem,
let us briefly recall the main ideas of statistical physics and thermodynamics;
for details, see, e.g., [1].

One of the main objectives of physics is to predict what will happen in
different systems. To make this prediction, we observe and/or measure the
state of the system, and then use the equations to predict how this state will
change with time.
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Example. In mechanics, we measure the positions and velocities of all the
particles. After that, once we know how exactly the particle interact, i.e., how
exactly the forces acting on each of these particles depend on their locations
and velocities, we can predict the positions and velocities of all the particles.

In particular, in celestial mechanics, Newton’s laws enable us to predict the
motion of the planets, comets, satellites, etc.

Prediction in physics: case of changing objects. This idea works well if
we are only interested in the motion of the objects. However, in many practi-
cal situations, objects not only move, they also change: water evaporates, hot
objects become colder, etc. In such situations, we are interested in learning not
only how the objects move, but also how they change.

Theoretically, exact prediction is possible for changing objects. The-
oretically, this prediction problem is similar to the previous one since, according
to modern physics, all observed changes in the macro-bodies can be explained
by changing positions and velocities of the molecules that form these bodies.
For example:

• when a body becomes colder, it simply means that the average speed of
the molecules decreases;

• when a solid crystal melts, it means that the locations of the molecules
change from the original regular grid to a a more chaotic random one.

Ideally, if we know the exact position and velocity of each the molecules, i.e.,
if we know the micro-state, then, in theory, we can predict their positions and
velocities in the future moments of time as well.

For changing objects, exact prediction is not practically possible. In
practice, however, this prediction is not possible. Indeed, each macro-object
(gas, liquid, solid, etc.) consists of a large number of molecules ≈ 1023, and it
is not possible

• neither to measure all their positions and velocities

• nor to store and process this information.

What is possible to measure: notion of a macro-state. Since we cannot
measure the micro-state, what can we measure? We cannot measure the position
of each individual particle, but we can measure density at different points, i.e.,
the number of particles which are located in the vicinity of this point. We
cannot measure the velocity of each individual particle, but we can measure the
number of particles with the given velocity.

The state as described by the measurable characteristics is called a macro-
state. Each macro-state consists of many different micro-states.
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Enter probabilities. As we have just mentioned, a macro-state consists of
different micro-states. Different micro-states can lead to different future states.
So, if we only know the macro-state, we cannot uniquely determine how an
object will change, we can, at best, describe the probabilities of different possible
future states. Computing such probabilities is the main objective of statistical
physics.

Main assumption of statistical physics: all micro-states are equally
probable. The main assumption of statistical physics is that all the micro-
states are equally probable.

Under this reasonable assumption, the probability of each macro-state s is
simply proportional to the total number N(s) of micro-states in this state. If
several macro-states s are possible, then the most probable one is the one with
the largest possible value of N(s).

So, for making predictions, it is important to be able to compute the value
N(s).

How we can compute N(s). As we have mentioned, in the macro-state, we
do not know which particle (molecule) is in what state, we only know how many
particles are in different states.

Let us assume that out of N particles,

• the p1-th portion n1 = p1 ·N are in the state s1,

• the p2-th portion n2 = p2 ·N are in the state s2,

• . . . ,

• and the pk-th portion nk = pk ·N are in the state sk.

To describe a micro-state, we must know which particle is in which state. To
describe a micro-state, first, out of N particles, we need to select n1 particles
which are in the state s1. The number of such selection is equally to the number
of combinations, i.e., to

N !
n1! · (N − n1)!

(1)

For each such assignment, we must determine which of the remaining N − n1

particle are in the state s2. There are n2 particle in the state s2, so we must
select n2 particles out of N − n1 available ones. The number of such selections
is again equal to the number of combinations, i.e., to

(N − n1)!
n2! · (N − n1 − n2)!

(2)

We need this many selection for each of the original
N !

n1! · (N − n1)!
selections,

so overall, we have

N !
n1! · (N − n1)!

· (N − n1)!
n2! · (N − n1 − n2)!

=
N !

n1! · n2! · (N − n1 − n2)!
(3)
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ways to allocate particles to states s1 and s2. We also need to find n3 particles in

state s3 among the remaining N−n1−n2 one; there are
(N − n1 − n2)!

n3! · (N − n1 − n2 − n3)!
such possibilities, to overall, we have

N !
n1! · n2! · (N − n1 − n2)!

· (N − n1 − n2)!
n3! · (N − n1 − n2 − n3)!

=

N !
n1! · n2! · n3! · (N − n1 − n2 − n3)!

(4)

ways to allocate particles to states s1, s2, and s3. Continuing with the states
s4, s5, . . . , sk, we conclude that there are

N(s) =
N !

n1! · n2! · n3! · . . . · nk!
(5)

ways to allocate particles into k groups.

Towards an easier-to-analyze approximate expression for N(s). To get
an easier-to-analyze approximate expression for N(s), let us consider replacing
the product with an easier-to-analyze sum. This can be done if we take the
logarithm of N(s):

ln(N(s)) = ln(N !)− ln(n1!)− ln(n2!)− . . .− ln(nk!). (6)

Since ni = N · pi, we get

ln(N(s)) = ln(N !)− ln((N · p1)!)− ln((N · p2)!)− . . .− ln((N · pk)!). (7)

Here, for every n, we have n! = 1 · 2 · . . . · n and thus,

ln(n!) = ln(1) + ln(2) + . . . + ln(n). (8)

The right-hand side of the expression (8) is an integral sum

f(x0) ·∆x + f(x1) ·∆x + . . . + f(xm) ·∆x, (9)

with xk+1 = xk + ∆x, corresponding to f(x) = ln(x) and ∆x = 1. For a large
number of points m, this integral sum is asymptotically equal to the correspond-
ing integral

∫ xm

x0
f(x) dx. Thus, we conclude that for large n, we have

ln(n!) ≈
∫ n

1

ln(x) dx. (10)

Using the formula of integration by parts
∫

u dv = uv −
∫

v du (11)
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with u = ln(x) and v = x, we conclude that
∫

ln(x) dx = x · ln(x)−
∫

x · 1
x

dx = x · ln(x)−
∫

1 dx = x · ln(x)− x, (12)

and thus,

ln(n!) ≈ (x · ln(x)− x)|n1 = n · ln(n)− n− 1 ≈ n · ln(n)− n. (13)

Substituting this expression into the formula (7), we conclude that

ln(N(s)) ≈ N · ln(N)−N −N · p1 · ln(N · p1) + N · p1 − . . .−

N · pk · ln(N · pk) + N · pk. (14)

Since
k∑

i=1

pi = 1, we have

−N + N · p1 + ·+ N · pk = 0, (15)

and thus, the expression (14) can be simplified into

ln(N(s)) ≈ N · ln(N)−N · p1 · ln(N · p1)− . . .−N · pk · ln(N · pk). (16)

Taking into account that ln(N · pi) = ln(N) + ln(pi), we get

ln(N(s)) ≈ N · ln(N)−N · p1 · ln(N)−N · p1 · ln(p1)− . . .−

N · pk · ln(N)−N · pk · ln(pk). (17)

Here, since
k∑

i=1

pi = 1, we have

N · ln(N)−N · p1 · ln(N)− . . .−N · pk · ln(N)−N · pk = 0, (18)

and thus, the expression (17) can be simplified into

ln(N(s)) ≈ −N · p1 · ln(N)− . . .−N · pk · ln(pk), (19)

i.e., into
ln(N(s)) ≈ N · S, (20)

where

S
def= −

k∑

i=1

pi · ln(pi) (21)

is called the entropy of the probability distribution p1, . . . , pk. So, in terms of
entropy, we have

N(s) = eln(N(s)) ≈ eN ·S . (22)
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A stable state is the state with the largest value of entropy. We have
mentioned that the probability of different macro-states is proportional to N(s).
Thus, the higher the entropy, the larger the probability of a macro-state.

Moreover, for large N ≈ 1023, even a small decrease in S leads to a drastic
decrease in N(s) and thus, in the probability. In other words, the probability of
a system being in a macro-state with the largest possible value of the entropy
is so much larger that the probability of being in any other state that we can
simply conclude that the system is in the state with the largest entropy.

Of course, this conclusion does not mean that a system is always in this state:
we can start with an artificially prepared state in which the distribution will be
different, but eventually, due to random changes in a micro-state, the system
will move into its most probable state – the state with the largest entropy.

In many practical situations, this conclusion makes physical sense.
In many situations, the above conclusion makes perfect sense. For example,
suppose that we start with a gas that has different density and/or different
temperature at different locations. Then,

• warmer parts will heat the cooler ones,

• molecules will spread from the areas with higher density to the areas with
lower density,

and eventually, we will reach the maximum entropy state in which both the
velocity and the density are the same over all locations.

Heat death: an undesirable consequence of the above conclusion. For
the usual macro-systems, the above conclusion – that every system will eventu-
ally reach the maximum entropy state (of thermal equilibrium) – is reasonable.
However, when applied to the Universe as a whole, it leads to a somewhat un-
expected conclusion that the Universe will eventually reach the state with the
largest entropy after which there will be no further changes.

This strange final state, in which no further changes are possible, is called a
heat death.

How physicists approach this problem. The traditional physical approach
to the heat death problem is to show that while the heat death state is possible,
it is not actually attained in the expanding Universe; see, e.g., [3].

Our main idea. To further avoid the above undesirable conclusion of a heat
death of the Universe, we will show that it is possible to have a model of the
Universe in which there is no state with the largest entropy – and therefore,
heat death is not possible.

This idea further develops arguments described in [4, 5, 6].
To formalize this idea, we need to recall the ideas of statistical physics and

thermodynamics related to the notion of temperature.
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Statistical physics ideas related to temperature: a brief reminder. In
statistical physics, the notion of temperature comes from the fact that energy
E is preserved: once we start with a state with a given value of the energy E0,
the resulting states always have the same value of the energy.

Let Ei denote the energy of a state si. Then, the overall energy of a macro-
state in which we have the p1-th portion of the particles in the state s1, the
p2-th portion of the particles in the state s2, . . . , is equal to

E = N · p1 · E1 + . . . + N · pk · Ek. (23)

Thus, possible macro-states are limited to states p1, . . . , pk for which

p1 · E1 + . . . + pk · Ek =
E0

N
. (24)

The maximum entropy state can be thus determined as a state for which the

entropy −
k∑

i=1

pi · ln(pi) attains the largest value under the constraints (24) and

p1 + . . . + pk = 1. (25)

Applying the Lagrange multiplier method to this constrained optimization prob-
lem, we get the unconstrained optimization problem of maximizing the expres-
sion

−
∑

i=1

pi · ln(pi) + λ1 ·
(∑

i=1

pi · Ei − E0

N

)
+ λ2 ·

(∑

i=1

pi − 1

)
. (26)

Differentiating this expression with respect to pi and equating the derivative to
0, we conclude that

− ln(pi)− 1 + λ1 · Ei + λ2 = 0, (27)

i.e., that ln(pi) = −a− β · Ei for some constants a = 1− λ2 and β = −λ1, and
that

pi =
1
Z
· e−β·Ei , (28)

where we denoted Z
def= ea.

Once we know β, we can find the normalizing coefficient Z from the condition

that
k∑

i=1

pi = 1, as

Z =
k∑

j=1

e−β·Ej . (29)

Thus, we have

pi =
e−β·Ei

k∑
j=1

e−β·Ej

, (30)
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and the total energy E(β) of this macro-state is equal to

E(β) =
k∑

i=1

pi · Ei =

k∑
i=1

Ei · e−β·Ei

k∑
j=1

e−β·Ej

. (31)

It is known that when the value β increases, the energy E(β) decreases. Indeed,
differentiating E(β) with respect to β, we conclude that

dE

dβ
=

−
(

k∑
i=1

E2
i · e−β·Ei

)
·
(

k∑
j=1

e−β·Ej

)
+

(
k∑

i=1

Ei · e−β·Ei

)2

(
k∑

j=1

e−β·Ej

)2 . (32)

This expression can be described in terms of pi (formula (30)) as

dE

dβ
= −

(
k∑

i=1

pi · E2
i

)
+

(
k∑

i=1

pi · Ei

)2

, (33)

i.e., as
dE

dβ
= −M [E2] + (M [E])2, where M [·] denotes the mean value. Thus,

this derivative is equal to minus variance and is, therefore, always non-negative.
Hence, E(β) is a decreasing function of β.

The value β must be determined from the condition that the overall energy

E(β) is equal to
E0

N
.

The larger β, the fewer particles have higher energy. This ties in well with
the macro-understanding of the temperature: higher temperatures mean that
we have more fast high-energy particles. It turns out that the above-defined

parameter β is actually inverse proportional to the temperature T : β =
1

k0 · T
for some coefficient k0.

Continuous approximation. For systems with a large number of particles,
there are so many possible states that, in effect, instead of listing all their
energies E1, . . . , Ek, it is more reasonable to consider the energy density d(E) –
number of different states per unit energy interval. This idea is similar to the
usual way of describing a macro-object by its density at different locations, and
not by the exact coordinates of all its N ≈ 1023 particles.

In this approximation, due to the formula (27), the probability density func-
tion ρ(E) describing the maximum-entropy energy distribution of states has the
form

ρ(E) =
1
Z
· d(E) · e−β·E , (34)
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where the normalizing coefficient Z can be found from the condition that
∫ ∞

0

ρ(E) dE = 1, (35)

as
Z =

∫ ∞

0

d(E) · e−β·E dE. (36)

The condition that the average energy is equal to e0
def=

E0

N
takes the form

e0 =
∫ ∞

0

E · ρ(E) dE =
1
Z
·
∫ ∞

0

E · d(E) · e−β·E dE (37)

Case of macro-objects. For usual macro-objects, the state density d(E)
grows as a power of E – thus slower than any exponential function eβ·E . As a
result, the integral

∫
E · d(E) · e−β·E dE always converges.

• For β = ∞, when all the particles are concentrated in the state with
E = 0, this integral is equal to 0.

• For β → 0, when e−β·E → 1, this integral tends to a divergent integral∫
E · d(E) dE = +∞.

Thus, for each value e0, we can find some intermediate value β for which the
resulting energy will be equal exactly to e0. In other words, for usual macro-
bodies, the maximum entropy state exists for all possible values of energy e0.

Possibility to avoid heat death: mathematical analysis. What if the
state density d(E) grows faster than the power of E? For example, what if d(E)
grows exponentially with E, as d(E) ≈ A · Eb · eβ0·E for some values A, b, and
β0 > 0?

In this case, the value E(β) decreases with β.

• For β = ∞, we have E(β) = 0.

• For β > β0, the integral∫
E · d(E) · e−β·E dE =

∫
E ·A · Eb · e−(β−β0)·E dE (38)

converges and thus, the value E(β) is well defined.

• However, for β < β0, the above integral diverges and thus, such values β
are not possible.

If the integral converges for β = β0, i.e., if∫
E · d(E) · e−β0·E dE ≈ A ·

∫
Eb+1 dE < +∞ (39)

(which happens when b + 2 < 0), then the corresponding value E(β0) is the
largest value that can be attained for a stable (maximum-entropy) state.

So, if the actual energy e0 is larger than E(β0), then for this value of energy,
there is no maximum-entropy state – and thus, heat death is impossible.
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Possible physical meaning of the above energy density. The energy
density d(E) ≈ A · Eb · eβ0·E with b < −2 was actually considered in physics
in the so called bootstrap theory (see, e.g., [2, 7] and references therein). This
theory was based on the assumption of particle democracy: crudely speaking, no
particle is truly elementary, every particle can be viewed as consisting of others.
This theory correctly predicted the empirical distribution of known elementary
particles – which indeed has the form d(E) ≈ A · Eb · eβ0·E .

Researchers developing this theory noticed that in this theory, temperature
is bounded by a value corresponding to β0 – the features that we used in our
arguments.

The original bootstrap theory turned out to be too simplified to be correct,
but it served as an important first approximation for developing the modern
approach of string theory [7].

This physical meaning leaves a possibility that the actual energy spectrum
indeed has the form d(E) ≈ A · Eb · eβ0·E for which the heat death can be
avoided.
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