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Abstract

Most existing econometric models such as ARCH(q) and GARCH(p,q)
take into account heteroskedasticity (non-stationarity) of time series.
However, the original ARCH(q) and GARCH(p,q) models do not take
into account the asymmetry of the market’s response to positive and
to negative changes. Several heuristic modifications of ARCH(q) and
GARCH(p,q) models have been proposed that take this asymmetry into
account. These modifications turned out to be very adequate and effi-
cient in describing the econometric time series. In this paper, we propose
a justification of these heuristic modifications – and thus, an explanation
of their empirical efficiency.

1 Introduction to the Problem

One of the main goals of econometrics. One of the main objectives of
econometrics is to use the known values xt, xt−1, xt−2, . . . , of different economic
characteristics x at different moments of time t, t− 1, t− 2, . . . , to predict the
future values xt+1, xt+2, . . . , of these characteristics.

Comment. For a detailed description of econometric problems, ideas, and tech-
niques, see, e.g., [4, 7].
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First approximation: engineering models. A similar problem of analyz-
ing time series xt exists in engineering applications. So, historically the first
econometric models simply used the formulas developed in engineering applica-
tions.

In engineering, most processes are stationary. It is known that stationary
processes xt can be well-described by auto-regression (AR) models:

xt = a0 +
q∑

i=1

ai · xt−i + εt, (1)

where εt are independent normally distributed random variables with 0 means
and standard deviation σ – i.e., εt = σ ·zt, where zt is normally distributed with
0 means and standard deviation 1. The more terms we take in the AR model,
i.e., the larger the value q, the better the corresponding AR(q) model describes
the stationary process.

Heteroskedisticity (non-stationarity): a specific feature of economet-
ric time series. In contrast to engineering time series, economic time series
are usually non-stationary (heteroskedastic).

Specifically, in the economic time series, the empirical standard deviation σ
of the remainder term εt depends on time. In other words, instead of a single
value σ, at different moments of time t, we have different values σt. Thus, to
appropriately describe the corresponding time series, we also need to know how
this value σt changes with time.

Second approximation: models that take heteroskedisticity into ac-
count. The heteroskedisticity phenomenon was first taken into account by
Engle [5] who proposed a linear regression model of the dependence of σt on the
previous deviations:

σ2
t = α0 +

q∑

i=1

αi · ε2
t−i. (2)

This model is known as the Autoregression Conditional Heteroskedacity model,
or ARCH(q), for short.

An even more accurate Generalized Autoregression Conditional Het-
eroskedacity model GARCH(p,q) was proposed in [2]. In this model, the new
value σ2

t of the variance is determined not only by the previous values of the
squared differences, but also by the previous values of the variance:

σ2
t = α0 +

q∑

i=1

αi · ε2
t−i +

p∑

i=1

βi · σ2
t−i. (3)

Several modifications of these models have been proposed. For example,
Zakoian [12] proposed to use regression to predict the standard deviation instead
of the variance:

σt = α0 +
q∑

i=1

αi · |εt−i|+
p∑

i=1

βi · σt−i. (4)
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Nelson [8] proposed to take into account that the values of the variance
must always be non-negative – while in most existing autoregression models,
it is potentially possible to get negative predictions for σ2

t . To avoid negative
predictions, Nelson considers the regression for log σ2

t instead of for σt:

log σ2
t = α0 +

q∑

i=1

αi · |εt−i|+
p∑

i=1

βi · log σ2
t−i. (5)

Asymmetry: an additional feature of economic time series that
needs to be taken into account. The above models such as ARCH(q)
and GARCH(p,q) models are still not always fully adequate in describing the
actual econometric time series. One of the main reasons for this fact is that
these models do not take into account a clear asymmetry between the effects of
positive shocks εt > 0 and negative shocks εt < 0.

It is therefore desirable to modify the ARCH(q) and GARCH(p,q) models
by taking asymmetry into account.

Models that take asymmetry into account. Several modifications of the
ARCH(q) and GARCH(p,q) models have been proposed to take asymmetry into
account.

For example, Glosten et al. [6] proposed the following modification of the
GARCH(p,q) model:

σ2
t = α0 +

q∑

i=1

(αi + γi · I(εt−i)) · ε2
t−i +

p∑

i=1

βi · σ2
t−i, (6)

where I(ε) = 0 fir ε ≥ 0 and I(ε) = 1 for ε < 0.
Similar modifications were proposed by Zakoian [12] and Nelson [8] for their

models. The asymmetric version of Zakoian’s model has the form

σt = α0 +
q∑

i=1

(α+
i · ε+

t−i + α−i · ε−t−i) +
p∑

i=1

βi · σt−i, (7)

where:

• ε+ = ε for ε > 0 and ε+ = 0 for ε ≤ 0;

• ε− = ε for ε < 0 and ε− = 0 for ε ≥ 0.

The asymmetric version of Nelson’s model has the form

log σ2
t = α0 +

q∑

i=1

(αi · |εt−i|+ γi · εt−i) +
p∑

i=1

βi · log σ2
t−i. (8)
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Problem: the existing asymmetric modifications are very heuristic.
The main problem with the existing asymmetric models is that they are very ad
hoc. These model are obtained by simply replacing a symmetric expression ε2

or |ε| by an asymmetric one, without explaining why these specific asymmetric
expressions have been selected.

The empirical fact that these asymmetric models work well in describing
econometric time series shows that the selection of asymmetric function was
indeed adequate. It is therefore desirable to provide an explanation for this
adequacy.

Such an explanation is proposed in this paper. Specifically,

• we justify the general form of these expressions by the need for fast com-
putations, and

• we justify the specific dependence on εt−i by the scale-invariance require-
ment.

2 Justification of the General Form of the
Asymmetric Models

Objective: reminder. Our objective is to explain the existing asymmetric
models for predicting σt based on the previous values εt−i and σt−i:

σt = f(εt−1, . . . , εt−q, σt−1, . . . , σt−p). (9)

In this section, we justify the general form of the existing asymmetric models.
A specific dependence on εt−i will be explained in the following section.

Need for fast computations. One of the specific features of econometric
applications such as applications to trading is that the corresponding time series
analysis needs to be performed as fast as possible.

Indeed, assume that a model predicts that a certain financial instrument will
gain in price, and therefore, buying this instrument at the existing price can be
profitable. The trader who is the first to predict this gain buys this instrument
at the existing price. A buy – indicating an increased demand – usually increases
the price of the instrument, so the traders who only later realized the potential
gain have to pay more for this instrument – and thus, loses some of the potential
profit.

The need for fast computations is well known in computational finances,
leading use of very fast computers and fast algorithms.

Need for parallel computations. The fastest way to perform computations
is to use the fact that several computers can work in parallel, performing dif-
ferent parts of the computations simultaneously and thus, reducing the overall
time needed for computations.
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Need for dividing the computation into simple pieces. For parallel
computations, how can we decrease the computation time? In general, in par-
allel computations, we divide the computation into several pieces assigned to
different processors. From the mathematical viewpoint, the resulting function
is a composition of the functions computed by individual processors.

The simpler the function, the faster it can computed. Thus, to speed up
computations, we need to divide the computations into pieces which are as
simple as possible – and in which the total number of sequential steps is as
small as possible.

First conclusion: importance of considering functions of one variable.
How can we gauge the simplicity of a computation piece? First, it is reasonable
to look at how much data we need to process. In general,

• the more data we need to process,

• the longer the corresponding computation will take.

Thus, to speed up computations, it is desirable to select computation pieces in
which the amount of the processed data – i.e., the number of numerical inputs
– is as small as possible.

The best possible case is when we have only one input, i.e., when we are
computing the values of the function of a single variable.

Need for functions of several variables. Compositions of functions of a
single variable are still functions of a single variable. So, to be able to process
multiple data values, we also need to use some functions of several variables.

To speed up computations, it is therefore important to select the simplest
possible (thus fastest-to-compute) functions of several variables.

Second conclusion: need to use linear functions. Functions can be

• linear and

• non-linear.

Clearly, linear functions are simpler and faster-to-compute than nonlinear ones.
Thus, it is desirable to use linear functions of several variables.

Resulting computation scheme. As a result of the above analysis, we arrive
at the following computations scheme. The computation consists of several
sequential layers, in each of which:

• we either apply (in parallel) a function of one variable to each the inputs
and/or intermediate computation results; such layers will be marked as
NL (for Non-Linear),

• or we compute a linear combination of several inputs and/or intermediate
computation results; such layers will be marked as L (for Linear).
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These layers must intertwine. Indeed, if, e.g., we apply a function yi = fi(xi)
of one variable to each input and then sequentially apply another function of
one variable to the result zi = gi(yi), then we get the values zi = hi(xi), where
hi = fi ◦ gi is a composition of the functions fi and gi. We could have achieved
the same result by simply applying the composition in a single step (i.e., in a
single layer).

Similarly, if we first compute linear combinations and then again compute
linear combinations of the computed linear combinations, then the results are
simply linear combinations of the original inputs. These linear combinations
could have been computed in a single step (i.e., in a single layer).

Thus, the sequence of layers must have the form L-NL-L-. . . or NL-L-NL-. . .
As we have mentioned, to speed up computations, we need to use the smallest

possible number of layers, especially the smallest number of multi-input layers
– i.e., layers of type L.

Smallest possible number of layers. The smallest possible number of L
layers is 1.

In the simplest possible case when we only have a linear layer and no non-
linear layers, then the expression (9) takes the form

σt = α0 +
q∑

i=1

α · εt−i +
p∑

i=1

βi · σt−i. (10)

This expression is too simple and is nor adequate to describe asymmetric het-
eroskedasticity: since its dependence on εt−i is too asymmetric. Thus, in addi-
tion to an L layer, we need at least one non-linear layer. If we have a NL layer
(in which a function f(x) of one variable is applied) after the linear layer, then
we get the dependence

σt = f

(
α0 +

q∑

i=1

αiεt−i +
p∑

i=1

βi · σt−i

)
(11)

for some function f(x). This expression also does not adequately describe the
econometric time series, since the dependence on εt−i is too still too asymmetric.

When we have a NL layer (in which a function of one variable is applied to
each input) before the L layer, we get a much more adequate dependence

σt = α0 +
q∑

i=1

αi · fi(εt−i) +
p∑

i=1

βi · gi(σt−i) (12)

for some functions fi(x) and gi(x). This formula already includes one actu-
ally used expression as a particular case: Zakoian’s formulas (4) and (7). In
Zakoian’s formulas, gi(x) = x, and the only non-linearity is in the expression
fi(εt−i) containing εt−i:

• the symmetric version of Zakoian’s formula corresponds to fi(x) = |x|;
and
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• the general (asymmetric) version of Zakoian’s formula corresponds to
fi(x) = x+ + (α−i /α−i ) · x−.

If we allow NL layers both before and after the L layer, then we get a general
scheme

σt = f

(
α0 +

q∑

i=1

αi · fi(εt−i) +
p∑

i=1

βi · gi(σt−i)

)
(13)

that contains all the proposed formulas as particular cases. Indeed:

• ARCH(q) and GARCH(p,q) correspond to using f(x) =
√

x and fi(x) =
gi(x) = x2.

• Glosten’s formula corresponds to using fi(x) = (1 + (γi/αi) · I(x)) · x2.

• A symmetric version of the Nelson’s formula corresponds to f(x) =√
exp(x), fi(x) = |x|, and gi(x) = log x2; the general (asymmetric) version

of this formula corresponds to fi(x) = |x|+ (γi/αi) · x.

Conclusion. The need for fast computations explains a general form (13) that
indeed includes all formulas proposed for describing asymmetric heteroskedas-
ticity as particular cases.

3 Justification of the Specific Form of the De-
pendence on εt−i

Formulation of the problem. In the previous section, we describe the gen-
eral form (13) of the dependence of σi on εt−i and σt−i. In this formula, the
dependence on each input εt−i occurs through an expression fi(εt−i) for some
function fi(x) of one variable. Therefore, to describe the dependence on εt−i,
we must describe the corresponding functions fi(x).

Scale invariance: a natural feature of econometric descriptions. The
numerical value of each economic variable depends on the choice of a measuring
unit. If we choose another measuring unit, the situation remains the same, but
the numerical values change.

For example, for a US investor, it is natural to describe all the prices in
dollars. For a European investor, it is equally natural to translate all the prices
into Euros. If we replace the original unit with a new unit which is λ times
smaller, then all numerical values need to be multiplied by λ.

The models should not change if we simply change the units. When we
replace the original values εt−i by new numerical values εt−i = λ · εt−i of the
same quantity, then each corresponding term fi(εi) is replaced with a new term
fi(ε′i) = fi(λ ·εi). Thus, the overall contribution of all these terms changes from

the original value I =
q∑

i=1

αi · fi(εt−i) to the new value I ′ =
q∑

i=1

αi · fi(λ · εt−i).
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It is reasonable to require that the relative quantity of different contributions
does not change, i.e., that if two different sets x

(1)
i

def= ε
(1)
t−i and x

(2)
i

def= ε
(2)
t−i lead

to the same contributions I(1) = I(2), then after re-scaling, they should also
lead to the same contributions I ′. Thus, we arrive at the following condition:

Scale invariance: precise formulation of the requirement. Let the val-
ues α1, . . . , αq be fixed. Then, the functions f1(x), . . . , fp(x) should satisfy the
following condition: if for two sets x

(1)
1 , . . . , x

(1)
q and x

(2)
1 , . . . , x

(2)
q , we have

q∑

i=1

αi · fi(x
(1)
i ) =

q∑

i=1

αi · fi(x
(2)
i ), (14)

then for every λ > 0, we must have
q∑

i=1

αi · fi(λ · x(1)
i ) =

q∑

i=1

αi · fi(λ · x(2)
i ). (15)

Analysis of the problem: from scale invariance to the functional equa-
tion. For simplicity, let us start with the case when the values x

(2)
i are very

close to x
(1)
i , i.e., when x

(2)
i = x

(1)
i + ki · h for some constants ki and for a very

small real number h. For small h, we have

fi(x
(1)
i + ki · h) = fi(x

(1)
i ) + f ′i(x

(1)
i ) · ki · h + O(h2). (16)

Substituting the expression (16) into the formula (14), we conclude that
q∑

i=1

αi · f ′i(x(1)
i ) · ki · h + O(h2) = 0. (17)

Dividing both sides by h, we get
q∑

i=1

αi · f ′i(x(1)
i ) · ki + O(h) = 0. (18)

Similarly, the condition (15) leads to
q∑

i=1

αi · f ′i(λ · x(1)
i ) · ki + O(h) = 0. (19)

In general, the condition (18) lead to (19). In the limit h → 0, we therefore
conclude that for every vector k = (k1, . . . , kq), if

q∑

i=1

ki · (αi · f ′i(x(1)
i )) = 0, (20)

then
q∑

i=1

ki · (αi · f ′i(λ · x(1)
i )) = 0. (21)
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Functional equation: geometric analysis. The sum (20) is a scalar (dot)
product between the vector k and the vector a with components αi · f ′i(x(1)

i ).
Similarly, the sum (21) is a scalar (dot) product between the vector k and the
vector b with components αi · f ′i(λ · x(1)

i ). Thus, the above implication means
that the vector b is orthogonal to every vector k which is orthogonal to a, i.e.,
to all vectors k from the hyperplane consisting of all the vectors orthogonal to
a.

It is easy to see geometrically that the only vectors which are orthogonal to
the hyperplane are vectors collinear with a. Thus, we conclude that b = δ ·a for
some constant δ, i.e., that

αi · f ′i(λ · x(1)
i ) = δ · αi · f ′i(x(1)

i ). (22)

Dividing both sides by αi, we conclude that

f ′i(λ · x(1)
i ) = δ · f ′i(x(1)

i ). (23)

Analysis of dependence and the resulting new differential equation.
In principle, δ depends on λ and on values x

(1)
i . From the equation (23) corre-

sponding to i = 1, we see that

δ =
f ′1(λ · x(1)

1 )

f ′i(x
(1)
1 )

. (24)

Thus, δ only depends on x
(1)
1 and does not depend on any other value x

(1)
i .

Similarly, by considering the case i = 2, we conclude that δ can depend only on
x

(1)
2 and thus, does not depend on x

(1)
1 either. Thus, δ only depends on λ, i.e.,

the condition (23) takes the form

f ′i(λ · x(1)
i ) = δ(λ) · f ′i(x(1)

i ). (25)

From the solution to the new differential equation to the solution
of our original problem. It is known that every continuous function f ′i(x)
satisfying the equation (23) has the following form:

• f ′i(x) = C+
i · xai for x > 0, and

• f ′i(x) = C−i · |x|ai for x < 0,

for some values C±i and ai; see, e.g., [1], Section 3.1.1, or [9]. (This result was
first proven in [11].) For differentiable functions, the easiest way to prove this
result is to differentiate both sides of (23) by λ, set λ = 1, and solve the resulting
differential equation.

For the corresponding functions, the condition (25) is satisfied with δ(λ) =
λai . Since the function δ(λ) is the same for all i, the value ai is therefore also
the same for all i: a1 = . . . = aq. Let us denote the joint value of all these ai

by a.
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Thus, all the derivatives have f ′i(x) are proportional to xa. Hence, the
original functions are proportional

• either to xa+1 (for a 6= −1)

• or to log(x) (when a = −1).

The additive integration constant can be absorbed into the additive constant
α0, and the multiplicative constants can be absorbed into a factor αi.

Thus, without losing generality, we can conclude that in the scale invariant
case, either fi(x) = xa

i · (1 + b · I(x)), or fi(x) = log(|x|).

Conclusion. We have proven that the natural scale-invariance condition im-
plies that each function fi(x) has either the form log(x), or the form fi(x) =
xa

i · (1 + b · I(x)). This conclusion covers all the functions which are efficiently
used to describe asymmetric heteroskedasticity:

• the function fi(x) = 1 + (γi/αi) · I(x)) · x2 used in Glosten’s model;

• the function fi(x) = x+ + (α−/α+) · x− used in Zakoian’s model; and

• the function fi(x) = (1 + (γi/αi) · sign(x)) · |x| used in Nelson’s model.

It is worth mentioning that this result also covers the functions gi(x) = x2 and
gi(x) = log(x2) = 2 log(x) used to describe the dependence on σt−i.

Thus, the exact form of the dependence on εt−i has indeed been justified by
the natural scale invariance requirement – as well as the dependence on σt−i.

Comment. It is worth mentioning that scale-invariance of the econometric for-
mulas describing heteroskedasticity was noticed and actively used in [3]. How-
ever, our approaches are somewhat different:

• In [3], the econometric formulas were taken as given, and scale invariance
was used to analyze heteroskedasticity tests.

• In contrast, we use scale invariance to derive the econometric formulas.
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