
Expert Knowledge Is Needed
for Design under Uncertainty:

For p-Boxes, Backcalculation is,
in General, NP-Hard

Vladik Kreinovich
Department of Computer Science

University of Texas at El Paso
500 W. University

El Paso, Texas 89968, USA
Email: vladik@utep.edu

Abstract—In engineering design problems, we want to make
sure that a certain quantity c of the designed system lies within
given bounds – or at least that the probability of this quantity
to be outside these bounds does not exceed a given threshold.
We may have several such requirements – thus the requirement
can be formulated as bounds [F c(x), F c(x)] on the cumulative
distribution function Fc(x) of the quantity c; such bounds are
known as a p-box.

The value of the desired quantity c depends on the design
parameters a and the parameters b characterizing the environ-
ment: c = f(a, b). To achieve the design goal, we need to find
the design parameters a for which the distribution Fc(x) for
c = f(a, b) is within the given bounds for all possible values of
the environmental variables b. The problem of computing such a
is called backcalculation. For b, we also have ranges with different
probabilities – i.e., also a p-box. Thus, we have backcalculation
problem for p-boxes.

For p-boxes, there exist efficient algorithms for finding a design
a that satisfies the given constraints. The next natural question
is to find a design that satisfies additional constraints: on the
cost, on the efficiency, etc. In this paper, we prove that that
without expert knowledge, the problem of finding such a design is
computationally difficult (NP-hard). We show that this problem is
NP-hard already in the simplest possible linearized case, when the
dependence c = f(a, b) is linear. Thus, expert (fuzzy) knowledge
is needed to solve design problems under uncertainty.

I. ENGINEERING DESIGN PROBLEMS AND THE NOTION OF
BACKCALCULATION: DETERMINISTIC CASE

One of the main objective of engineering design is to
guarantee that the value of a certain quantity (or several
quantities) c is within a given range [c, c]. For example, when
we design a car engine, we must make sure:
• that its power is at least as much as needed for the loaded

car to climb the steepest mountain roads,
• that the concentration of undesirable substances in the

exhaust does not exceed the required threshold, etc.
The value of the quantity c usually depends on the param-

eters a describing the design and on the parameters b of the
environment: c = f(a, b). For example, the concentration of a
substance in a car exhaust depends:

• on the parameter(s) that describe the design of the car
exhaust filters, and

• on the concentration of the chemicals in the original fuel.
We need to select a design a in such a way that

c = f(a, b) ∈ [c, c]

for all possible values of the environmental parameter(s) b.
In this paper, we consider the simplest case when:
• the design of each system is characterized by a single

parameter a, and
• the environment is also characterized by a single param-

eter b.
We will show that already in this simple case, the design prob-
lem is computationally difficult (NP-hard). Thus, to efficiently
solve design problem under uncertainty, we must use expert
knowledge – the knowledge for which fuzzy technique have
been invented; see, e.g., [5], [6].

To be able to find a design that satisfies the given constraint
on c for all possible values of the environmental parameter b,
we need to know which values of b are possible, i.e., we need
to know the range [b, b] of possible values of b. Thus, we arrive
at the following problem:
• we know the desired range [c, c];
• we know the dependence c = f(a, b);
• we know the range [b, b] of possible values of b;
• we want to describe the set of all values of a for which

f(a, b) ∈ [c, c] for all b ∈ [b, b].
This design-related problem is sometimes called a backcalcu-
lation problem, to emphasize its difference from the forward
calculation problem, when
• we are given a design a and
• we want to estimate the value of the desired characteristic

c = f(a, b).

II. LINEARIZED PROBLEM

In many engineering situations, the intervals of possible
values of a and b are reasonably narrow: a ≈ ã and b ≈ b̃



for some ã and b̃. In such situations, we can expand the
dependence c = f(a, b) in Taylor series and ignore terms
which are quadratic and higher order in terms of ∆a

def= a− ã

and ∆b
def= b−b̃. As a result, we get a simple linear dependence

c ≈ c0 + ka · a + kb · b. (1)

We can simplify this expression even further if we take into
account that the numerical value of each of the quantities a and
b depends on the choice of the starting point and on the choice
of a measuring unit. If we change the starting point and the
measuring unit, then the new numerical value can be obtained
from the original one by an appropriate linear transformation.
For example, if we know the temperature tC in Celsius, then
we can compute the temperature tF in the Fahrenheit scale
as tF = 32 + 1.8 · tC . We can use this possibility to simplify
the above expression for c. Specifically, we can change the
starting points and the measuring units in such a way that:
• the new numerical value for a is described by the linear

expression c0 + ka · a, and
• the new numerical value for b is described by the linear

expression kb · b.
In these new scales, the dependence of c on a and b takes the
simplest form c = a + b.

We will show that the design problem becomes computa-
tionally difficult (NP-hard) already for this simplest case.

III. FROM GUARANTEED BOUNDS TO P-BOXES

Ideally, it is desirable to provide a 100% guarantee that the
quantity c never exceeds the threshold c. In practice, however,
too many unpredictable factors affect the performance of a
system and thus, such a guarantee is not realistically possible.
What we can realistically guarantee is that the probability of
exceeding c is small enough. In other words, we set some
threshold εc > 0 and we require that Prob(c ≤ c) ≥ 1− εc.

In addition to this requirement, we can also require that
the excess of c over c be not too large. This can be done,
e.g., by requiring that for some value c1 > c, the probability
Prob(c ≤ c1) is bounded from below by the value 1− ε1 for
some smaller ε1 < ε. We can several such requirements for
different values ci and εi.

Similarly, instead of the idealized exact inequality c ≥ c, in
practice, we can only require that Prob(c ≥ c) ≤ δ for some
small probability δ > 0.

From the mathematical viewpoint, all such constraints are
lower or upper bounds on the values of the cumulative
distribution function Fc(x) def= Prob(c ≤ x). By combining
the bounds corresponding to all the constraints, we can thus
conclude that the cdf Fc(x) must satisfy, for every x, the
inequalities

F c(x) ≤ Fc(x) ≤ F c(x), (2)

where F c(x) is the largest of all the lower bounds on Fc(x)
and F c(x) is the smallest of all the upper bounds on Fc(x).

In other words, for every x, the corresponding value Fc(x)
must belong to the interval [F c(x), F c(x)]. This x-dependent

interval is known as a probability box, or a p-box, for short;
see, e.g., [2].

Similarly, for the environmental parameter b, we rarely
know guaranteed bounds b and b. At best, we know that for
a given bound b, the probability of exceeding this bound is
small, i.e., that Prob(b ≤ b) ≥ 1 − εb for some small εb. So
here too, instead of a single bound, in effect, we have a p-box
[F b(x), F b(x)].

IV. TOWARDS FORMULATING THE DESIGN
(BACKCALCULATION) PROBLEM FOR P-BOXES

In the deterministic approach to design, we assume that
we can manufacture an object with the exact value a of
the corresponding parameter – or at least the value which is
guaranteed to be within the given bounds [a, a].

In manufacturing, however, it is not practically possible to
always guarantee that the value a is within the given interval.
At best, we can guarantee that, e.g., the probability of a ≤ a
is greater than or equal to 1− εa for some small value εa. In
other words, the design restriction on a can also be formulated
in terms of p-boxes. Thus, we arrive at the following problem.

V. BACKCALCULATION PROBLEM FOR P-BOXES

We are given:
• the desired p-box [F c(x), F c(x)] for c;
• the dependence c = f(a, b); and
• the p-box [F b(x), F b(x)] describing b.

Our objective is to find a p-box [F a(x), F a(x)] for which:
• for every probability distribution

Fa(x) ∈ [F a(x), F a(x)],

• for every probability distribution Fb(x) ∈ [F b(x), F b(x)],
and

• for all possible correlations between a and b,
the distribution of c = f(a, b) is within the given p-box
[F c(x), F c(x)].

VI. REMINDER: FORWARD CALCULATION FOR P-BOXES

In order to analyze the backcalculation problem for p-boxes,
let us first describe how the corresponding forward calculation
problem is solved. Let us assume that we know:
• the p-box [F a(x), F a(x)] for a; and
• the p-box [F b(x), F b(x)] describing b.

The objective of forward calculation is to find the range
[F c(x), F c(x)] of possible values of Fc(x) for c = f(a, b)
for all possible distributions Fa(x) ∈ [F a(x), F a(x)] and
Fb(x) ∈ [F b(x), F b(x)] and all possible correlations between
a and b.

It turns out that these calculations are best done in terms
not of the original cdfs and p-boxes, but rather in terms of
their inverses – quantile functions. For a cdf Fa(x), quantiles

a0, . . . , an are described as values for which Fa(ai) =
i

n
.

Since the cdf is monotonic, the quantiles are also monotonic:
if i < j, then ai ≤ aj .



When instead of the exact cdf, we only know a p-box
[F a(x), F a(x)], then instead of the exact quantiles ai we only
know interval bounds [ai, ai] for these quantiles:
• the lower bounds ai are quantiles of the function F c(x),

and
• the upper bounds ai are quantiles of the function F c(x).

These bounds are also monotonic: if i < j, then ai ≤ aj and
ai ≤ aj .

For the function c = f(a, b) = a + b, forward calculation
can be easily described in terms of the quantile bounds: once
we know the bounds [ai, ai] and [bi, bi] corresponding to a
and b, we can compute the quantile bounds for c as follows:

ci = max
j

(aj + bi−j); (3)

ci = min
j

(aj−i + bn−j). (4)

These formulas were first described in [9].

VII. FORMULATION OF THE PROBLEM

In terms of quantile bounds, the backcalculation problem
takes the following form:
• we know the quantile intervals [bi, bi] corresponding to

the environmental variable b;
• we are given the intervals [̃ci, c̃i] that should contain the

quantiles for c = a + b;
• we must find the bounds ai and ai for which, for the

values ci and ci are determined by the formulas (3) and
(4), we have [ci, ci] ⊆ [̃ci, c̃i].

VIII. IN EFFECT, WE HAVE TWO DIFFERENT PROBLEMS:
FINDING ai AND FINDING ai

An important consequence of the formulas (3) and (4) is
that:
• the lower bounds ci for c are determined only by the

lower bounds ai and bi for a and b, and
• the upper bounds ci for c are determined only by the

upper bounds ai and bi for a and b.
Thus, in effect, we can formulate the problem of finding the
values ai and the problem of finding the values ai as two
separate problems.

Without losing generality, in the following text, we will only
consider the following problem of finding ai:
• we know the values bi;
• we are given the values c̃i;
• we must find the values a0 ≤ . . . ≤ an for which

c̃i ≤ max
j

(aj + bi−j). (5)

IX. A DESIGNED SYSTEM USUALLY CONSISTS OF
SEVERAL SUBSYSTEMS

A designed system usually consists of several subsystems.
So, instead of selecting a single p-box for a single design
parameter a, we need to design p-boxes corresponding to all
these subsystems.

Let S denote the number of these subsystems, and let a
(s)
i ,

b
(s)
i , and c̃

(s)

i denote quantile bounds corresponding to the s-th
subsystem, s = 1, 2, . . . , S.

Thus, we arrive at the following problem:
• we know the values b

(s)
i ;

• we are given the values c̃
(s)
i ;

• we must find, for each s = 1, . . . , S, the values

a
(s)
0 ≤ . . . ≤ a(s)

n

for which
c̃
(s)
i ≤ max

j
(a(s)

j + b
(s)
i−j). (6)

X. THERE EXIST EFFECTIVE ALGORITHMS FOR
BACKCALCULATION

For p-boxes, there are efficient algorithms for solving the
backcalculation problem; see, e.g., [1], [3], [4], [8].

XI. NEED FOR ADDITIONAL COST CONSTRAINTS

In general, as we can see, the backcalculation problem has
many possible solutions. Some design solutions require less
efforts, some require more efforts. It is therefore desirable not
just to find a solution, but rather to find a solution which
satisfies given constraints on the manufacturing efforts such
as cost, energy expenses, etc.

The values a
(s)
i are the lower bounds on the design parame-

ters. The smaller the lower bounds, the easier it is to maintain
them. Thus, the cost of maintaining a lower bound increases
with the value a

(s)
i .

In this paper, we show that the problem is NP-hard even
for the simplest case when the corresponding effort is simply
proportional to the value a

(s)
i , and thus, the overall effort of

maintaining all the characteristics a
(s)
i is equal to the weighted

linear combination

E =
S∑

s=1

n∑

i=0

w
(s)
i · a(s)

i . (7)

The corresponding constraint is that this effort should not
exceed a given value e.

As we have mentioned, we may have several (C) constraints
corresponding to different type of effort – cost, energy con-
sumption, etc. Thus, in general, the constrained backcalcula-
tion problem takes the following form.

XII. FORMULATION OF THE PROBLEM IN PRECISE
MATHEMATICAL TERMS

We are given:
• positive integers n, S, and C;
• the values b

(s)
i corresponding to different s = 1, . . . , S

and i = 0, . . . , n;
• the values c̃

(s)
i corresponding to different s = 1, . . . , S

and i = 0, . . . , n;
• the values ec corresponding to different c = 1, . . . , C,

and
• the values w

(s)
c,i corresponding to different s = 1, . . . , S,

c = 1, . . . , C, and i = 0, . . . , n.



We must find for each s = 1, . . . , S, the values

a
(s)
0 ≤ . . . ≤ a(s)

n

for which the following two sets of inequalities are satisfied:

c̃
(s)
i ≤ max

j
(a(s)

j + b
(s)
i−j); (8)

S∑
s=1

n∑

i=0

w
(s)
c,i · a(s)

i ≤ ec. (9)

XIII. OUR MAIN RESULT

Our main result is that the above problem is NP-hard.

XIV. PROOF

Main idea. Formally, NP-hard means that an arbitrary problem
from a certain class NP can be reduced to this problem;
see, e.g., [7]. Thus, to prove that a problem is NP-hard, it
is sufficient to prove that a known NP-hard problem can be
reduced to it. Indeed,
• by definition of NP-hardness, every problem with the

class NP can be reduced to the known NP-hard problem;
• since this known problem can be reduced to our problem,
• we can therefore conclude that every problem form the

class NP can be reduced to our problem;
• in other words, we can conclude that our problem is NP-

hard.
In our proof, as such a known NP-hard problem, we take

the knapsack problem; see, e.g., [7]. In this problem, we are
given a set of S objects, for each of which we know its volume
vs > 0 and its price ps > 0. We also know the total volume V
of a knapsack and the threshold price P . Within the restriction
on the volume, we must select some of the S objects in such a
way that the total price of all the selected objects is at least P .

To describe this problem in precise terms, for each object
i, we define a new variable xs such that xs = 1 if the s-th
object is taken and xs = 0 if the s-th object is not taken.
In terms of these new variables, the overall volume of all the

selected objects is equal to
S∑

s=1
vs · xs, and the overall price

of all the selected objects is equal to
S∑

s=1
ps · xs. Thus, the

knapsack problem takes the following form: find the values
xs ∈ {0, 1} for which

S∑
s=1

vs · xs ≤ V (10)

and
S∑

s=1

pi · xs ≥ P. (11)

We will prove that this problem can be reduced to the
above backcalculation problem, i.e., that for each instance
v1, . . . , vS , p1, . . . , pS , V, P of the knapsack problem there is
an instance of the backcalculation problem whose solution
can effectively lead to the solution of the original knapsack
problem.

Towards reduction: selection of p-boxes. In our reduction,
we will use the same pair of p-boxes b, c for all S subsystems,
the only difference will be in the weights.

Let us denote the common value of b
(s)
i for all s = 1, . . . , S

by bi and the common value of c̃
(s)
i by ci. In these notations,

the constrains on the unknowns a
(s)
i take a simplified form

ci ≤ max
j

(a(s)
j + bi−j). (12)

In our reduction, we take n = 1. For n = 1, for every s,
the inequalities (12) lead to the following constraints on the
corresponding two unknown a

(s)
0 ≤ a

(s)
1 :

c0 ≤ a
(s)
0 + b0; (13)

c1 ≤ max(a(s)
0 + b1, a

(s)
1 + b0). (14)

Specifically, we take b0 = c0 = 0, b1 = 1, and c1 = 2. For
these values, the above inequalities take the following form:

a
(s)
0 ≥ 0; (15)

2 ≤ max(a(s)
0 + 1, a

(s)
1 ). (16)

The largest of the two values is greater than or equal to 2 if
and only if (at least) one of these two values is greater than
or equal to 2. Thus, the second constraint (16) means that:
• either 2 ≤ a

(s)
0 + 1 and thus a

(s)
0 ≥ 1

• or a
(s)
1 ≥ 2.

Analysis of the selected p-boxes. Let us show that out
of all possible solutions a

(s)
0 ≤ a

(s)
1 satisfying these two

inequalities, only two solutions satisfy the additional constraint
a
(s)
0 + a

(s)
1 ≤ 2:

• a
(s)
0 = a

(s)
1 = 1 and

• a
(s)
0 = 0 and a

(s)
1 = 2.

Indeed, we know that for each solution, we have:
• either a

(s)
0 ≥ 1

• or a
(s)
1 ≥ 2.

In the first case a
(s)
0 ≥ 1, we have

a
(s)
0 + a

(s)
1 = 2a

(s)
0 + (a(s)

1 − a
(s)
0 ). (17)

The first term in the right-hand side is ≥ 2, the second term
is always non-negative – since a

(s)
1 ≥ a(s). Thus, the only

possibility for the right-hand side sum to be ≤ 2 is when the
value 2a

(s)
0 is exactly 2, and the difference a

(s)
1 −a

(s)
0 is exactly

0. In this case, we have a
(s)
0 = a

(s)
1 = 1.

In the second case a
(s)
1 ≥ 2, due to a

(s)
0 ≥ 0 (condition

(15)), the only possibility for the sum a
(s)
0 + a

(s)
1 to be ≤ 2 is

when a
(s)
0 = 0 and a

(s)
1 = 2.

Reduction and the final part of the proof. We will reduce
the given instance of the knapsack problem to the following
system with 3 constraints:
• In the first constraint, we take w

(s)
1,i = 1 for all s and i,

and we take e1 = 2 · S.



• In the second constraint, we take w
(s)
2,0 = vs, w

(s)
2,1 = 0,

and e2 = V .
• In the third constraint, we take w

(s)
2,0 = 0, w

(s)
2,1 = ps, and

e3 = P − 2 ·
S∑

s=1

ps. (18)

Let us first analyze the first constraint
S∑

s=1

(a(s)
0 + a

(s)
1 ) ≤ 2 · S. (19)

As we have shown in the previous section, each simple sum
a
(s)
0 + a

(s)
1 is at least 2, and it is only equal to 2 when either

a(s) = 0 or a
(s)
0 = 1. Thus, the only possibility for the sum

S∑
s=1

(a(s)
0 + a

(s)
1 ) of S such simple sums to not exceed 2S is

when each of these sums is equal to exactly 2, i.e., when for
every s,
• either either a(s) = 0 or a

(s)
0 = 1, and

• a
(s)
1 = 2− a

(s)
0 .

For these values a
(s)
i , the second constraint takes the form

S∑
s=1

vs · a(s)
0 ≤ V, (20)

and the third constraint takes the form
S∑

s=1

ps · a(s)
1 ≤ 2 ·

S∑
s=1

ps − P. (21)

Substituting the expression a
(s)
1 = 2−a

(s)
0 into this inequality,

we get
S∑

s=1

ps · (2− a
(s)
0 ) ≤ 2 ·

S∑
s=1

ps − P, (22)

i.e., equivalently,

2
S∑

s=1

ps −
S∑

s=1

ps · a(s)
0 ≤ 2

S∑
s=1

ps − P, (23)

which, in its turn, is equivalent to

S∑
s=1

ps · a(s)
0 ≥ P, (24)

Thus, for every solution to the constrained backcalculation
problem, the values xs

def= a
(s)
0 form a solution to the knapsack

problem: each of them is equal to 0 or 1, and they satisfy the
corresponding inequalities (20) and (24).

Vice versa, one can easily check that if the values xs form
a solution to the knapsack problem, then the corresponding
values a

(s)
0 = xs and a

(s)
1 = 2 − xs form a solution to the

constrained backcalculation problem.
The reduction is proven, so the backcalculation problem is

indeed, in general, NP-hard.

ACKNOWLEDGMENTS

This work was supported in part by NSF grant HRD-
0734825 and by Grant 1 T36 GM078000-01 from the National
Institutes of Health.

REFERENCES

[1] S. Ferson, “Using approximate deconvolution to estimate cleanup targets
in probabilistic risk analyses”, In: P. T. Kostecki, E. J. Calabrese,
and M. Bonazountas (eds.), Hydrocarbon Contaminated Soils, Amherst
Scientific Publishers, Amherst, Massachusetts, 1995, pp. 245–254.

[2] S. Ferson. RAMAS Risk Calc 4.0. CRC Press, Boca Raton, Florida, 2002.
[3] S. Ferson, V. Kreinovich, and W. T. Tucker, “Untangling equations

involving uncertainty: deconvolutions, updates, and backcalculations”,
Proceedings of the NSF Workshop on Reliable Engineering Computing,
Savannah, Georgia, September 15–17, 2004.

[4] S. Ferson and T. F. Long, “Deconvolution can reduce uncertainty in
risk analyses”, In: M. Newman and C. Strojan (eds.), Risk Assessment:
Measurement and Logic, Ann Arbor Press, Ann Arebor, Michigan, 1997.

[5] G. Klir and B. Yuan, Fuzzy sets and fuzzy logic: theory and applications.
Prentice Hall, Upper Saddle River, New Jersey, 1995.

[6] H. T. Nguyen and E. A. Walker, A first course in fuzzy logic, CRC Press,
Boca Raton, Florida, 2005.

[7] C. H. Papadimitriou, Computational Complexity, Addison Wesley, 1993.
[8] W. T. Tucker and S. Ferson, “Setting cleanup targets in a probabilistic

assessment”, In: S. Mishra (ed.), Groundwater Quality Modeling and
Management under Uncertainty, American Society of Civil Engineers,
Reston, Virginia, 2003.

[9] R. C. Williamson and T. Downs, “Probabilistic arithmetic I: Numerical
methods for calculating convolutions and dependency bounds”, Interna-
tional Journal of Approximate Reasoning, 1990, Vol. 4, pp. 89–158.


