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Abstract—To avoid crisis developments, it is important to make
financial decisions based on the models which correct predict
the probabilities of large-scale economic fluctuations. At present,
however, most financial decisions are based on Gaussian random-
walk models, models which are known to underestimate the
probability of such fluctuations. There exist better empirical
models for describing these probabilities, but economists are re-
luctant to use them since these empirical models lack convincing
theoretical explanations. To enhance financial stability and avoid
crisis situations, it is therefore important to provide theoretical
justification for these (more) accurate empirical models. Such a
justification is provided in this paper.

I. INTRODUCTION TO THE PROBLEM

A. It Is Important to Take into Account Economic Fluctuations

It is known that stock prices (and other related economic
indices) fluctuate in an unpredictable (“random”) way. Usually,
these fluctuations are small, but once in a while, they become
large.

Large negative fluctuations bring havoc to the economy and
finance, lead to crisis situations. It is therefore important to
correctly take such fluctuations into account. In particular, it
is extremely important to correctly predict the probability of
large fluctuations.

B. Gaussian Random Walk Model: A Brief Description

The quantitative study of stock prices can be traced back
to a pioneering PhD dissertation of L. Bachelier [2] who has
shown that for any fixed time quantum, the probabilities of
stock price fluctuations of different size can be well described
by a Gaussian random walk (what physicists call Brownian
motion).

In the Gaussian random walk model, fluctuations of differ-
ent sizes x are normally distributed, with the exponentially
decreasing probability density function

ρ(x) =
1√

2π · σ · exp
(
− x2

2σ2

)
. (1)

The random walk model indeed describes small fluctuations
reasonably well.

C. Gaussian Random Walk Model: Limitations

While the Gaussian random walk model well describes
the probabilities of small fluctuations, this model drastically
underestimates the probabilities of large fluctuations. For
example,
• in the normal distribution, fluctuations larger than 6σ have

a negligible probability ≈ 10−8, while
• in real economic systems, even larger fluctuations occur

every decade (and even more frequently).
When we underestimate the probability of large fluctuations,
we thus underestimate risk – and become unprepared when
large fluctuations occur.

D. Mandelbrot’s Fractal Model: A Brief Description

In the 1960s, Benoit Mandelbrot, the author of fractal
theory, empirically studies the fluctuations and showed that
larger-scale fluctuations follow the power-law distribution,
with the probability density function

ρ(x) = A · x−α, (2)

for α ≈ 2.7.
This empirical result, together with similar empirical dis-

covery of power laws in other application areas, has led to the
formulation of fractal theory; see, e.g., [10].

E. Mandelbrot’s Fractal Model: Limitations

Further empirical analysis has shown that while Mandel-
brot’s model correctly predicts medium-size fluctuations, it
drastically overestimates the probability of large-scale fluctu-
ations; see, e.g., [19].

Indeed, in this model, the probability P (x > x0) that a
fluctuation is larger than a certain value x0 decreases as

P (x > x0) ∼ 1
x1.7

0

. (3)

In other words, for two different thresholds x0 < X0, we have

P (x > x0)
P (x > X0)

≈
(

X0

x0

)1.7

. (4)

In the stock market, daily fluctuations of ≈ x0 = 1%
are normal, with probability P ≈ 1. Thus, the crisis-size



fluctuations larger than X0 = 30% have to occur with the
probability

P (x > X0) ≈ 1
301.7

≈ 0.003 (5)

Thus, we should expect crises every 1/0.003 days, i.e., every
year – and in reality, such large-scale crises are much rarer.

F. Empirical Analysis of Economic Fluctuations: Econo-
physics

Since the 1990s, physicists have performed an empirical
analysis of economic fluctuations – by using statistical tech-
niques that have been developed for the analysis of fluctuations
in physical systems. This application of physical techniques to
economics is known as econophysics; see, e.g., [3], [4], [5],
[11], [12], [16].

In particular, this empirical analysis has shown that the
probability density function corresponding to large economic
fluctuations has the form

ρ(x) = A · x−4, (6)

i.e., the form (2) with α ≈ 4; see, e.g., [6], [19]. The same
empirical law, with the same paramater α ≈ 4, has been
observed in different stock markets; see, e.g., [20].

In this model, the probability P (x > x0) that a fluctuation
is larger than a certain value x0 decreases according to the
cubic law:

P (x > x0) ∼ 1
x3

0

. (7)

G. Econophysics Is Not Yet Widely Used in Financial Engi-
neering: Why

The cubic law provides a much better prediction of large
economic fluctuations than Gaussian or Mandelbrot’s models.
However, in the practical financial engineering applications,
this law is rarely used.

According to H. E. Stanley, the founder of econophysics,
one of the main reasons why this law is not used is because it is
empirical, it lacks a clear economic justification [18]. Without
a good theoretical explanation, economists are reluctant to rely
on this law being valid in the future as well – and to make
serious decisions based on this law.

H. Need for a Theoretical Explanation

As we have just mentioned, in the existing financial deci-
sions, economists use Gaussian random walk models which
are much less accurate than the empirically more accurate
econophysics models. The reason for this use is that the
econophysics models are purely empirical, without a good
intuitive explanation. As a result of this practice, the existing
financial instruments underestimate the probability of large-
scale crisis-type fluctuations.

To make financial systems more reliable and less vulnerable
to large-scale crisis-style fluctuations, it is therefore important
to overcome the economists’ reluctance, and to provide a
theoretical explanation for the empirically observed power
laws. This need is emphasized, e.g., in [18].

I. What Is Known and What We Do In This Paper
There exist several theoretical explanations for the empirical

cubic law; see, e.g., [7]. These explanations are based on the
deep mathematical analysis of complex systems. The complex
mathematical nature of these explanations makes them not
very convincing for economists.

The main objective of this paper is to provide simpler – and
hopefully more convincing – explanations for the cubic law.

II. FIRST PART: GENERAL JUSTIFICATION OF THE POWER
LAW

A. Main Objective of This Section
The cubic law, in its form (6), is a particular example of

the general power law (2). It is therefore reasonable to start
with explaining why we have a power law. After that, in the
following sections, we will move further to justify the exact
value of the corresponding scaling parameter α.

B. Analysis of the Problem: A Practice-Oriented Temporal
Reformulation of the Probabilities

Ideally, we should be able to predict when the fluctuations
will reach a given size x0. In reality, as we have mentioned,
economic fluctuations are random (unpredictable). As a result,
we cannot predict the exact moment of time when fluctuations
reach the threshold x0. Instead, we can only predict the
average time t before such a fluctuation occurs.

From this viewpoint, we would like to find the dependence
t(x0) of this average time on the size of the fluctuation.

This dependence is naturally related to the probabilities.
Indeed, the probability density function ρ(x) means that the
probability of a fluctuation of size x0 is equal to ρ(x0). (To
be more precise, it is equal to ρ(x0) · h, where h is the
corresponding discretization step).

The probability that the fluctuation of this size occurs within
a single time quantum ∆t is equal to ρ(x0) · h. Thus, the
expected number of such fluctuations during a single time
quantum is ρ(x0) · h. During the time period t, we have

N
def=

t

∆t
time quanta. The expected number of fluctuations

of size x0 during this time period is therefore equal to

N · (ρ(x0) · h) =
t

∆t
· (ρ(x0) · h). (8)

The average time t(x0) until such a fluctuation occurs can be
estimated as the time t for which this expected number of
fluctuations becomes close to 1:

t(x0)
∆t

· (ρ(x0) · h) ≈ 1, (9)

hence
t(x0) ≈ ∆t

ρ(x0) · h. (10)

Thus, once we find the dependence t(x), we will be able to
find the desired probability density function ρ(x) as

ρ(x) ≈ ∆t

t(x) · h =
const
t(x)

, (11)

where const def=
∆t

h
.



C. Scale Invariance: A Natural Requirement

We want to describe a general dependence t(x) of the
average time t during which the fluctuation of a given size
occurs on the size x of this fluctuation.

When describing this dependence, one should take into
account that the numerical value of the fluctuation size x
depends on the choice of a measuring unit for describing
fluctuations. In principle, different units can be chosen. For
example, when the European countries changed from their
original currencies to Euros, all the stock prices at local stock
markets were accordingly re-scaled. In general, if instead of
the original unit, we use a new unit which is λ times smaller,
then the fluctuation whose size in the original unit is x has
the value x′ = λ · x in the new units.

It is reasonable to require that the expression describing
dependence t(x) should not depend on the choice of the
unit. One needs to be careful, however, when formulating this
natural requirement. Namely, we cannot simply assume that
for the same numerical value x, the time is the same no matter
which units we use. If we use a smaller unit than before, then
• a fluctuation whose size is one new unit is smaller than

the fluctuation whose size is one original unit – and thus,
• the time to reach the 1 new unit size fluctuation should

be smaller than the time to reach the 1 old unit size
fluctuation.

So, to make a proper formalization, we must take into account
that if we re-scale the units in which we measure fluctuations,
we must accordingly change the units for time.

If we use the new unit for the fluctuation size, then instead
of the numerical value x, we get a new numerical value x′ =
λ · x. Thus, instead of the original time t(x), we get a new
time t(x′) = t(λ ·x). We require that this new time is actually
the same time as t(x), but expressed in different time units. If
we denote the ratio of the corresponding time units by r(λ),
then we arrive at the formula

t(λ · x) = r(λ) · t(x). (12)

Thus, we arrive at the following requirement: for every λ >
0, there exists a value r(λ) for which, for all x and for all λ,
we have

t(λ · x) = r(λ) · t(x). (13)

D. Scale-Invariance Implies Power Law

It is known that every continuous function t(x) satisfying
the above property has the form t(x) = r ·xα for some α; see,
e.g., [1], Section 3.1.1, or [13]. (This result was first proven
in [15].)

E. Proof

For differentiable functions t(x), the result about power
functions is easy to prove. Indeed, if we differentiate both
sides of (13) by λ and take λ = 1, we get

x · dt

dx
= α · t, (14)

where α
def= r(1). By moving all the terms containing t into

one side and all the terms containing x to the other side, we
conclude that

dt

t
= α · dx

x
. (15)

Integrating both sides, we get

ln(t) = α · ln(x) + c, (16)

hence

t = eα·ln(x)+c = ec ·
(
eln(x)

)α

= C · xα (17)

for C = ec.

F. Conclusion

Under a natural requirement that the distribution of eco-
nomic fluctuations does not depend on the choice of a mone-
tary unit, we conclude that t(x) ∼ xα and thus,

ρ(x) ∼ const
t(x)

∼ x−α. (18)

Thus, the power law is justified.

III. INDIVIDUAL STOCK: IDEALIZED CASE

A natural next question is: which value α should we expect?
In other words, if we re-scale the monetary unit, what is the
appropriate change in a time unit that leaves the dependence
unchanged?

To answer this question, we will take into account a different
relation between time and fluctuation size. Namely, until now,
we considered fluctuations which occur within a single time
quantum ∆t. However, we can consider different time quanta:
e.g., a time quantum ∆t′ = k ·∆t for some integer k.

We have mentioned that price fluctuations are reasonably
accurately described by a random walk. In the random walk,
fluctuations occurring at different time quanta are independent
random variables with 0 mean. Let σ denote the standard
deviation of a price over the time quantum ∆t. Then, the
corresponding variance is equal to σ2.

The fluctuation over a new time quantum ∆t′ = k ·∆t can
be obtained by adding the fluctuations over k original time
quanta, of size ∆t. These fluctuations are independent random
variables. It is known that when we add several independent
random variables, their variances add up. Thus, the variance
of the fluctuations over a new time quantum is equal to the
sum of k terms equal to σ2, i.e., to k · σ2. Hence, the mean
square fluctuation is equal to

√
k · σ.

Thus, when the numerical value of the time increases by
a factor of k, the corresponding (mean square) value of the
fluctuation increases by a factor of

√
k.

In terms of the coefficients λ and r(λ), this means that when
λ =

√
k, we have r(λ) = k, i.e.,

r(λ) = λ2. (19)

For t(x) = C · xα, the scale-invariance requirement (13)
implies that

r(λ) =
t(λ · x)
t(x)

=
C · (λ · x)α

C · xα
= λα. (20)



By comparing (19) and (20), we conclude that λ = 2. Thus,
due to the formula (18), we conclude that in the idealized situ-
ation, for an individual stock, the probability density function
has the form

ρ(x) ∼ x−2, (21)

and, thus,
P (x > x0) ∼ x−1. (22)

IV. FROM THE IDEALIZED CASE OF AN INDIVIDUAL
STOCK TO STOCK MARKET: TWO APPROACHES

In the previous section, we considered an idealized case of
an individual stock which is not interacting with other stock
prices. In reality, stocks are inter-related: a change in one stock
price causes a change in prices of other stocks. How can we
take this dependence into account?

In this paper, we describe two approaches for taking this
dependence into account:
• a probabilistic approach, and
• a fuzzy approach.

We will show that both approaches lead to the same distribu-
tion – which makes us even more confident that this is indeed
a correct distribution.

V. FROM THE IDEALIZED CASE OF AN INDIVIDUAL STOCK
TO STOCK MARKET: PROBABILISTIC APPROACH

Stocks are usually classified based on four characteristics:
• the size of the company (large cap vs. mid cap vs. small

cap stocks);
• the size of the dividend (income stocks vs. non-income

ones);
• cyclicity (cyclic stocks vs. defensive stocks);
• stability (less risky value stocks vs. more aggressive and

more risky growth stocks).
Crudely speaking, this means that we have 4 different extreme
types of stocks, and every stock is, in some reasonable sense,
equivalent to a combination of these different 4 types.

It is known that different types of stocks behave differently
and reasonably independently from each other – this fact is
used to justify the need for a balanced combination of different
types of stocks in an investment portfolio.

In a stock market, usually, individual stock price changes
largely compensate each other, so the fluctuations of the stock
market index are much smaller than the fluctuations individual
stock prices. For a stock market index to really change, the
majority of stocks must experience the corresponding drastic
change.

Since we reason about four types of stock, “the majority”
means that at least three types of stock out of four must
experience a drastic fluctuation. The probability that each type
of stock experiences a fluctuation of size x0 is proportional
to x−1

0 . Since stocks of different type behave independently,
the probability that stocks of 3 types experience the same size
fluctuation is equal to the product of the three values x−1

0 , i.e.,
to

P (x > x0) ∼ x−1
0 · x−1

0 · x−1
0 ∼ x−3

0 . (23)

Thus, we have indeed justified the cubic dependence (7).

VI. FROM THE IDEALIZED CASE OF AN INDIVIDUAL
STOCK TO STOCK MARKET: FUZZY APPROACH

For large (but reasonable size) fluctuations, we can use
the individual stock description, with the probability density
function (21): ρ(x) ∼ x−2. Correspondingly, a reasonable
membership function µ(x) can be obtained by normalizing
this expression:

µlarge(x) =
ρ(x)

max
y

ρ(y)
∼ x−2. (24)

We are interested in very large (crisis-type) fluctuations. In
fuzzy logic, the most widely used way to go

• from the membership function of a property such as
“large”

• to the membership function corresponding to the hedged
property “very large”

is to take the square of the original membership function (see,
e.g., [8], [14]):

µvery large(x) = µ2
large(x) ∼ (x−2)2 = x−4. (25)

Thus, the corresponding probability density function is also
proportional to x−4. So, we have indeed justified the for-
mula (6).

Comment. We have justified the same empirical distribution
by using two different approaches:

• the probabilistic approach and
• the fuzzy approach.

By their very origins,

• the probabilistic approach is usually based on the (more)
mathematical analysis, while

• the fuzzy approach is more oriented towards natural
language and commonsense reasoning.

By comparing the two justifications, one can see that, in
perfect accordance with this difference, the derivation is much
clearer (and easier) when we use fuzzy logic.

VII. CONCLUSION

To enhance the use of accurate empirical descriptions of
economic fluctuations, it is necessary to provide a theoretical
justification for these empirical descriptions. In this paper,
we provided two such justifications, based on probabilistic
and fuzzy approaches. The fact that both justifications lead
to the same distribution further increases our confidence in
this empirical distribution.
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