
Quantum Computing as a Particular Case of Computing With Tensors

Martine Ceberio and Vladik Kreinovich

Department of Computer Science
University in the Texas at El Paso

500 W. University
El Paso, TX 79968, USA

Emails: mceberio@cs.utep.edu,
vladik@utep.edu

Abstract— One of the main potential applications of uncertainty
in computations is quantum computing. In this paper, we show that
the success of quantum computing can be explained by the fact that
quantum states are, in effect, tensors.

Keywords— Quantum computing, physics, tensors

1 Why Tensors
One of the main problems of modern computing is that:

• we have to process large amounts of data;

• and therefore, long time required to process this data.

A similar situation occurred in the 19 century physics:

• physicists had to process large amounts of data;

• and, because of the large amount of data, a long time
required to process this data.

We will recall that in the 19 century, the problem was solved
by using tensors. It is therefore a natural idea to also use ten-
sors to solve the problems with modern computing.

2 Tensors in Physics: A Brief Reminder
Let us recall how tensors helped the 19 century physics; see,
e.g., [6]. Physics starts with measuring and describing the val-
ues of different physical quantities. It goes on to equations
which enable us to predict the values of these quantities.

A measuring instrument usually returns a single numerical
value. For some physical quantities (like mass m), the single
measured value is sufficient to describe the quantity. For other
quantities, we need several values. For example, we need three
components Ex, Ey , and Ez to describe the electric field at a
given point. To describe the tension inside a solid body, we
need even more values: we need 6 values σij = σji corre-
sponding to different values 1 ≤ i, j ≤ 3: σ11, σ22, σ33, σ12,
σ23, and σ13.

The problem was that in the 19 century, physicists used a
separate equation for each component of the field. As a result,
equations were cumbersome and difficult to solve.

The main idea of the tensor approach is to describe all the
components of a physical field as a single mathematical ob-
ject:

• a vector ai,

• or, more generally, a tensor aij , aijk, . . .

As a result, we got simplified equations – and faster computa-
tions.

It is worth mentioning that originally, mostly vectors (rank-
1 tensors) were used. However, the 20 century physics has
shown that higher-order matrices are also useful. For example:

• matrices (rank-2 tensors) are actively used in quantum
physics,

• higher-order tensors such as the rank-4 curvature tensor
Rijkl are actively used in the General Relativity Theory.

3 From Tensors in Physics to Computing with
Tensors

As we have mentioned earlier, 19 century physics encountered
a problem of too much data. To solve this problem, tensors
helped.

Modern computing suffers from a similar problem. A nat-
ural idea is that tensors can help. Two examples justify our
optimism:

• modern algorithms for fast multiplication of large matri-
ces; and

• quantum computing.

4 Modern Algorithm for Multiplying Large
Matrices

In many data processing algorithms, we need to multiply
large-size matrices:




a11 . . . a1n

.
an1 . . . ann







b11 . . . b1n

.
bn1 . . . bnn


 =




c11 . . . c1n

.
cn1 . . . cnn


 ; (1)

cij = ai1 · b1j + . . . + aik · bkj + . . . + ain · bnj . (2)

There exist many efficient algorithms for matrix multiplica-
tion.

The problem is that for large matrix size n, there is no space
for both A and B in the fast (cache) memory. As a result, the
existing algorithms require lots of time-consuming data trans-
fers (“cache misses”) between different parts of the memory.

An efficient solution to this problem is to represent each
matrix as a matrix of blocks; see, e.g., [2, 10]:

A =




A11 . . . A1m

.
Am1 . . . Amm


 , (3)

then

Cαβ = Aα1 ·B1β + . . .+Aαγ ·Bγβ + . . .+Aαm ·Bmβ . (4)

Comment. For general arguments about the need to use non-
trivial representations of 2-D (and multi-dimensional) objects
in the computer memory, see, e.g., [21, 22].

In the above idea,

• we start with a large matrix A of elements aij ;

• we represent it as a matrix consisting of block sub-
matrices Aαβ .

This idea has a natural tensor interpretation:

• each element of the original matrix is now represented as

• an (x, y)-th element of a block Aαβ ,

• i.e., as an element of a rank-4 tensor (Aαβ)xy.

So, in this case, an increase in tensor rank improves efficiency.

Comment. Examples when an increase in tensor rank is ben-
eficial are well known in physics: e.g., a representation of a
rank-1 vector as a rank-2 spinor works in relativistic quantum
physics [6].

5 Quantum Computing as Computing with
Tensors

Classical computation is based on the idea a bit: a system with
two states 0 and 1. In quantum physics, due to the superposi-
tion principle, we can have states

c0 · |0〉+ c1 · |1〉 (5)

with complex values c0 and c1; such states are called quantum
bits, or qubits, for short.

The meaning of the coefficients c0 and c1 is that they de-
scribe the probabilities to measure 0 and 1 in the given state:
Prob(0) = |c0|2 and Prob(1) = |c1|2. Because of this phys-
ical interpretations, the values c1 and c1 must satisfy the con-
straint |c0|2 + |c1|2 = 1.

For an n-(qu)bit system, a general state has the form

c0...00 · |0 . . . 00〉+ c0...01 · |0 . . . 01〉+ . . . +

c1...11 · |1 . . . 11〉. (6)

From this description, one can see that each quantum state of
an n-bit system is, in effect, a tensor ci1...in of rank n.

In these terms, the main advantage of quantum comput-
ing is that it can enable us to store the entire tensor in only
n (qu)bits. This advantage explains the known efficiency of
quantum computing. For example:

• we can search in an unsorted list of n elements in time√
n – which is much faster than the time n which is

needed on non-quantum computers [8, 9, 15];

• we can factor a large integer in time which does not ex-
ceed a polynomial of the length of this integer – and
thus, we can break most existing cryptographic codes
like widely used RSA codes which are based on the diffi-
culty of such a factorization on non-quantum computers
[15, 18, 19].

6 New Idea: Tensors to Describe Constraints
A general constraint between n real-valued quantities is a sub-
set S ⊆ Rn. A natural idea is to represent this subset block-
by-block – by enumerating sub-blocks that contain elements
of S.

Each block bi1 . . . in can be described by n indices
i1, . . . , in. Thus, we can describe a constraint by a boolean-
valued tensor ti1...in

for which:

• ti1...in
=“true” if bi1...,in

∩ S 6= ∅; and

• ti1...in
=“false” if bi1...,in

∩ S = ∅.

Processing such constraint-related sets can also be naturally
described in tensor terms.

This representation speeds up computations; see, e.g., [3,
4].

7 Computing with Tensors Can Also Help
Physics

So far, we have shown that tensors can help computing. It is
possible that the relation between tensors and computing can
also help physics.

As an example, let us consider Kaluza-Klein-type high-
dimensional space-time models of modern physics; see, e.g.,
[7, 11, 12, 13, 16, 20]. Einstein’s original idea [5] was to
use “tensors” with integer or circular values to describe these
models. From the mathematical viewpoint, such “tensors” are
unusual. However, in computer terms, integer or circular data
types are very natural: e.g., circular data type means fixed
point numbers in which the overflow bits are ignored. Actu-
ally, from the computer viewpoint, integers and circular data
are even more efficient to process than standard real numbers.

8 Remaining Open Problem
One area where tensors naturally appear is an efficient Taylor
series approach to uncertainty propagation; see, e.g., [1, 14,
17]. Specifically, the dependence of the result y on the inputs
x1, . . . , xn is approximated by the Taylor series:

y = c0 +
n∑

i=1

ci · xi +
n∑

i=1

n∑

j=1

cij · xi · xj + . . . (7)

The resulting tensors ci1...ir are symmetric:

ci1...ir = cπ(i1)...π(ir) (8)

for each permutation π. As a result, the standard computer
representation leads to a r! duplication. An important problem
is how to decrease this duplication.

Appendix: How to Store Tensors in Computer
Memory?

Need to Store Values in Computer Memory

The computer memory is 1-D, so whatever multi-dimensional
object we describe, its components are stored sequentially.
What is the best way to arrange 2-D and higher-dimensional
data in a computer memory?

Storing 2-D Values in Computer Memory: Towards
Formalization of the Problem

Let us describe this problem in precise terms. We will start
this description with the simplest case of 2-D objects.

Storing 2-D object, with components aij , 1 ≤ i, j ≤ n,
means assigning, to each pair (i, j), the cell number f(i, j) in
such a way that different pairs (i, j) correspond to different
cell numbers f(i, j).

So, to describe a storing arrangement, we must describe a
function

f : {1, 2, . . . , n} × {1, 2, . . . , n} → N (9)

that maps each pair of integers i, jin{1, 2, . . . , n} into a natu-
ral number.

How to Gauge the Quality of a Memory Arrangement?
Motivations

It is desirable to arrange the storage in such a way that neigh-
boring elements of a 2-D object are located in the memory as
close to each other as possible. Neighboring elements are ele-
ments (i, j) and (i′, j′) for which |i− i′| ≤ 1 and |j− j′| ≤ 1.
Thus, we can gauge the quality of the memory arrangement
by the largest distance between the locations of neighboring
points.

As a result, we arrive at the following numerical character-
istics of the quality of different memory arrangements f .

How to Gauge the Quality of a Memory Arrangement? A
Formula

The quality of a memory arrangement f is described by the
value

C(f) def=

max{|f(i, j)− f(i′, j′)| : |i− i′| ≤ 1, |j − j′| ≤ 1}. (10)

The smaller this value, the better. Thus, we are interested in
finding the arrangement with the smallest possible value of the
quantity C(f).

Standard Memory Arrangement

Before we start analyzing possible memory arrangements, let
us recall the standard one. In the standard programming ar-
rangement of a 2-D array, the values are stored row by row:

• first, we have elements of the first row,

f(1, 1) = 1, f(1, 2) = 2, . . . , f(1, n) = n; (11)

• then, we have elements of the second row,

f(2, 1) = n + 1, f(2, 2) = n + 2, . . . ,

f(2, n) = n + n = 2n; (12)

• . . .

• the elements of the k-th row are store at

f(k, 1) = (k− 1) · n + 1, f(k, 2) = (k− 1) · n + 2, . . . ,

f(k, n) = (k − 1) · n + n = k · n; (13)

• . . .

• finally, the elements of the last (n-th) row are stored at
locations

f(n, 1) = (n− 1) ·n + 1, f(n, 2) = (n− 1) ·n + 2, . . . ,

f(n, n) = (n− 1) · n + n = n2. (14)

Quality of the Standard Memory Arrangement

What is the value of the quantity C(f) for the standard mem-
ory arrangement f? In other words, how far away from each
other can neighboring elements (i, j) and (i′, j′) be located in
the computer memory?

If these two elements are in the same row, i.e., if i = i′, then
these neighboring elements (i, j) and (i, j′), with |j−j′| = 1,
are neighbors in the memory as well:

|f(i, j)− f(i, j′)| = |j − j′| = 1. (15)

If these two elements are in the neighboring rows, |i− i′| =
1 and |j − j′| ≤ 1, then we get

f(i, j)− f(i′, j′) = ((i− 1) · n + j)− ((i′ − 1) · n + j′) =

(i− i′) · n + (j − j′). (16)

Here,

|f(i, j)− f(i′, j′)| = |(i− i′) · n + (j − j′)| =

|n + (j − j′)| ≤ n + |j − j′| ≤ n + 1. (17)

Thus, for the standard memory arrangement f , the largest dis-
tance C(f) between the memory locations of neighboring val-
ues cannot exceed n + 1. The distance between the locations
of the neighboring values can be actually equal to n + 1: e.g.,
for values (1, 1) and (2, 2). Thus, for the standard memory
arrangement, we have C(f) = n + 1.

A Surprising Result: The Standard Memory Arrangement Is
Optimal

Based on the fact that other memory arrangements of 2-D ob-
jects are often beneficial, one would expect these other mem-
ory arrangements be better than the standard one in the sense
of our criterion C(f). Surprisingly, this is not the case: it turns
out that the standard memory arrangement is optimal.

To be more precise, we will prove that for every possible
memory arrangement F , we have C(f) ≥ n + 1. Thus, the
standard arrangement, for which C(f) = n + 1, is indeed
optimal.

Proof

Let us prove the inequality C(f) ≥ n + 1. Let f be an ar-
bitrary memory arrangement. This arrangement results in n2

locations f(i, j) corresponding to n2 different pairs (i, j).
Let us denote the smallest of these n2 values by f , and the

largest of these values by f :

f
def= min{f(i, j) : 1 ≤ i, j ≤ n}, (18)

f
def= max{f(i, j) : 1 ≤ i, j ≤ n}. (19)

Between f and f (including both), there are n2 different inte-
gers. For every a < b, the list a, a+1, . . . , b contains b−1+1
integers. Thus, we must have f − f + 1 ≥ n2, hence

f − f ≥ n2 − 1. (20)

Let (i, j) denote the pair for which f(i, j) = f , and let
(i, j) denote the pair for which f(i, j) = f . We can now
design a sequence of pairs (ik, jk) going from (i0, j0) = (i, j)
to (iN , jN) = (i, j) in such a way that for every k, the pairs
(ik, jk) and (ik+1, jk+1) are neighbors.

Indeed, if i < i, we start with i0 = i, and then take i1 =
i0 + 1, i2 = i0 + 2, etc., until we reach i – after this, we
continue to take ik = i.

If i > i, we start with i0 = i, and then take i1 = i0 − 1,
i2 = i0 − 2, etc., until we reach i – after this, we continue to
take ik = i.

If i = i, then we simply take ik = i for all k.
Similarly, if j < j, we start with j0 = j, and then take

j1 = j0 +1, j2 = j0 +2, etc., until we reach j – after this, we
continue to take jk = j.

If j > j, we start with j0 = j, and then take j1 = j0 − 1,
j2 = j0 − 2, etc., until we reach j – after this, we continue to
take jk = j.

If j = j, then we simply take jk = j for all k.
At each step, each of the coordinates is changed by at most

1, so the pairs (ik, jk) and (ik+1, jk+1) are indeed neighbors.
We need |i− i|+ 1 steps to reach from i to i, and we need

|j − j| steps to reach from j to j. Thus, overall, we need

N = max(|i− i|, |j − j|) + 1 (21)

steps. For values from 1 to n, the largest possible difference
|j − j| is equal to n− 1, hence N ≤ n.

Now, we have

f(i, j)− f(i, j) = f(i0, j0)− f(iN , jN) =

(f(i0, j0)− f(i1, j1)) + (f(i1, j1)− f(i2, j2)) + . . . +

(f(iN−1, jN−1)− f(iN , jN)). (22)

Thus,
|f(i, j)− f(i, j)| ≤

|f(i0, j0)− f(i1, j1)|+ |f(i1, j1)− f(i2, j2)|+ . . . +

|f(iN−1, jN−1)− f(iN , jN)|. (23)

Since for each k, the pairs (ik, jk) and (ik+1, jk+1) are neigh-
bors, we have |f((ik, jk)− f(ik+1, jk+1)| ≤ C(f). So, from
(23), we conclude that

|f(i, j)− f(i, j)| ≤ (N − 1) · C(f). (24)

Since N ≤ n, we thus have

|f − f | = |f(i, j)− f(i, j)| ≤ (n− 1) · C(f). (25)

On the other hand, we know that n2 − 1 ≤ |f − f |. Thus, we
conclude that

n2 − 1 ≤ (n− 1) · C(f), (26)

and therefore, that

C(f) ≥ n2 − 1
n− 1

= n + 1. (27)

The statement is proven.

The Standard Memory Arrangement Is Not The Only Optimal
One

The fact that the standard memory arrangement turned out to
have the optimal (smallest possible) value of C(f) may not
sound so surprising if we realize that several different memory
arrangements have the exact same optimal value of C(f).

One such arrangement is clear: instead of storing the values
row by row, we can store them column by column:

• first, we have elements of the first column,

f(1, 1) = 1, f(2, 1) = 2, . . . , f(n, 1) = n; (28)

• then, we have elements of the second column,

f(1, 2) = n + 1, f(2, 2) = n + 2, . . . ,

f(n, 2) = 2n; (29)

• . . .

• the elements of the k-th column are store at

f(1, k) = (k− 1) · n + 1, f(2, k) = (k− 1) · n + 2, . . . ,

f(n, k) = (k − 1) · n + n = k · n; (30)

• . . .

• finally, the elements of the last (n-th) column are stored
at locations

f(1, n) = (n− 1) ·n + 1, f(2, n) = (n− 1) ·n + 2, . . . ,

f(n, n) = (n− 1) · n + n = n2. (31)

There are other examples as well: e.g., elements of a 2× 2
matrix can be stored in the order (1, 1), (1, 2), (2, 2), (2, 1)
with the same value C(f) = n + 1 = 3 as for row-by-row or
column-by-column memory arrangements.

Multi-Dimensional Case

In the k-dimensional case, we need to assign location
f(i1, . . . , ik) to tuples (i1, . . . , ik). It is also natural to gauge
the quality of the memory arrangement by the largest dis-
tance between the locations of neighboring values, i.e., tuples
(i1, . . . , ik) and (i′1, . . . , i

′
k) for which |ij − i′j | ≤ 1 for all j.

The quality of a memory arrangement f can be thus naturally
described by the value

C(f) def= max{|f(i1, . . . , ik)− f(i′1, . . . , i
′
k)| :

|ij − i′j | ≤ 1 for all j = 1, . . . , k}. (32)

In the standard computer arrangement, we store elements
in lexicographic order: i.e., (i1, . . . , ik) is placed before
(i′1, . . . , i

′
k) if for the first differing coordinate ij 6= i′j , we

have ij < i′j . In other words, we first store values

(1, . . . , 1), . . . , (1, . . . , n), (33)

then values

(1, . . . , 2, 1), . . . , (1, . . . , 2, n), (34)

etc. In this arrangement,

• the difference in the last coordinate ik − i′k = 1 leads to
a difference of 1 in memory locations;

• the difference in the next to last coordinate ik−1−i′k−1 =
1 leads to a difference of n in memory locations,

• . . . ,

• the difference in the first coordinate i1 − i′1 leads to a
difference of nk−1 in memory locations.

Thus, the difference in location of neighboring tuples cannot
exceed nk−1 + nk−2 + . . . + n + 1. This distance is attained,
e.g., for the points (1, . . . , 1) and (2, . . . , 2). Thus, for the
standard memory arrangement f , we have

C(f) = nk−1 + nk−2 + . . . + n + 1. (35)

Similarly to the 2-D case, we can prove that this memory
arrangement is optimal. Indeed, in this case, for the difference
between the values

f
def= min{f(i1, . . . , ik) : 1 ≤ ij ≤ n}, (36)

f
def= max{f(i1, . . . , ik) : 1 ≤ ij ≤ n}, (37)

we have f − f ≥ nk − 1. We can still move from the tuple
(i1, . . . , ik) at which the smallest value f is attained to the
tuple (i1, . . . , ik) at which the largest value f is attained in
≤ n − 1 transitions from a tuple to a neighboring one. Thus,
we can conclude that Thus, we conclude that

nk − 1 ≤ (n− 1) · C(f), (38)

and therefore, that

C(f) ≥ nk − 1
n− 1

= nk−1 + nk−2 + . . . + n + 1. (39)

The optimality is proven.

Acknowledgment
This work was supported in part by NSF grant HRD-0734825
and by Grant 1 T36 GM078000-01 from the National Insti-
tutes of Health. The authors are thankful to Fred G. Gustavson
and Lenore Mullin for her encouragement.

References

[1] M. Berz and G. Hoffstätter, “Computation and Appli-
cation of Taylor Polynomials with Interval Remainder
Bounds”, Reliable Computing, 4(1):83–97, 1998.

[2] R. E. Bryant and D. R. O’Hallaron, Computer Systems:
A Programmer’s Perspective, Prentice Hall, Upper Saddle
River, New Jersey, 2003.

[3] M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xi-
ang, A. Murguia, and J. Santillan, “How To Take Into
Account Dependence Between the Inputs: From Interval
Computations to Constraint-Related Set Computations,
with Potential Applications to Nuclear Safety, Bio- and
Geosciences”, Journal of Uncertain Systems, 1(1):11–34,
2007.

[4] M. Ceberio, V. Kreinovich, A. Pownuk, and B. Bede,
“From Interval Computations to Constraint-Related Set
Computations: Towards Faster Estimation of Statistics
and ODEs under Interval, p-Box, and Fuzzy Uncertainty”,
In: P. Melin, O. Castillo, L. T. Aguilar, J. Kacprzyk, and
W. Pedrycz (eds.), Foundations of Fuzzy Logic and Soft
Computing, Proceedings of the World Congress of the In-
ternational Fuzzy Systems Association IFSA’2007, Can-
cun, Mexico, June 18–21, 2007, Springer Lecture Notes
on Artificial Intelligence, 4529:33–42, 2007.

[5] A. Einstein and P. Bergmann, “On the generalization of
Kaluza’s theory of electricity”, Ann. Phys., 39:683–701,
1938.

[6] R. Feynman, R. Leighton, and M. Sands, The Feyn-
man Lectures on Physics, Addison Wesley, Boston, Mas-
sachusetts, 2005.

[7] M. B. Green, J. H. Schwarz, and E. Witten, Superstring
Theory, Vols. 1, 2, Cambridge University Press, 1988.

[8] L. K. Grover, “A fast quantum mechanical algorithm for
database search”, Proceedings of the 28th Annual ACM
Symposium on the Theory of Computing, May 1996, pp.
212-ff.

[9] L. K. Grover, “From Schrödinger’s equation to quan-
tum search algorithm”, American Journal of Physics,
69(7):769–777, 2001.

[10] F. G. Gustavson, “The Relevance of New Data Structure
Approaches for Dense Linear Algebra in the New Multi-
Core/Many Core Environments”, In: R. Wyrzykowski,
J. Dongarra, K. Karczewski, and J. Wasniewski (eds.),
Proceedings of the 7th International Conference on Par-
allel Processing and Applied Mathematics PPAM’2007,
Gdansk, Poland, September 9–12, 2007, Springer Lecture
Notes in Computer Science, 4967:618–621, 2008.

[11] Th. Kaluza, Sitzungsberichte der K. Prussischen
Akademie der Wiseenschaften zu Berlin, 1921, p. 966 (in
German); Engl. translation “On the unification problem in
physics” in [13], pp. 1–9.

[12] O. Klein, Zeitschrift für Physik, 1926, Vol. 37, p. 895
(in German); Engl. translation “Quantum theory and five-
dimensional relativity” in [13], pp. 10–23.

[13] H. C. Lee (ed.), An introduction to Kaluza-Klein theo-
ries, World Scientific, Singapore, 1984.

[14] A. Neumaier, “Taylor forms”, Reliable Computing,
9:43–79, 2002.

[15] M. Nielsen and I. Chuang, Quantum Computation and
Quantum Information, Cambridge University Press, Cam-
bridge, 2000.

[16] J. Polchinski, String Theory, Vols. 1, 2, Cambridge Uni-
versity Press, 1998.

[17] N. Revol, K. Makino, and M. Berz, Taylor models and
floating-point arithmetic: proof that arithmetic opera-
tions are validated in COSY, J. Log. Algebr. Program.,
64(1):135–154, 2005.

[18] P. Shor, “Polynomial-Time Algorithms for Prime Fac-
torization and Discrete Logarithms on a Quantum Com-
puter”, Proceedings of the 35th Annual Symposium
on Foundations of Computer Science, Santa Fe, NM,
Nov. 20–22, 1994.

[19] P. Shor, “Polynomial-Time Algorithms for Prime Fac-
torization and Discrete Logarithms on a Quantum Com-
puter”, SIAM J. Sci. Statist. Comput., 1997, Vol. 26,
pp. 1484-ff.

[20] S. A. Starks, O. Kosheleva, and V. Kreinovich, “Kaluza-
Klein 5D Ideas Made Fully Geometric”, International
Journal of Theoretical Physics, 45(3):589–601, 2006.

[21] H. Tietze, Famous Problems of Mathematics: Solved
and Unsolved Mathematical Problems, from Antiquity to
Modern Times, Graylock Press, New York, 1965.

[22] C. Zaniolo, S. Ceri, C. Faloutsos, R. T. Snodgrass,
V. S. Subrahmanian, and R. Zicari, Advanced Database
Systems, Morgan Kaufmann, 1997.

