
Towards Intuitive Understanding of the Cauchy Deviate Method for Processing
Interval and Fuzzy Uncertainty

Vladik Kreinovich1 and Hung T. Nguyen2

1Department of Computer Science, University in the Texas at El Paso
500 W. University, El Paso, TX 79968, USA, vladik@utep.edu

2Department of Mathematical Sciences, New Mexico State University
Las Cruces, NM 88003, USA, hunguyen@nmsu.edu

Abstract— One of the most efficient techniques for processing in-
terval and fuzzy data is a Monte-Carlo type technique of Cauchy de-
viates that uses Cauchy distributions. This technique is mathemati-
cally valid, but somewhat counterintuitive. In this paper, following
the ideas of Paul Werbos, we provide a natural neural network expla-
nation for this technique.

Keywords— Cauchy deviate method, fuzzy uncertainty, interval
uncertainty, Monte-Carlo simulations, neural networks

1 Formulation of the Problem: Cauchy
Deviate Method and Need for Intuitive

Explanation

1.1 Practical Need for Uncertainty Propagation

In many practical situations, we are interested in the value
of a quantity y which is difficult or even impossible to mea-
sure directly. To estimate this difficult-to-measure quantity
y, we measure or estimate related easier-to-measure quanti-
ties x1, . . . , xn which are related to the desired quantity y by
a known relation y = f(x1, . . . , xn). Then, we apply the
relation f to the estimates x̃1, . . . , x̃n for xi and produce an
estimate ỹ = f(x̃1, . . . , x̃n) for the desired quantity y.

In the simplest cases, the relation f(x1, . . . , xn) may be
an explicit expression: e.g., if we know the current x1 and
the resistance x2, then we can measure the voltage y by us-
ing Ohm’s law y = x1 · x2. In many practical situations,
the relation between xi and y is much more complicated: the
corresponding algorithm f(x1, . . . , xn) is not an explicit ex-
pression, but a complex algorithm for solving an appropriate
non-linear equation (or system of equations).

Estimates are never absolutely accurate:

• measurements are never absolutely precise, and

• expert estimates can only provide approximate values of
the directly measured quantities x1, . . . , xn.

In both cases, the resulting estimates x̃i are, in general, differ-
ent from the actual (unknown) values xi. Due to these estima-
tion errors ∆xi

def= x̃i − xi, even if the relation f(x1, . . . , xn)
is exact, the estimate ỹ = f(x̃1, . . . , x̃n) is different from the
actual value y = f(x1, . . . , xn): ∆y

def= ỹ − y 6= 0.
(In many situations, when the relation f(x1, . . . , xn) is only

known approximately, there is an additional source of the ap-
proximation error in y caused by the uncertainty in knowing
this relation.)

It is therefore desirable to find out how the uncertainty ∆xi

in estimating xi affects the uncertainty ∆y in the desired quan-
tity, i.e., how the uncertainties ∆xi propagate via the algo-
rithm f(x1, . . . , xn).

1.2 Propagation of Probabilistic Uncertainty

Often, we know the probabilities of different values of ∆xi.
For example, in many cases, we know that the approxima-
tion errors ∆xi are independent normally distributed with zero
mean and known standard deviations σi; see, e.g., [16].

In this case, we can use known statistical techniques to es-
timate the resulting uncertainty ∆y in y. For example, since
we know the probability distributions, we can simulate them
in the computer, i.e., use the Monte-Carlo simulation tech-
niques to get a sample population ∆y(1), . . . , ∆y(N) of the
corresponding errors ∆y. Based on this sample, we can then
estimate the desired statistical characteristics of the desired
approximation error ∆y.

1.3 Propagation of Interval Uncertainty

In many other practical situations, we do not know these prob-
abilities, we only know the upper bounds ∆i on the (abso-
lute values of) the corresponding measurement errors ∆xi:
|∆xi| ≤ ∆.

In this case, based on the known approximation x̃i, we
can conclude that the actual (unknown) value of i-th auxiliary
quantity xi can take any value from the interval

xi = [x̃i −∆i, x̃i + ∆i]. (1)

To find the resulting uncertainty in y, we must therefore find
the range y = [y, y] of possible values of y when xi ∈ xi:

y = f(x1, . . . ,xn) def=

{f(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}. (2)

Computations of this range under interval uncertainty is called
interval computations; see, e.g., [4, 5].

The corresponding computational problems are, in general,
NP-hard [9]. Crudely speaking, this means that, in general,
such problems require a large amount of computation time –
and that therefore faster methods are needed.

1.4 Propagation of Fuzzy Uncertainty

In many practical situations, the estimates x̃i come from ex-
perts. Experts often describe the inaccuracy of their estimates

in terms of imprecise words from natural language, such as
“approximately 0.1”, etc. A natural way to formalize such
words is to use special techniques developed for formalizing
this type of estimates – specifically, the technique of fuzzy
logic; see, e.g., [6, 15].

In this technique, for each possible value of xi ∈ xi, we
describe the degree µi(xi) to which this value is possible. For
each degree of certainty α, we can determine the set of values
of xi that are possible with at least this degree of certainty
– the α-cut xi(α) = {x |µ(x) ≥ α} of the original fuzzy
set. Vice versa, if we know α-cuts for every α, then, for each
object x, we can determine the degree of possibility that x
belongs to the original fuzzy set [2, 6, 12, 13, 15]. A fuzzy set
can be thus viewed as a nested family of its (interval) α-cuts.

We already know how to propagate interval uncertainty.
Thus, to propagate this fuzzy uncertainty, we can therefore
consider, for each α, the fuzzy set y with the α-cuts

y(α) = f(x1(α), . . . ,x1(α)); (3)

see, e.g., [2, 6, 12, 13, 15]. So, from the computational view-
point, the problem of propagating fuzzy uncertainty can be
reduced to several interval propagation problems.

1.5 Need for Faster Algorithms for Uncertainty
Propagation

Summarizing the above analysis, we can conclude that in prin-
ciple, we need to consider three possible types of uncertainty
propagation: situations when we propagate probabilistic, in-
terval, and fuzzy uncertainty.

For probabilistic uncertainty, there exist reasonable efficient
uncertainty propagation algorithms such as Monte-Carlo sim-
ulations. In contrast, the problems of propagating interval and
fuzzy uncertainty are, in general, computationally difficult. It
is therefore desirable to design faster algorithms for propagat-
ing interval and fuzzy uncertainty.

The computational problem of propagating fuzzy uncer-
tainty can be naturally reduced to the problem of propagating
interval uncertainty. Because of this reduction, in the follow-
ing text, we will mainly concentrate on faster algorithms for
propagating interval uncertainty.

1.6 Linearization Situations: Description

Due to the approximation errors ∆xi = x̃i− xi, the unknown
(actual) values xi = x̃i−∆xi of the input quantities xi are, in
general, different from the approximate estimates x̃i. In many
practical situations, the approximation errors ∆xi are small –
e.g., when the approximations are obtained by reasonably ac-
curate measurements. In such situations, we can ignore terms
which are quadratic (and of higher order) in ∆xi.

1.7 Linearization Situations: Analysis

In the above situations, we can expand the expression for

∆y = ỹ − y = f(x̃1, . . . , x̃n)− f(x1, . . . , xn) =

f(x̃1, . . . , x̃n)− f(x̃1 −∆x1, . . . , x̃n −∆xn) (4)

in Taylor series in ∆xi and keep only the linear terms in this
expansion. In this case, we get

∆y = c1 ·∆x1 + . . . + cn ·∆xn, (5)

where we denoted

ci
def=

∂f

∂xi
(x̃1, . . . , x̃n).

For a linear function, the largest possible value of ∆y is ob-
tained when each of the variables ∆xi ∈ [−∆i, ∆i] attains:

• either its largest value ∆i (when ci ≥ 0)

• or its smallest value −∆i (when ci < 0).

In both cases, the largest possible value of the corresponding
term in ∆y is equal to |ci|·∆i. Thus, the largest possible value
of ∆y is equal to

∆ = |c1| ·∆1 + . . . + |cn| ·∆n. (6)

Similarly, the smallest possible value of ∆y is obtained when
each of the variables ∆xi ∈ [−∆i, ∆i] attains

• either its smallest value −∆i (when ci ≥ 0)

• or its largest value ∆i (when ci < 0).

In both cases, the smallest possible value of the corresponding
term in ∆y is equal to −|ci| ·∆i. Thus, the smallest possible
value of ∆y is equal to

−∆ = −|c1| ·∆1 − . . .− |cn| ·∆n. (7)

Can can we transform these natural formulas into an algo-
rithm? Due to the linearization assumption, we can estimate
each partial derivative ci as

ci ≈ f(x̃1, . . . , x̃i−1, x̃i + hi, x̃i+1, . . . , x̃n)− ỹ

hi
(8)

for some small values hi. So, we arrive at the following algo-
rithm.

1.8 Linearization Situations: Algorithm

To compute the range y of y, we do the following.

• First, we apply the algorithm f to the original estimates
x̃1, . . . , x̃n, resulting in the value ỹ = f(x̃1, . . . , x̃n).

• Second, for all i from 1 to n, we compute
f(x̃1, . . . , x̃i−1, x̃i+hi, x̃i+1, . . . , x̃n) for some small hi

and then compute

ci =
f(x̃1, . . . , x̃i−1, x̃i + hi, x̃i+1, . . . , x̃n)− ỹ

hi
. (9)

• Finally, we compute

∆ = |c1| ·∆1 + . . . + |cn| ·∆n

and the desired range y = [ỹ −∆, ỹ + ∆].

1.9 Linearization Situations: Computational Complexity

The main computation time is spent on calling the time-
consuming algorithm f . In the above uncertainty propagation
algorithm, after one call to f to compute ỹ, we need n calls
to f to compute the corresponding partial derivatives ci and
then, we can estimate the desired uncertainty ∆ in y by using
the above simple formula.

Overall, we thus need n + 1 calls to the algorithm f .

1.10 Cauchy Deviate Method

For large n, we can further reduce the number of calls to f
if we use a special technique of Cauchy-based Monte-Carlo
simulations, which enables us to use a fixed number of calls
to f (≈ 200) for all possible values n; see, e.g., [7, 8].

1.11 Mathematics Behind the Cauchy Method

In our simulations, we use Cauchy distribution – i.e., proba-
bility distributions with the probability density

ρ(z) =
∆

π · (z2 + ∆2)
; (10)

the value ∆ is called the (scale) parameter of this distribution.
Cauchy distribution has the following property that we will

use: if z1, . . . , zn are independent random variables, and each
of zi is distributed according to the Cauchy law with parameter
∆i, then their linear combination

z = c1 · z1 + . . . + cn · zn (11)

is also distributed according to a Cauchy law, with a scale pa-
rameter ∆ = |c1| ·∆1 + . . . + |cn| ·∆n.

Therefore, if we take random variables δi which are Cauchy
distributed with parameters ∆i, then the value

δ
def= f(x̃1, . . . , x̃n)− f(x̃1 − δ1, . . . , x̃n − δn) =

c1 · δ1 + . . . + cn · δn (12)

is Cauchy distributed with the desired parameter

∆ =
n∑

i=1

|ci| ·∆i. (13)

So, repeating this experiment N times, we get N values
δ(1), . . . , δ(N) which are Cauchy distributed with the unknown
parameter, and from them we can estimate ∆.

The bigger N , the better estimates we get.

1.12 Cauchy Method: Towards Implementation

To implement this idea, we must answer the following two
questions:

• how to simulate the Cauchy distribution; and

• how to estimate the parameter ∆ of this distribution from
a finite sample.

Simulation can be based on the functional transformation of
uniformly distributed sample values:

δi = ∆i · tan(π · (ri − 0.5)), (14)

where ri is uniformly distributed on the interval [0, 1].
In order to estimate ∆, we can apply the Maximum Likeli-

hood Method

ρ(δ(1)) · ρ(δ(2)) · . . . · ρ(δ(N)) → max, (15)

where ρ(z) is a Cauchy distribution density with the unknown
∆. When we substitute the above-given formula for ρ(z) and

equate the derivative of the product with respect to ∆ to 0
(since it is a maximum), we get an equation

1

1 +
(

δ(1)

∆

)2 + . . . +
1

1 +
(

δ(N)

∆

)2 =
N

2
. (16)

The left-hand side of (16) is an increasing function that is
equal to 0(< N/2) for ∆ = 0 and > N/2 for ∆ =
max

∣∣δ(k)
∣∣; therefore the solution to the equation (16) can

be found by applying a bisection method to the interval[
0, max

∣∣δ(k)
∣∣].

It is important to mention that we assumed that the function
f is reasonably linear within the box

[x̃1 −∆1, x̃1 + ∆1]× . . .× [x̃n −∆n, x̃n + ∆n]. (17)

However, the simulated values δi may be outside the box.
When we get such values, we do not use the function f for
them, we use a normalized function that is equal to f within
the box, and that is extended linearly for all other values (we
will see, in the description of an algorithm, how this is done).

As a result, we arrive at the following algorithm.

1.13 Cauchy Deviates Method: Algorithm

• Apply f to the results of direct measurements:

ỹ := f(x̃1, . . . , x̃n); (18)

• For k = 1, 2, . . . , N , repeat the following:

• use the standard random number generator to com-
pute n numbers r

(k)
i , i = 1, 2, . . . , n, that are uni-

formly distributed on the interval [0, 1];
• compute Cauchy distributed values

c
(k)
i := tan(π · (r(k)

i − 0.5)); (19)

• compute the largest value of |c(k)
i | so that we will be

able to normalize the simulated measurement errors
and apply f to the values that are within the box of
possible values: K := maxi |c(k)

i |;
• compute the simulated measurement errors

δ
(k)
i := ∆i · c(k)

i /K; (20)

• compute the simulated “actual values”

x
(k)
i := x̃i − δ

(k)
i ; (21)

• apply the program f to the simulated “actual val-
ues” and compute the simulated error of the indirect
measurement:

δ(k) := K ·
(
ỹ − f

(
x

(k)
1 , . . . , x(k)

n

))
; (22)

• Compute ∆ by applying the bisection method to solve
the equation (16).

Comment. To avoid confusion, we should emphasize that, in
contrast to the Monte-Carlo solution for the probabilistic case,
the use of Cauchy distribution in the interval case is a compu-
tational trick and not a truthful simulation of the actual mea-
surement error ∆xi: indeed, we know that the actual value
of ∆xi is always inside the interval [−∆i,∆i], but a Cauchy
distributed random attains values outside this interval as well.

1.14 Cauchy Deviate Method: Need for Intuitive
Explanation

The above Cauchy deviate method is one of the most efficient
techniques for processing interval and fuzzy data. However,
this method has a serious drawback: while the corresponding
technique is mathematically valid, it is somewhat counterintu-
itive.

It is therefore desirable to come up with an intuitive expla-
nation for this technique. In this paper, we show that such an
explanation can be obtained from neural networks.

2 Solution: Neural Explanation
2.1 Werbos’s Idea: Use Neurons

Our explanation comes from the idea promoted by Paul Wer-
bos, the author of the backpropagation algorithm for training
neural networks. Traditionally, neural networks are used to
simulate a deterministic dependence; Paul Werbos suggested
that the same neural networks can be used to describe stochas-
tic dependencies as well – if as one of the inputs, we take a
standard random number r uniformly distributed on the inter-
val [0, 1].

In view of this idea, as a natural probability distribution, we
can take the result of applying a neural network to this random
number. The simplest case is when we have a single neuron.
In this case, we apply the activation (input-output) function
f(y) corresponding to this neuron to the random number r.

So, let us see what will happen if we apply a neuron to the
standard random number and get a value f(r).

2.2 What is the Activation Function of a Neuron: Reminder

To answer the above question, let us recall what are the opti-
mal choices of an activation function of a neuron. This prob-
lem was analyzed in detail in [14]; see also [10].

2.3 We Must Choose a Family of Functions, Not a Single
Function

We talk about choosing f , but the expression for f(y) will
change if we change the units in which we measure all the
signals (input, output and intermediate), so in mathematical
terms, it is better to speak about choosing a family of functions
f .

It is reasonable to suggest that if an f belongs to this family,
then this family must contain k ·f for positive real numbers k.
This corresponds to changing units.

Also, it must contain f + c, where c is a constant. This
is equivalent to adding a constant bias and therefore does not
change the abilities of the resulting network.

Since we are talking about non-linear phenomena, we can
also assume that some non-linear “rescaling” transformations
x → g(x) are also applicable, i.e., the family must include the
composition g(f(y)) for each of functions f .

This family must not be too big, therefore, it must be de-
termined by finitely many parameters and should ideally be
obtained from one function f(y) by applying all these trans-
formations. Without loss of generality, we can assume that this
set of transformations is closed under composition and under
inverse, i.e., if z → g1(z) and z → g2(z) are possible trans-
formations, then z → g1(g2(z)) and z → g−1

1 (z) are possible
transformations, where by g−1

1 we denoted an inverse function

g−1
1 (z) = w if and only if g1(w) = z. In mathematical terms

this means that these transformations form a group, and there-
fore a family is obtained by applying to some function f(y) all
transformations from some finite-dimensional transformation
group G that includes all linear transformations (and maybe
some non-linear ones).

All these transformations correspond to appropriate “rescal-
ings”. Rescaling is something that is smoothly changing the
initial scale. This means that if we have two different trans-
formations, there must be a smooth transition between them.
In mathematical terms, the existence of this continuous tran-
sition is expressed by saying that the group is connected, and
the fact that both the transformations and the transitions are
smooth is expressed by saying that this is a Lie group).

2.4 Which Family is the Best?

Among all such families, we want to choose the best one. In
formalizing what “the best” means we follow the general idea
described in [14].

The criteria to choose may be computational simplicity, ef-
ficiency of training, or something else. In mathematical opti-
mization problems, numeric criteria are most frequently used,
when to every family we assign some value expressing its per-
formance, and choose a family for which this value is max-
imal. However, it is not necessary to restrict ourselves to
such numeric criteria only. For example, if we have sev-
eral different families that have the same training ability A,
we can choose between them the one that has the minimal
computational complexity C. In this case, the actual crite-
rion that we use to compare two families is not numeric, but
more complicated: a family F1 is better than the family F2 if
and only if either A(F1) > A(F2) or A(F1) = A(F2) and
C(F1) < C(F2). A criterion can be even more complicated.
What a criterion must do is to allow us for every pair of fami-
lies to tell whether the first family is better with respect to this
criterion (we’ll denote it by F1 > F2), or the second is better
(F1 < F2) or these families have the same quality in the sense
of this criterion (we’ll denote it by F1 ∼ F2). Of course, it is
necessary to demand that these choices be consistent, e.g., if
F1 > F2 and F2 > F3 then F1 > F3.

Another natural demand is that this criterion must choose a
unique optimal family (i.e., a family that is better with respect
to this criterion than any other family). The reason for this de-
mand is very simple. If a criterion does not choose any family
at all, then it is of no use. If several different families are “the
best” according to this criterion, then we still have a problem
to choose among those “best”. Therefore, we need some ad-
ditional criterion for that choice. For example, if several fam-
ilies turn out to have the same training ability, we can choose
among them a family with minimal computational complexity.
So what we actually do in this case is abandon that criterion
for which there were several “best” families, and consider a
new “composite” criterion instead: F1 is better than F2 ac-
cording to this new criterion if either it was better according
to the old criterion or according to the old criterion they had
the same quality and F1 is better than F2 according to the ad-
ditional criterion. In other words, if a criterion does not allow
us to choose a unique best family it means that this criterion
is not ultimate; we have to modify it until we come to a final
criterion that will have that property.

The next natural condition that the criterion must satisfy is
connected with the following. Suppose that instead of a neu-
ron with the transformation function f(y) we consider a neu-
ron with a function f̄(y) = f(y + a), where a is a constant.
This new neuron can be easily simulated by the old ones:
namely, the output of this new neuron is f̄(y) = f(y + a),
so it is equivalent to an old neuron with an additional constant
input a. Likewise, the old neuron is equivalent to the new
neuron with an additional constant input −a. Therefore, the
networks that are formed by these new neurons have precisely
the same abilities as those that are built from the old ones.

We cannot claim that the new neurons have the same quality
as the old ones, because adding a can increase computational
complexity and thus slightly worsen the overall quality. But it
is natural to demand that adding a does not change the relative
quality of the neurons, i.e., if a family {f(y)} is better that a
family of {g(y)}, then for every a the family {f(y +a)}must
be still better than the family {g(y + a)}.

Now, we are ready for the formal definitions.

2.5 Definitions

By a transformation we mean a smooth (differentiable) func-
tion from real numbers into real numbers. By an appropriate
transformation group G we mean a finite-dimensional con-
nected Lie group of transformations. By a family of functions
we mean the set of functions that is obtained from a smooth
(everywhere defined) non-constant function f(y) by applying
all the transformations from some appropriate transformation
group G. Let us denote the set of all the families by F .

A pair of relations (<,∼) is called consistent if it satisfies
the following conditions: (1) if a < b and b < c then a < c;
(2) a ∼ a; (3) if a ∼ b then b ∼ a; (4) if a ∼ b and b ∼ c
then a ∼ c; (5) if a < b and b ∼ c then a < c; (6) if a ∼ b
and b < c then a < c; (7) if a < b then b < a or a ∼ b are
impossible.

Assume a set A is given. Its elements will be called alter-
natives. By an optimality criterion we mean a consistent pair
(<,∼) of relations on the set A of all alternatives. If a > b,
we say that a is better than b; if a ∼ b, we say that the alterna-
tives a and b are equivalent with respect to this criterion. We
say that an alternative a is optimal (or best) with respect to a
criterion (<,∼) if for every other alternative b either a > b or
a ∼ b.

We say that a criterion is final if there exists an optimal
alternative, and this optimal alternative is unique.

In the present section we consider optimality criteria on the
set F of all families.

By the result of adding a to a function f(y) we mean a
function f̄(y) = f(y + a). By the result of adding a to a
family F we mean the set of the functions that are obtained
from f ∈ F by adding a. This result will be denoted by F +a.
We say that an optimality criterion on F is shift-invariant if
for every two families F and G and for every number a, the
following two conditions are true:

i) if F is better than G in the sense of this criterion (i.e.,
F > G), then F + a > G + a;

ii) if F is equivalent to G in the sense of this criterion (i.e.,
F ∼ G), then F + a ∼ G + a.

2.6 Main Result

As we have already remarked, the demands that the optimality
criterion is final and shift-invariant are quite reasonable. The
only problem with them is that at first glance they may seem
rather weak. However, they are not, as the following theorem
shows:

Theorem. If a family F is optimal in the sense of some op-
timality criterion that is final and shift-invariant, then every
function f from F has the form a + b · s0(K · y + l) for
some a, b, K and l, where s0(y) is either a linear func-
tion, or a fractional-linear function, or s0(y) = exp(y), or
the logistic (sigmoid) function s0(y) = 1/(1 + exp(−y)), or
s0(y) = tan(y).

Comment. The logistic function is indeed the most popular
activation function for actual neural networks, but others are
also used. For our purpose, we will use the tangent function.
As we have mentioned earlier, the application of the tangent
function to the standard random number r indeed leads to the
desired Cauchy distribution.

2.7 Proof: Main Idea

The idea of this proof is as follows: first we prove that the ap-
propriate transformation group consists of fractionally-linear
functions (in Part 1), then we prove that the optimal family
is shift-invariant (in Part 2), and from that in Part 3 we con-
clude that any function f from F satisfies some functional
equations, whose solutions are known.

2.8 Proof: Part 1

By an appropriate group we meant a connected finite-
dimensional Lie group of transformations of the set of real
numbers R onto itself that contains all linear transforma-
tions. Norbert Wiener asked [18] to classify such groups for
an n-dimensional space with arbitrary n, and this classifica-
tion was obtained in [3, 17]. In our case (when n = 1) the
only possible groups are the group of all linear transforma-
tions and the group of all fractionally-linear transformations
x → (a · x + b)/(c · x + d). In both cases the group con-
sists only of fractionally linear transformations (the simplified
proof for the 1-dimensional case is given in [11]).

2.9 Proof: Part 2

Let us now prove that the optimal family Fopt exists and is
shift-invariant in the sense that Fopt = Fopt + a for all real
numbers a. Indeed, we assumed that the optimality criterion
is final, therefore there exists a unique optimal family Fopt.
Let’s now prove that this optimal family is shift-invariant.

The fact that Fopt is optimal means that for every other F ,
either Fopt > F or Fopt ∼ F . If Fopt ∼ F for some F 6=
Fopt, then from the definition of the optimality criterion we
can easily deduce that F is also optimal, which contradicts
the fact that there is only one optimal family. So for every F
either Fopt > F or Fopt = F .

Take an arbitrary a and let F = Fopt + a. If Fopt > F =
Fopt + a, then from the invariance of the optimality criterion
(condition ii) we conclude that Fopt − a > Fopt, and that
conclusion contradicts the choice of Fopt as the optimal fam-
ily. So Fopt > F = Fopt + a is impossible, and therefore
Fopt = F = Fopt + a, i.e., the optimal family is really shift-
invariant.

2.10 Proof: Part 3

Let us now deduce the actual form of the functions f from
the optimal family. If f(y) is such a function, then the result
f(y + a) of adding a to this function f belongs to F + a, and
so, due to 2., it belongs to F . But all the functions from f
can be obtained from each other by fractionally linear trans-
formations, so f(y + a) = (A + B · f(y))/(C + D · f(y))
for some A,B, C and D. So we arrive at a functional equa-
tion for f . Let us reduce this equation to a one with a known
solution. For that purpose, let us use the fact that fractionally
linear transformations are projective transformations of a line,
and for such transformations the cross ratio is preserved ([1],
Section 2.3), i.e., if g(y) = (A + B · f(y))/(C + D · f(y)),
then

g(y1)− g(y3)
g(y2)− g(y3)

· g(y2)− g(y4)
g(y1)− g(y4)

=

f(y1)− f(y3)
f(y2)− f(y3)

· f(y2)− f(y4)
f(y1)− f(y4)

(23)

for all yi. In our case this is true for g(y) = f(y+a), therefore
for all a the following equality is true:

f(y1 + a)− f(y3 + a)
f(y2 + a)− f(y3 + a)

· f(y2 + a)− f(y4 + a)
f(y1 + a)− f(y4 + a)

=

f(y1)− f(y3)
f(y2)− f(y3)

f(y2)− f(y4)
f(y1)− f(y4)

. (24)

The most general continuous solutions of this functional equa-
tion are given by Theorem 2.3.2 from [1]: either f is fraction-
ally linear, or f(y) = (a+b ·tan(k ·y))/(c+d ·tan(k ·y)) for
some a, b, c, d, or f(y) = (a+b·tanh(k·y))(c+d·tanh(k·y)),
where

tanh(z) def=
sinh(z)
cosh(z)

, sinh(z) def=
exp(z)− exp(−z))

2
,

cosh(z) def=
exp(z) + exp(−z)

2
. (25)

The tanh(z) expression is equivalent to the logistic function.
The theorem is proven.

Acknowledgment
This work was supported in part by NSF grant HRD-0734825
and by Grant 1 T36 GM078000-01 from the National Insti-
tutes of Health.

The authors are thankful to Paul Werbos for valuable dis-
cussions.

References

[1] J. Aczel, Lectures on functional equations and their ap-
plications, Dover, New York, 2006.

[2] D. Dubois and H. Prade, Operations on fuzzy numbers,
International Journal of Systems Science, 1978, Vol. 9,
pp. 613–626.

[3] V. M. Guillemin and S. Sternberg, “An algebraic model
of transitive differential geometry”, Bulletin of American
Mathematical Society, 1964, Vol. 70, No. 1, pp. 16–47.

[4] Interval computations website
http://www.cs.utep.edu/interval-comp

[5] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied In-
terval Analysis, with Examples in Parameter and State Es-
timation, Robust Control and Robotics, Springer-Verlag,
London, 2001.

[6] G. Klir and B. Yuan, Fuzzy sets and fuzzy logic, Prentice
Hall, New Jersey, 1995.

[7] V. Kreinovich, J. Beck, C. Ferregut, A. Sanchez,
G. R. Keller, M. Averill, and S. A. Starks, “Monte-Carlo-
type techniques for processing interval uncertainty, and
their potential engineering applications”, Reliable Com-
puting, 2007, Vol. 13, No. 1, pp. 25–69.

[8] V. Kreinovich and S. Ferson, “A New Cauchy-Based
Black-Box Technique for Uncertainty in Risk Analysis”,
Reliability Engineering and Systems Safety, 2004, Vol. 85,
No. 1–3, pp. 267–279.

[9] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Compu-
tational complexity and feasibility of data processing and
interval computations, Kluwer, Dordrecht, 1998.

[10] V. Kreinovich and C. Quintana. “Neural networks: what
non- linearity to choose?,” Proceedings of the 4th Univer-
sity of New Brunswick Artificial Intelligence Workshop,
Fredericton, N.B., Canada, 1991, pp. 627–637.

[11] I. N. Krotkov, V. Kreinovich and V. D. Mazin, “A gen-
eral formula for the measurement transformations, allow-
ing the numerical methods of analyzing the measuring and
computational systems”, Measurement Techniques, 1987,
No. 10, pp. 8–10.

[12] R. E. Moore and W. Lodwick, Interval Analysis and
Fuzzy Set Theory, Fuzzy Sets and Systems, 2003,
Vol. 135, No. 1, pp. 5–9.

[13] H. T. Nguyen and V. Kreinovich, Nested Intervals and
Sets: Concepts, Relations to Fuzzy Sets, and Applica-
tions, In: R. B. Kearfott and V. Kreinovich, eds., Applica-
tions of Interval Computations, Kluwer, Dordrecht, 1996,
pp. 245–290.

[14] H. T. Nguyen and V. Kreinovich, Applications of Con-
tinuous Mathematics to Computer Science, Kluwer, Dor-
drecht, 1997.

[15] H. T. Nguyen and E. A. Walker, A First Course in Fuzzy
Logic, CRC Press, Boca Raton, Florida, 2006.

[16] S. Rabinovich, Measurement Errors and Uncertainties:
Theory and Practice, American Institute of Physics, New
York, NY, 2005.

[17] I. M. Singer and S. Sternberg, “Infinite groups of Lie and
Cartan, Part 1”, Journal d’Analyse Mathematique, 1965,
Vol. XV, pp. 1–113.

[18] N. Wiener, Cybernetics, or Control and Communication
in the animal and the machine, MIT Press, Cambridge,
MA, 1962.

