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Abstract

One of the most widely used (and most successful) methods for pricing
financial and insurance instruments under risk is the Wang transform
method. In this paper, we provide a new explanation for the empirical
success of Wang’s method — by providing a new simpler justification for
the Wang transform.

Pricing under risk: a problem. The price of most financial instruments
unpredictably (randomly) fluctuates. As a result of these unpredictable fluctua-
tions, investing in a financial instrument is risky: there is a always a possibility
that the price of this particular instrument will go down, and as a result, the
investors will suffer losses.

In many practical situations, based on the prior performance of a financial
instrument (and on the additional information that we may have), we can get
a pretty good understanding of the probabilities of different future prices. In



other words, we usually know the probability distribution of the future price
X. This distribution can be described, e.g., by describing the probabilities that
the future price does not go below a certain threshold, i.e., by the decumulative
distribution function

S(z) & Prob(X > ). (1)
Alternatively, we can use the cumulative distribution function

F(z) © Prob(X < z) =1— S(x). (2)
Once we know this probability distribution, what is a reasonable price of
this financial instrument?

First approximation to pricing under risk: a straightforward appli-
cation of the traditional probability approach. A seemingly natural ap-
proach to pricing can be obtained from a straightforward application of the
traditional probability approach; see, e.g., [11]. If we invest in similar financial
instruments, with a similar probability distribution, again and again, then on
average, due to the Law of Large Numbers, our average gain per investment

Xi4+... +X,
n

(3)

will be equal to the mean (expected) value E[X] of the corresponding random
variable X. Thus, from the traditional probability approach, it seems reasonable
to use this mean value as the fair price of the financial instrument.

In terms of the decumulative distribution function S(z), this mean E[X] has
the form

EX] = /LOO Prob(X > z)dx + L = /LOO S(x)dx+ L, (4)

where L is the smallest possible price. Usually, we take L = 0, so the formula
(4) takes the simplified form

BlX] = /0 " Prob(X > 1) dx — /O ~ S(x) da. (5)

Comment. Strictly speaking, according to decision theory [3, 4, 7, 9, 10], we
must take the mean not of the future price itself, but of the utility corresponding
to the future price. This difference is important because people’s utilities are
non-linearly related to their gains and losses. So, strictly speaking, instead of the
distribution of the prices, we should start with the corresponding distribution
of utilities. For simplicity, in the future, we will simply talk about future prices
(gains, etc.), but all our considerations are applicable to utilities as well.



Need to go beyond the first approximation. According to the above
straightforward application of the traditional probability approach, the fair price
of the financial instrument should be equal to the expected value of the future
price. In real life, however, most people prefer to get, e.g., a $1 to a situation
in which, with probability 1/2, we get $2 and with probability 1/2, we get 0.

One may claim that this preference is caused by the non-linearity of the
corresponding utility function, but the same preference can be observed if we
use utils (units of utility) instead of dollars:

e On the one hand, theoretically, getting 1 util with certainty should be
equivalent to getting 2 units with probability 1/2 and 0 utils with proba-
bility 1/2.

e However, in practice, in this choice, most people prefer 1 util with cer-
tainty.

In other words, risk decreases the fair price of a financial instrument: the
more risk, the smaller the price.

For insurance instruments, a similar effect of risk moves the price in the
opposite direction: we need to pay extra insurance premium for risk: the larger
the risk, the larger this premium and thus, the larger the resulting price.

How can we describe the resulting fair pricing under risk?

Wang transform: an efficient empirical method for pricing under risk.
In his papers [13, 14], S. S. Wang proposed to replace the expression (5) with a
modified formula

/0 " 4(S(a)) da, (6)

where the Wang transform g(y) is defined by the formula

9(y) = (2" (y) + ), (7)

in which « is a constant, and ®(y) is the cumulative distribution function of the
standard normal distribution (with 0 mean and standard deviation 1).

For financial instruments, when the presence of risk decreases the price, we
take @ < 0. For estimating insurance premiums, when the presence of risk
increases the price, we should take a > 0.

This method turned out to be highly efficient in practice. As a result, this
method (and its modifications and extensions) is now one of the main methods
for pricing under risk; see, e.g., [5].

How can we explain this empirical success? There exist several justifica-
tions of the Wang transform method, justifications that show that this method
is uniquely determined by some reasonable properties. The first justifications
was proposed by Wang himself, in [15]; several other justifications are described
in [8].



Limitations of this explanation. The main limitations of the existing justi-
fications of the Wang transform is that these justifications are too complicated,
too mathematical, and not very intuitive.

What we do in this paper. In this paper, we provide a new, more intuitive
justification of the Wang transform.

Difference between subjective and objective probabilities. How can we
explain the fact that, in spite of the seeming naturalness of the mean, people’s
pricing under risk is usually different from the mean E[X]?

A natural explanation comes from the observation that the mean E[X] is
based on the “objective” probabilities (frequencies) of different events, while
people use “subjective” estimates of these probabilities when making decisions.
For a long time, researchers thought that subjective probabilities are approxi-
mately equal to the objective ones, and often they are equal. However, in 1979, a
classical paper by D. Kahneman and A. Tversky ([6], reproduced in [12]) showed
that our “subjective” probability of different events is, in general, different from
the actual (“objective”) probabilities (frequencies) of these events. This differ-
ence is especially drastic for events with low probabilities and probabilities close
to 1 —i.e., for the events that are most important when estimating risk.

Specifically, Kahnemann and Tversky has shown that there is a one-to-one
correspondence g(y) between objective and subjective probabilities, so that once
we know the (objective) probability Prob(E) of an event E, the subjective
probability Probg,p;j(E) of this event E' is (approximately) equal to

Probgup;j(E) = g(Prob(E)). (8)

This idea was further explored by other researchers; see, e.g., [1] and references
therein.

First step of our justification: justification of the Wang-type formula.
Let us apply the Kahneman-Tversky idea to the events X > x corresponding to
different values x. For such an event F, its objective probability is equal to the
decumulative distribution function S(z). Thus, the corresponding subjective
probability of this event is equal to

Probgypj(X > z) = g(S(x)). (9)
If we compute the “subjective” mean Fgp;[X] of X based on these subjective
probabilities, we get

Equj[X] = /000 Probgubj(X > ) de = /000 g9(S(z)) dx. (10)

This is exactly the expression (6) for pricing under risk, with the only difference
that we do yet have an explicit expression for the transform g(y).

The derivation of Wang’s expression (7) for the transform g¢(y) constitutes
the second part of our justification.



Properties of the Wang transform: reminder. Before we start the sec-
ond step of our justification, let us recall the known properties of the Wang
transform [13]:

e The result g(S(z)) of applying the Wang transform to the decumulative
distribution function S(x) of a normal distribution is also a decumula-
tive distribution function of a normal distribution. This property is very
important since in practice, many distributions are normal; see, e.g., [11].

e The result g(S(z)) of applying the Wang transform to the decumulative
distribution function S(z) of a lognormal distribution is also a decumula-
tive distribution function of a lognormal distribution. This property is also
very important because many stock returns and other financial quantities
have a lognormal distribution.

Second part of our justification: main idea. Normal distributions are
ubiquitous. It is therefore reasonable to require that when we have an (ob-
jectively) normal distribution, its subjective perception should also be normal.
In other words, it is reasonable to require that the result g(S(z)) of apply-
ing the transform g(y) to the (decumulative distribution function of a) normal
distribution S(z) is also a (decumulative distribution function of a) normal dis-
tribution. We will show that the Wang transform is the only function satisfying
this property.

In financial applications, lognormal distributions are also frequent. Thus,
it is also reasonable to require that when we have an (objectively) lognormal
distribution, its subjective perception should also be lognormal. In other words,
it is reasonable to require that the result g(S(z)) of applying the transform g(y)
to a (decumulative distribution function of a) lognormal distribution S(x) is
also a (decumulative distribution function of a) lognormal distribution. We will
show that the Wang transform is the only function satisfying this property.

These two results will complete our justification of the Wang transform.

Theorem 1. Let a function g : [0,1] — [0, 1] satisfy the following two proper-
ties:

e for a decumulative distribution function S(x) of a normal distribution, the
function g(S(x)) is also a decumulative distribution function of a normal
distribution; and

o for every decumulative distribution function S(x), we have
/ g(S(x))dx < E[X] = / S(x) du. (11)
0 0

Then, g(y) is the Wang transform (7) with o < 0.



Comment. The second property means that because of the possible risk, the
fair price is either equal to the mean or smaller than the mean. In other words,
it means that when the expected returns are equal, the presence of risk decreases
the attractiveness of the financial instrument.

For an insurance instrument, we have the opposite inequality: when we
estimate the insurance premium, we need to pay extra for the risk. In this case,
we have a similar result:

Theorem 2. Let a function g : [0,1] — [0, 1] satisfy the following two proper-
ties:

o for a decumulative distribution function S(x) of a normal distribution, the
function g(S(x)) is also a decumulative distribution function of a normal
distribution; and

o for every decumulative distribution function S(x), we have
/ 9(S(2)) dz > E[X] = / S(z) dz. (12)
0 0
Then, g(y) is the Wang transform (7) with o > 0.

Proof of Theorem 1. Our formulas deal with decumulative distribution func-
tions, and the first condition of Theorem 1 deals with normal distributions.
Because of this, let us first recall how to describe the decumulative distribu-
tion functions corresponding to the normal distributions. Let us start with
the standard normal distribution, with 0 mean and standard deviation 1. This
distribution is symmetric, i.e., its probability density function p(z) is even:
p(x) = p(—xz). Because of this symmetry, the decumulative distribution func-
tion So(z) = 1 — ®(x) of the standard normal distribution satisfies the property

So(z) = Prob(X > z) = /OO p(t)dt =

—T
/ p(t)dt = Prob(X < —z) = &(—x). (13)
—0oQ

An arbitrary normally distributed random variable X, with the mean a and
the standard deviation o, can be reduced to the standard normal distribution.
Specifically, for each normally distributed random variable X, the expression

YdéfX—a

. (14)
is also normally distributed, with 0 mean and standard deviation 1. Thus, for
this new random variable Y, we have Prob(Y > y) = So(y).

We are interested in the decumulative distribution function S(x) correspond-
ing to the normally distributed random variable X. By definition of the decumu-
lative distribution function, this means that we are interested in the probabilities



that X > z for different values x. For an arbitrary real number x, the inequality
X >z is equivalent to X —a > x — a and thus, to

X - o T —
y=2"0s eIzt (15)
g g

Thus, the probability S(z) = Prob(X > z) is equal to the probability that

T—a
Y >y, ie., to Sp(y). Substituting y = into this formula, we conclude

that
S(z) = Sy (x;a) (16)

According to the formulation of Theorem 1, the result g(S(z)) of applying
the function ¢(y) to a decumulative distribution function S(x) corresponding
to the normal distribution also leads to a function corresponding to the normal
distribution. In particular, for the function Sy(x) corresponding to the standard
normal distribution, the expression S(z) = g(So(x)) also corresponds to normal
distribution. Expressions S(x) corresponding to a normal distributions have the
form (16). Thus, we conclude that

sisa(e)) = 5o (220 (17)

g0

for some values ag and oo Since Sp(x) = ®(—z), we get

Y (18)

To find ¢(y) for a given number y, we first find  for which ®(—z) = y. In terms
of the inverse function ®~!, this value x takes the form —z = ®~1(y), i.e.,

r=—-0"1(y). (19)

Substituting this expression for z into the right-hand side of the formula (18),
we conclude that

o)~ 0 (=) g (2w, (20

00 g0

To complete the proof, we must show that oy = 1 and that ag < 0. For that,
let us use the second property of the function g(y). For every number y € [0, 1],
let us consider a random variable X which is equal to 1 with probability y and
to 0 with the remaining probability 1 —y. The mean value E[X] of this random
variable is equal to y - 1 + (1 — y) - 0 = y. The subjective probability of X =1
equal to g(y), so the corresponding integral [ ¢(S(z))dz is equal to g(y).

For such random variables, the requirement that the integral is always smaller
than or equal to E[X] means that g(y) <y for all y, i.e., that

o (W) <. (21)

00 -



For every real value z, this inequality must hold for the value y = ®(x), for
which ®~!(y) = z. For this value, (21) turns into

o (““0) < ®(x). (22)

Since the function ®(x) is monotonically increasing, the inequality (22) is equiv-
alent to

T (23)
for all . Multiplying both sides by oo > 0, we get
x+ag <og-x. (24)
Moving terms containing x to the right-hand side, we get
ap < (og—1) - z. (25)

If 0p < 1, then this inequality is violated for  — 400, when its right-hand side
tends to —oo. If og > 1, then this inequality is violated for x — —oo, when its
right-hand side also tends to —oo. Thus, the only possibility for this inequality
to be satisfied for all possible values x is to have g = 1.

For og = 1, the inequality (23) turns into

T+ ag <. (26)

After we subtract z from both sides of this inequality, we get the desired in-
equality ag < 0.

The theorem is proven. Thus, the use of the Wang transform has been
justified.

Proof of Theorem 2 is similar to the proof of Theorem 1.

Theorem 3. Let a function g : [0,1] — [0, 1] satisfy the following two proper-
ties:

e for a decumulative distribution function S(x) of a lognormal distribution
S(x), the function g(S(x)) is also a decumulative distribution function of
a lognormal distribution; and

o for every decumulative distribution function S(x), we have
/ 9(S(2)) dz < E[X] = / S(z) dz. (27)
0 0

Then, g(y) is the Wang transform (7) with « < 0.



Theorem 4. Let a function g : [0,1] — [0, 1] satisfy the following two proper-
ties:

o for a decumulative distribution function S(x) of a lognormal distribution
S(x), the function g(S(x)) is also a decumulative distribution function of
a lognormal distribution; and

o for every decumulative distribution function S(x), we have
/0 " o(S(x)) dx > B[X] = /0 ~ S(2) da. (28)
Then, g(y) is the Wang transform (7) with a > 0.
Proof. The proof of these results is similar to the proof of Theorem 1.

A possible alternative justification. A possible alternative justification
comes from the fact that the Wang transform is not a single function: we have
a family of transforms g, (y) corresponding to different values a. Different values
of a correspond to different degree of dependence on risk.

These transforms form a transformation group in the sense that the following
three conditions are satisfied:

e First, the identity transform g¢(y) = y is a particular case of the Wang
transform: specifically, it corresponds to a = 0.

e Second, the inverse operation to a Wang transform g¢,(y) is also a Wang
transform: g, !(y) = gg(y) for some 3 in the sense that

98(9a(¥)) = 95(9a(y)) =y (29)
for all y; specifically, this is true for 8 = —a.

e Third, the composition of Wang transforms is also a Wang transform: if
we first apply a transform g, (y), and then a transform gg(y), then this is
equivalent to applying the Wang transform with a single value ~:

98(90(y)) = 9+(y) (30)

for all y; specifically, this is true for v = a + (.

It is reasonable to require that we have a family of transformation that forms
a 1l-parametric group. It is also reasonable to require that the transformations
are continuous, and that the dependence on the parameter is also continuous,
i.e., that this is a Lie group; see, e.g., [2]. It is known that every 1-dimensional
Lie group (i.e., a Lie group described by a single parameter) is (at least locally)
isomorphic to the additive group of real numbers. In precise terms, this means
that instead of using the original values of the parameter v describing different
elements of this group, we can use a re-scaled parameter « = h(v) for some
non-linear function h, and in this new parameter scale:



e the identity element corresponds to o = 0;

e the inverse element to an element with parameter « is an element with
parameter —a: g_, = g, '; and

e the composition of elements with parameters o and [ is an element with
the parameter o + 3: go © g3 = Ga+3-

Let us denote ®(x) et 9:(0.5). Then, for every y = ®(x) and for every real
number «, we get

9a(y) = 9a(®(2)) = 9ga(92(0.5)) = (ga © 92)(0.5). (31)
Because of our choice of parameters, we have
9o © 9z = Grta (32)
and thus, the formula (31) takes the form
9a(y) = ga+a(0.5). (33)

By definition of the function ®(x), this means that

9o(y) = (2 + ). (34)
Here, y = ®(z), hence z = ®~1(y) and thus,
ga(y) = (27} (y) + ). (35)

This is exactly the Wang transform formula (7) — except that the function ®(x)
does not necessarily coincide with the cumulative distributive function of the
standard normal distribution. (To justify Wang’s specific choice of the function
®(z), we may want to use our Theorems 1-4.)

Yet another alternative justification. Another alternative justification of
the formula (6) comes from the fact that in many cases, an investor is most
interested in his ability to have enough cash after a certain period of time. For
example, a person who invests as part of his retirement plan, would like to have,
at the moment of his or her retirement, enough money to spend on the basics
during the retirement.

To describe this idea in precise mathematical terms, let us denote the cor-
responding minimal return by x. Then, what is most important to the in-
vestor is the probability that this return will be attained, i.e., the probability
Prob(X > z). This is, in effect, the decumulative distribution function S(x).
Thus, from this viewpoint, the utility of the investment to each investor can be
characterized by the corresponding value S(x).

Different investors have different thresholds x. So, for different investors, the
same financial instrument is characterized by the values S(x) corresponding to

10



different values z. We need to somehow combine these utility values into a single
numerical criterion — the price describing this particular financial instrument.

How can we combine different utility values? For example, if we have two
investors with utilities a and b, what combination a * b of these values should
we use? It is reasonable to assume that this combination does not depend on
the order in which we combine these utilities, i.e., in mathematical terms, that
the corresponding combination function a * b is commutative (a *b = b*a) and
associative (a* (bxc) = (axb)*c). It is also reasonable to assume that for each
“positive” utility value u, there is a corresponding negative value v for which
uxv = 0. In other words, it is reasonable to require that the set of real numbers
(possible utility values) with the operation * form a group.

We have already mentioned that every 1-dimensional Lie group is (at least
locally) isomorphic to the group of real numbers. This isomorphism means that
there exists a mapping g(y) from the original utility scale to the new scale in
which, for every two real numbers a and b, we have

g(a*b) = g(a) + g(b), (36)
and thus,
axb=g"'(g(a) + g(b)). (37)
Similarly, for n utilities wq, ..., u,, we have
wp * ok Uy =g (g(ur) + .+ g(un)). (38)
If we have n investors, with thresholds z1,...,x,, then their utilities are
equal to uy = S(z1), ..., up, = S(z,) and therefore, the combined utility is
equal to
Uy k. uy =g Hg(S(z1) 4 ...+ g(S(xp))). (39)

In real life, we have a large number of investors, with different values x;, so it is
reasonable to approximate the sum by the corresponding integral. As a result,
the combined utility is equal to u = g~*([ g(S(z))dz). To price the financial
instrument, we must compare it with a simple investment X, that provides a
certain value v with guarantee. In other words, we must find the value v for

o o ([ os@nas) =o ([ a5 @nar). (40)

where S, is the decumulative distribution function corresponding to the guaranteed-
return investment v. By applying the function g(y) to both sides of the equality
(40), we conclude that

/mamMm:/mau»m. (41)

For the guaranteed investment, for every x, we have either S,(x) = 0 or
Sy(x) = 1 and thus, g(S,(z)) = S,(x) for all . So, for this investment, the

11



integral [ g(S,(z))dz is thus equal to [ S,(z)dz, ie., to the mean return of
this investment — which is exactly v. Thus,

/g(Sv(m)) dr =wv. (42)

So, according to the formula (41), the fair price v of an investment is determined
by the formula

v:/g(S(x)) dx. (43)

This is exactly the formula (6) — again, without specifying why the Wang trans-
form is the best; to justify the use of the Wang transform, we can again use
Theorems 1-4.
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