
Propitious Checkpoint Intervals to Improve System
Performance

Sarala Arunagiri ∗ John T. Daly † Patricia J. Teller∗

ABSTRACT
The large scale of current and next-generation massively
parallel processing (MPP) systems presents significant chal-
lenges related to fault tolerance. For applications that per-
form periodic checkpointing, the choice of the checkpoint
interval, the period between checkpoints, can have a sig-
nificant impact on the execution time of the application
and the number of checkpoint I/O operations performed by
the application. These two metrics determine the frequency
of checkpoint I/O operations performed by the application,
and thereby, the contribution of the checkpoint operations
to the I/O bandwidth demand made by the application. In
a computing environment where there are concurrent ap-
plications competing for access to the network and storage
resources, the I/O demand of each application is a crucial
factor in determining the throughput of the system. Thus,
in order to achieve a good overall system throughput, it is
important for the application programmer to choose a check-
point interval that balances the two opposing metrics - the
number of checkpoint I/O operations and the application ex-
ecution time. Finding the optimal checkpoint interval that
minimizes the wall clock execution time, has been a subject
of research over the last decade. In this paper, we present
a simple, elegant, and accurate analytical model of a com-
plementary performance metric - the aggregate number of
checkpoint I/O operations. We model this and present the
optimal checkpoint interval that minimizes the total number
of checkpoint I/O operations. We present extensive simu-
lation studies that validate our analytical model. Insights
provided by this model, combined with existing models for
wall clock execution time, facilitate application program-
mers in making a well informed choice of checkpoint inter-
val leading to an appropriate trade off between execution
time and number of checkpoint I/O operations. We illus-
trate the existence of such propitious checkpoint intervals
using parameters of four MPP systems, SNL’s Red Storm,
ORNL’s Jaguar, LLNL’s Blue Gene/L (BG/L), and a theo-
retical Petaflop system.
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1. INTRODUCTION
Current Massively Parallel Processing (MPP) systems typ-
ically have tens of thousands of processors that are parti-
tioned into specialized sets of components for computation,
storage, and system services [7]. Examples include the Cray
XT systems at Sandia National Laboratories and Oak Ridge
National Laboratory [3] and the IBM BlueGene/L system at
Lawrence Livermore National Laboratory [23]. Simulations
of environmental, biological, and seismic phenomena that
address problems related to key scientific and social issues
are a few examples of applications that run on these systems.
Many of these applications require a large proportion of the
MPP system, for months at a time, to achieve meaningful
results.

However, it is well know that as MPPs scale to tens of thou-
sands of nodes, reliability and availability become increas-
ingly critical. Scientists have predicted that three of the
most difficult and growing problems in future high-performance
computing (HPC) installations will be- avoiding, coping and
recovering from failures. With increase in the scale of com-
puting systems, element failures will become frequent mak-
ing it increasingly difficult for long running applications to
make forward progress in the absence of fault tolerance mech-
anisms [6].

Checkpoint restart is a common technique to provide fault
tolerance for applications running on MPP systems. Check-
pointing can be either application-directed or system-directed.
A checkpoint write operation is the process of saving the
computation state to a stable storage. Checkpoint data is
the data that is sufficient to restart the computation, in the
event of a failure. Checkpoint latency is the amount of time
required to write checkpoint data to persistent storage and
a checkpoint interval is the application execution time be-
tween two consecutive checkpoint operations. In the event of
a failure, a checkpoint read operation is performed in which
the last checkpoint data is read. In this paper we assume
that the time taken to read the checkpoint data is the same
as the time taken to write checkpoint data which is given by
the checkpoint latency. Checkpoint overhead is the increase
in the execution time of an application due to checkpoint-
ing. A checkpoint cycle is comprised of a checkpoint write
operation and the computation before the next checkpoint
write operation, assuming no failures occur between the two
checkpoint writes. The length of a checkpoint cycle is given



by the checkpoint interval plus the checkpoint latency.

In a disk-based periodic checkpointing system, selecting an
appropriate checkpoint interval is important especially since
the storage system is physically separated from the proces-
sors used for execution of the scientific application. If the
checkpoint interval is too small, the overhead created by
network and storage transfers of a large number of check-
points can have a significant impact on performance, espe-
cially when other checkpointing applications share the net-
work and storage resources. Conversely, if the checkpoint
interval is too large, the amount of work lost in the event
of a failure can increase the time to solution substantially.
Deciding upon the optimal checkpoint interval is the well
known optimal checkpoint interval problem. Most solutions
attempt to minimize total execution time (i.e., the applica-
tion time plus the checkpoint overhead) [25, 4, 20].

In this paper we focus on another performance metric, the
number of checkpoint I/O operations performed during an
application run. It is our thesis that execution time and
the number of checkpoint I/O operations are complemen-
tary metrics and both of them need to be considered in se-
lecting a checkpoint interval. Using analytical modeling, we
explore the impact of the choice of checkpoint interval on
the number of checkpoint I/O operations performed during
an application run.

1.1 Motivation and Background
The rate of growth of disk-drive performance, both in terms
of I/Os per second and sustained bandwidth, is smaller than
the rate of growth of the performance of other components in
computing systems [20]. Therefore, in order to attain good
overall performance of computing systems, it is important to
design applications bearing in mind the limitations posed by
I/O resources and to use them efficiently. There are several
scientific papers that elaborate this problem, an example of
a recent paper is [20].

I/O operations performed by an application can be segre-
gated into productive I/O and defensive I/O. Productive
I/O is the component that is performed for actual science
such as visualization dumps, whereas, defensive I/O is the
component used by fault tolerance mechanisms such as check-
point restart. In large applications, It has been observed
that about 75% of the overall I/O is defensive I/O [1]. The
demand made by checkpoint (defensive) I/O is a primary
driver of the sustainable bandwidth of high performance
filesystems as indicated by [6] and other scientific litera-
ture. Hence it is critical to manage the amount and rate
of defensive I/O performed by an application. In a recent
paper, [20], extensive results are presented showing that as
the memory capacity of the system increases so does the I/O
bandwidth required in order to perform checkpoint opera-
tions at the optimal checkpoint interval that minimizes the
execution time and thus attain minimum execution time. An
example presented in the paper is, for a system with MTBF
of 8 hours and memory capacity of 75TB, when the check-
point overhead is constrained to be less than or equal to 20%
of application solution time, there is no solution for the op-
timal checkpoint interval unless the I/O bandwidth is larger
than 29GB/sec. They define utility in a cycle as the ratio
of time spent doing useful calculations to the overall time
spent in a cycle and show that the I/O bandwidth required
to achieve a utility of 90% is higher than what is available for
present systems. Thus, while performing checkpoints at the

optimal checkpoint interval that minimizes execution time,
if we either restrict the checkpoint overhead to less than or
equal to 20% of solution time or expect a utility greater than
or equal to 90%, the I/O bandwidth required is often larger
than what is available at present.

In this paper we address this problem by suggesting that
using the checkpoint interval that minimizes execution time
may not always be the best choice. Sometimes, when we
are dealing with applications that are not time critical, it
might be better to use a checkpoint interval that leads to an
execution time that is larger than the minimum value but
reduces the demand on the I/O bandwidth. We perform
analytical modeling studies and show that as the value of
checkpoint interval increases the number of checkpoint I/O
operations decreases. We also show that for values of check-
point interval in the range 0 to M , the MTTI, there is a
single value of checkpoint interval that minimizes the num-
ber of checkpoint I/O operations. However, as stated earlier,
our thesis is that neither the checkpoint interval that mini-
mizes execution time nor the one that minimizes the number
of I/O operations might be an appropriate choice of check-
point interval. This is because application execution time
and the number of checkpoint I/O operations are opposing
factors and therefore at the value of checkpoint interval that
minimizes execution time the number of checkpoint I/O op-
erations are prohibitive and vice versa. However, our obser-
vation is that there are checkpoint intervals between these
two optimal values that result in reasonable values of both
execution times and number of checkpoint I/O operations,
although, at these checkpoint intervals both execution times
and number of checkpoint I/O operations are not at their
minimum values.

We present an example scenario in order to illustrate our
main idea. Consider a partition of Blue Gene/L (BG/L)
with 1024 nodes with 0.5GB of memory per node, an MTTI
of one year per node, and a storage bandwidth of 45GB/s.
Consider an application with a solve time, which is the time
spent on actual computation cycles towards a final solution,
of 500 hrs and a restart time, which is the time before an
application is able to resume real computational work af-
ter a failure, of 10 minutes. Given that each of the 1024
nodes executing the application checkpoints half of its avail-
able memory (i.e., 0.25GB), the amount of checkpoint data
generated by the application per checkpoint is 256GB. If
we assume that the application gets the full storage band-
width of 45GB/s, the checkpoint latency is 5.68 seconds.
Given the set of parameters, the Poisson Execution Time
Model [4] provides a way of computing the execution time
and an approximation of the optimal checkpoint interval.
Accordingly, the minimum expected execution time of this
application is 519.76 hours, corresponding to the optimal
checkpoint interval of 9.8 minutes.

In addition to the processors, checkpoint operations con-
sume several resources, for e.g., network bandwidth, file sys-
tem, storage bandwidth, etc. These resources are shared
between checkpointing (defensive) I/O and the productive
I/O of concurrently executing applications in an MPP. Con-
tention at these shared resources can inhibit the applica-
tions from attaining the optimal execution time even when
the applications are checkpointing at the optimal checkpoint
interval. To illustrate this consider the example applica-
tion running on BG/L. Now suppose that 64 such applica-
tions with similar checkpoint parameters, each executing on



a 1024 node partition of BG/L, are running concurrently
(this is possible in BG/L which has 64536 nodes). As stated
before, the optimal checkpoint interval is 9.8 minutes. The
total checkpoint data generated by the 64 applications dur-
ing each checkpoint cycle is 16384 GB; if serviced at full
bandwidth rate this takes 6.07 minutes of I/O system ser-
vice time to write. In the best case scenario the checkpoints
of the 64 applications are staggered to ensure that no two
applications attempt to perform a checkpoint operation at
the same time. This implies that for 6.07 minutes during ev-
ery checkpoint cycle, which is 9.8 minutes, the I/O system
is busy writing checkpoint data. In essence, the I/O system
is busy performing checkpoint write operations 62% of its
time.

If the communication system and the file system can handle
data at the specified rate and the other I/O requirements of
all 64 applications are small enough that the storage system
can service all of them in less than 38% of its time, and this
I/O does not ever contend with any checkpoint I/O, then
all 64 of these applications, each having a solution time of
500 hours, can be concurrently executed to completion(in a
statistical sense) , with checkpoints, in 519.76 hours - the
expected minimum execution time according to the Poisson
Execution Time Model. However, if any of these conditions
are not satisfied then the specified minimum execution time
cannot be attained. For example, if one or more of these
applications are I/O intensive and together their I/O needs
cannot be serviced by 38% of the I/O system’s time, then the
performance of such applications is bound to deteriorate. In
the absence of I/O performance isolation, the performance
of other applications that share the I/O resources with the
I/O-intensive applications is bound to deteriorate and it is
unlikely that any of them will complete their execution in
519.76 hours. The example presented was simplified for the
purpose of illustration. But even if we had partitions of
different sizes, similar concerns arise.

On encountering such a problem, at the outset it appears like
increasing the checkpoint interval would increase the check-
point cycle thereby reducing the relative time during which
the I/O resources are busy performing checkpoint write op-
erations during each checkpoint cycle. For instance, in our
illustrative example if we increase the checkpoint interval
from 9.8 minutes to 13 minutes, from the Poisson Execution
Time Model, we know that the expected execution time in-
creases to 520.16 hours, which is an increase of less than 30
minutes, and now the I/O resources are busy with check-
point writes for a little less than 50% of their time. This
looks encouraging. However, if the I/O demand of the ap-
plication, excluding the checkpoint I/O, is high enough that
it still cannot be handled in 50% of I/O resources’ time, we
consider increasing the checkpoint interval further. For ex-
ample, if we increase the checkpoint interval to 67 minutes,
the execution time increases to approximately 545 hours,
which is about 5% larger than the minimum expected exe-
cution time, whereas, the I/O resources are now busy per-
forming checkpoint writes for less than 10% of the times
during each checkpoint cycle.

Note that, in the above example, as the checkpoint inter-
val increases beyond 9.8 minutes, the execution time of the
application increases. We know that as the execution time
increases the expected number of failures increases thereby
increasing the number of checkpoint read operations. Since
I/O resources are consumed for both checkpoint read oper-

ations and checkpoint write operations, it is important to
understand how the aggregate number of checkpoint I/O
operations varies with increasing checkpoint intervals.

Contributions of this paper,

• In Section 3, we present an analytical model of aggre-
gate number of checkpoint I/O operations and show
how it varies over the range of checkpoint intervals
from 0 to M , the MTTI of the system. We show that
in this range there is one checkpoint interval that min-
imizes the number of checkpoint I/O operations, the
optimal checkpoint interval that minimizes number of
checkpoint I/O operations. We present the formula to
compute this optimal checkpoint interval in terms of
Product Log function.

• In Section 4, we present results of extensive stochastic
simulation performed to validate the analytical model.
The results show that

– The model is accurate via demonstrating that the
error is a small value.

– In reality, we can expect the values of number of
checkpoint I/O operations to have a small vari-
ance which is demonstrated by the fact that the
simulated number of checkpoint I/O operations
have a high degree of precision.

– The idealization used in our analytical modeling is
reasonable and it does not introduce large errors.

• In Section 5, we illustrate the existence of propitious
checkpoint intervals using parameters of four MPP sys-
tems, Red Storm, Jaguar, BlueGene/L, and the Petaflop
machine and a representative application.

In Sections 6 and 7 we present related work and future work,
respectively.

The work presented in this paper is based on the following
execution time model [4], formulated by John Daly.

2. THE POISSON EXECUTION TIME MODEL
(PETM)

The total wall clock time to complete the execution of an
application, the optimal checkpoint interval, and an approx-
imate optimal checkpoint interval are given by the following
equations [4]. In this paper, for the sake of convenience,
we refer to these models as The Poisson Execution Time
Model (PETM) and the ProductLog Optimal Checkpoint
Interval Model for Execution time (POCIME). Note that
in the original literature, which presents these models, the
terms PETM and POICME are not used to refer to these
models. We introduce these terms with permission from the
author of the original literature.
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Figure 1: Plots of Execution Time and Number of
Checkpoint I/O as a function of checkpoint Inter-
vals. The parameters are MTTI, M = 24 hours,
Checkpoint latency, δ = 5 minutes, and Restart
time, R = 10 minutes, and Solution time, Ts=500hrs

where,

Ts = Solution time,
τ = Checkpoint interval
δ = Checkpoint latency,
M = Mean time between interruptions (MTTI) of

the application, and
R = restart time.

3. MODELING THE NUMBER OF CHECK-
POINT I/O OPERATIONS: PRODUCTLOG
OPTIMAL CHECKPOINT INTERVAL MODEL
FOR I/O(POCIMI)

The set of I/O operations performed by checkpoint/restart
mechanism is comprised of reads and writes. In a peri-
odic checkpointing system we know that checkpoint writes
are performed periodically at every checkpoint interval and
therefore the number of checkpoint write operations is given
by the solution time of the application divided by the check-
point interval. When a failure occurs in a periodic check-
pointing system, the last checkpoint data that was written
successfully needs to be read in order to restart the applica-
tion. Therefore, the number of checkpoint read operations
is given by the expected number of failures.

Expected number of checkpoint reads =

Expected execution time

M
=

Tse
R/M (e

δ+τ
M − 1)

τ
Expected number of checkpoint writes = Ts/τ

Expected number of aggregate checkpoint I/O operations,

NI/O =
Ts

τ

h

1 + eR/M
“

e
δ+τ
M − 1

”i

(4)

For values of parameters- MTTI = 24 hours, checkpoint la-
tency = 5 minutes, and restart time = 10 minutes, solution
time = 500 hours, using the expression for the number of
checkpoint I/O operations from POCIMI and the expression
for execution time from PETM we obtain the plot shown in
Figure 1. From modeling studies in [4] we know that the exe-
cution time is a convex function of checkpoint interval and it

has a single minimum at τopt = 117 minutes. From Figure 1,
it appears like, NI/O , the aggregate number of checkpoint
I/O operations, is also a convex function of checkpoint in-
terval with a minimum value in the range 0 ≤ τ ≤ M .
The minimum in this case is 1436 minutes which is larger
than the value of τopt, 117 minutes. It is important to know
if these properties are invariant with respect to parameter
values. In the rest of this section we present mathematical
proof that the properties observed are indeed true for any
given set of parameters.

Theorem 1. The function NI/O has a single minimum
in the range 0 ≤ τ ≤ M , let us denote it by τI/O. NI/O does
not have any other stationary points in this range. τI/O is
given by,

τI/O = M
“

1 + ProductLog
“

−e−
δ+M

M + e−
R+δ+M

M

””

(5)

Proof. NI/O is given by Equation 4. We look for sta-
tionary points of NI/O w.r.t. τ , i.e., values of τ at which
the first derivative of NI/O w.r.t τ is zero.
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There is a unique positive value of τ that satisfies the equa-
tion above, let us denote it by τI/O. The ProductLog term in
Equation 6 is negative and its absolute value is less than one.
Therefore, τI/O is always less than M . We use the second
derivative test in order to determine whether the stationary
point τI/0 is a minimum, maximum, or an inflexion point.
We know that

NI/O =
Expected Execution Time

M
+

Ts

τ

=
T

M
+

Ts

τ
dNI/O

dτ
=

1

M

dT

dτ
− Ts

τ 2

d2NI/O

dτ2 =
1

M

d2T

dτ 2
+ 2

Ts

τ 3
(7)

d2T
dτ2 is known to be positive for all values of τ in the range
0 < τ ≤ M [4]. This makes the right hand side of Equation 7

and thus
d2NI/O

dτ2 positive for all τ in the range 0 < τ ≤



M . Therefore, the stationary point τI/O is a minimum with
respect to the number of I/O operations.

We now investigate the relationship between τI/O, and τopt

for any given set of checkpoint parameters.

Theorem 2. The value of checkpoint interval that mini-
mizes the number of I/O operations, τI/O is always greater
than the value of the checkpoint interval that minimizes the
expected execution time, τopt.

Proof. Recall the expressions for τopt and τI/O;

τopt = M
“

1 + ProductLog
“

−e−
δ+M

M

””

τI/O = M
“

1 + ProductLog
“

−e−
δ+M

M + e−
R+δ+M

M

””

Consider arguments to the ProductLog function in the above
equations for τopt and τI/O. They are both negative and the
absolute value of the argument in the equation for τopt is
larger than that of the equation for τI/O. Since ProductLog(−1/e) =
−1 and since ProductLog function is monotonically increas-
ing in the range (− 1

e
to 0).

|ProductLog
“

−e−
δ+M

M

”

| > |ProductLog
“

−e−
δ+M

M + e−
R+δ+M

M

”

|
=⇒ τopt < τI/O

Thus, we have established that for checkpoint intervals τ in
the range τopt ≤ τ ≤ τI/O, the number of checkpoint I/O
operations decreases with increasing checkpoint intervals as
illustrated by Figure 1.

Corollary 1. For checkpoint intervals, τ , in the range
τopt ≤ τ ≤ τI/O, the expected value of frequency of check-
point I/O operations decreases with increasing checkpoint in-
tervals.

Proof. We know from PETM that for values of check-
point intervals, τ , in the range τopt ≤ τ ≤ M , the expected
execution time increases with increase in checkpoint inter-
val. Since τI/O < M , it follows that the expected execution
time increases with increase in checkpoint interval for τ in
the range τopt ≤ τ ≤ τI/O. This information and Theorem 2
together imply that for checkpoint intervals, τ , in the range
τopt ≤ τ ≤ τI/O the expected value of frequency of check-
point I/O operations decreases with increasing checkpoint
interval.

In order to evaluate the accuracy of our analytical model,
POCIMI, conducting repeated runs of experiments on the
scale of systems we are looking into is infeasible in terms of
system availability, execution time, and effort. This leaves
us with simulation study as the only feasible alternative. We
present details of our simulation studies in Section 4. Note
that, for any given value of checkpoint interval, the mean
frequency of checkpoint I/O operations is a derived quantity
given by the expected number of checkpoint I/O operations
divided by the expected execution time . Therefore, in the
rest of this paper, we limit our discussion to the expected
number of checkpoint I/O operations.

3.1 Idealization in Analytical Modeling
Idealization is the process by which scientific models assume
facts about the phenomenon being modeled that may not be
entirely accurate. Often these assumptions are used to make
models easier to understand or solve. One of the caveats of
analytical modeling is the idealization used in order to make
the model tractable or solvable or mathematically elegant.
For example, in our analytical model, POCIMI, we made
the following simplifying assumptions -

1. We made the assumption that the values of MTTI and
checkpoint latency can be estimated accurately and
they stay the same through the run of the experiment.

2. We model the number of checkpoint read operations as
the expected execution time divided by MTTI. We use
the expression for the expected execution time that is
derived from the Poisson Execution Time Model which
assumes that when a failure occurs, the system can
restart right away and perform a checkpoint read and
resume computation from the last successful check-
point. In reality, however, there might be some repair
times involved and the system might need to wait while
repairs are conducted and proceed only after that.

3. We modeled the contribution of checkpoint write op-
erations by -

Expected number of checkpoint writes =
Ts

τ
(8)

There is an implicit assumption here that failures do
not occur during checkpoint write operations. In real-
ity, this is unlikely to be true and there is a non-zero
probability that a failure occurs during a checkpoint
write operation and therefore the write operation will
need to be performed again. In reality the contribution
of checkpoint write operations to the aggregate num-
ber of checkpoint I/O operations may include some
unsuccessful write operations as well.

Expected number of checkpoint writes =(1 + P )Ts
τ

Where P is the probability of occurrence of a failure

during a checkpoint write operation

The question is, how does idealization affect the accuracy of
our analytical model? This question is also addressed in our
simulation studies in the next section.

4. STOCHASTIC SIMULATION TO VALI-
DATE ANALYTICAL MODEL

4.1 Goals and Experimental Plan
Two main goals of our simulation studies are

1. To evaluate the accuracy of POCIMI, the analytical
model presented in Section 3. In order to achieve this
goal, for a given set of parameters we simulate appli-
cation runs for different values of checkpoint intervals
covering the range of interest, i.e., 0 to M . For each
value of checkpoint interval we simulate several runs
of the application while counting the number of check-
point I/O operations for each run. We then consider
the mean value of the number of checkpoint I/O op-
erations at each checkpoint interval and compare this
mean value to the number of checkpoint I/O opera-
tions predicted by the analytical model. We present



the difference between simulated and predicted values
of number of checkpoint I/O operations as the abso-
lute error of the analytical model. We also present the
relative error defined as the absolute error expressed
as a percentage of the predicted analytical value.

2. To evaluate the effects of idealization on the accuracy
of POCIMI. In order to achieve this goal, correspond-
ing to every application run, we run two versions of
simulations; an idealized version and a minimally ide-
alized version. The idealized version of simulation per-
forms simulation of the process including idealizations
used to derive the analytical model. In the minimally
idealized version, we relax several of these idealizations
in order to more closely reflect the reality. In order to
ensure that the difference of the outcome of these two
versions can be attributed solely to the difference in
the degree of idealization, we designed our simulation
experiment such that all values of random variables
used in the idealized version of simulation of an appli-
cation run are the same as the ones used in the corre-
sponding simulation of the minimally idealized version
of the application run. We then present the difference
in the relative errors associated with the two versions
of simulations.

4.2 Details of Simulation
We simulated the process of running an application on a
1000 node system with each node having an exponential
failure distribution. Each application run is simulated by
accounting for execution time and marching through it while
checking for failure of each node periodically and accounting
for application progress during every failure free duration of
length equal to the sum of a checkpoint interval and check-
point latency. A checkpoint write operation is accounted
for at the end of such a period. When a failure occurs, a
checkpoint read operation is recorded and restart time and
checkpoint read time are added to execution time. Failures
are generated using random numbers and poisson distribu-
tion with mean equal to the node MTTI. We performed
simulations for two sets of parameter values both of which
were picked from examples in published literature. The so-
lution time of the simulated application run was 500 hours,
restart time was 10 minutes and the checkpoint latency was
5 minutes for both sets of experiments. However, the first
experiment was for MTTI of 6 hours (360 minutes) and the
second experiment was for a value of MTTI of 24 hours (1440
minutes).

For both experiments the design variable was the checkpoint
interval and the response variable was the number of check-
point I/O operations. For the first set of experiments, our
design points were at 15 values of evenly spaced checkpoint
intervals in the range 0 to 360 minutes, {25,50,75,...,350,
375}. In the second set of experiments, the range of interest
for values of checkpoint intervals was 0 to 1440. We split
this range into three subintervals, low values, medium val-
ues, and high values and picked six data points within each
subinterval. So, the design points of our simulation were the
following 18 values of checkpoint intervals - {50,75,...,175,
650,675,...,775,1350,1375,...,1475}. For each set of experi-
ments, we conducted 5 trials. For each trial and at each
chosen checkpoint interval we collected response data from
simulation and computed the following

• The mean of the simulated number of checkpoint I/O

operations
• The 99% confidence interval of the mean
• DIstance of the 99% confidence interval from the value

of number of checkpoint I/O operations given by the
analytical model

• Absolute error
• Relative error

Absolute and relative errors are defined by,

Absolute error =# checkpoint I/O operations of POCIMI-

mean simulated # checkpoint I/O operations

Relative error =
Absolute error

# checkpoint I/O operations of POCIMI
∗ 100

Due to space constraints, we present only the results of sim-
ulation on the second set of data because it spans a larger
range of checkpoint intervals. However, we would like to
report that the results for the first set of data were very
similar to the results presented here. Subplot(a) of Figure 2
is a plot of 99% confidence interval of mean simulated num-
ber of checkpoint I/O operations and analytical values given
by POCIMI. For this plot, we picked data from one of five
trials, arbitrarily, and it happened to be Trial 3. This de-
cision was made because the lines representing simulated
mean values of all 5 trials were almost overlapping and clut-
tering the figure and therefore, for the sake of clarity, we
picked data from one trial. As can be seen from the plot,
at the scale at which the figure is presented, the line rep-
resenting the analytical model and the one representing the
simulated mean almost overlap and the 99% confidence in-
terval is really small. When we did zoom into the figure we
were able to see that there was indeed an error bar show-
ing the confidence interval. However, this plot presents the
larger picture for the range of checkpoint intervals. In or-
der to present these details to the reader, we plotted the
bar graphs of Subplot(b) and (c) of Figure 2 and Subplot(a)
and (b) of Figure 3. Although, in Subplot(a) of Figure 2 we
only used data from Trial 3, for all the bar graphs presented
in this paper we use data from all 5 trials, as a result, the
bars shown are an overlap of the bars for the 5 trials and
thus the they represent largest possible positive and nega-
tive values. Subplots(b) and (c) of Figure 2 present details
of Subplot(a) of Figure 2 which are significant but cannot
be deciphered at the scale at which the figure is presented,
i.e. the width and the distance of the error bars represent-
ing 99% confidence intervals from the line representing the
analytical value given by POCIMI. Subplots(a) and (b) of
Figure 3 are bar graphs of the absolute error and the relative
error.

4.3 Discussion of Results
• The value of absolute error lies between -2 and 4. The

relative error of the model is in the range -0.5% and
6%. This demonstrates a high degree of accuracy of
the model.

• The size of 99% confidence interval of the mean value
of simulated number of checkpoint I/O operations is
less than 7. This implies that the aggregate number
of checkpoint I/O operations from the simulation runs
have a small variance. This in turn implies that, in
reality, it is reasonable to expect the number of check-
point I/O operations to be fairly precise. This finding,
when combined with the fact that the relative error
is small, implies that one can expect the number of



checkpoint I/O operations for each application run to
be close to the value given by POCIMI.

• The distance between the narrow 99% confidence in-
terval and the value of checkpoint I/O operations pre-
dicted by the analytical model was less than 2. When
the 99% confidence interval of the mean simulated num-
ber of checkpoint I/O operations does not include the
analytical value given by POCIMI, we consider how
far the confidence interval is from it. This distance is
a pointer to the extent of inaccuracy of the model be-
cause we can with a high probability expect the error
to be at least as large as the distance of the 99% con-
fidence interval from the value given by POCIMI. For
the five trials of the simulation this value was no more
than 2.

4.4 Idealized and Minimally Idealized Ver-
sions of Simulation

With an intent of quantifying the contribution of idealiza-
tion to the error in predictive accuracy of POCIMI, we per-
formed the following experiment. Corresponding to every
run of the application at a chosen design point, i.e., value
of checkpoint interval, we ran three versions of simulations-
the base version, the idealized version, and the minimally
idealized version. The idealized and the minimally idealized
versions differ in the following ways;

1. The idealized version of simulation assumes that the
checkpoint latency is the specified constant value through-
out an application run. The minimally idealized ver-
sion assumes that the checkpoint latency is a uniformly
distributed random variable having a value centered
around and varying between + or - 5% of the parame-
ter value specified. Therefore, every time a checkpoint
operation is performed in the minimally idealized ver-
sion, a random value of checkpoint latency is picked
from this range. Using such random values of check-
point latencies is meant to account for inadequacies of
the process of estimating checkpoint latency and the
inherent variability of checkpoint latency in reality. In
reality checkpoint latencies are not precise.

2. When a node fails, the idealized version of the simula-
tor does not account for any repair times. It assumes
that the system can restart right away and perform
a checkpoint read and resume computation from the
last successful checkpoint. The minimally idealized
version, however, models the process where the sys-
tem waits for the failed node to be repaired before
performing restart. Repair time is assumed to be a
random variable having a gamma distribution with a
mean value of 60 minutes. This is based on anecdo-
tal evidence from scientists at Los Alamos National
Laboratories.

3. As a consequence of idealization number 2, every time
a node failure occurs, a checkpoint read is recorded
in the idealized version. However, in the minimally
idealized version, a checkpoint read is accounted for
only when a node failure occurs when the the system
is in working condition, i.e., no other nodes have failed
or the system is not waiting for repair.

4. In the idealized version of simulation, only checkpoint
write operations that were successfully completed are
accounted for. However, in the minimally idealized
version if a failure occurs during a checkpoint write

operation, the checkpoint write operation is accounted
for. This more closely reflects the amount of effort in-
vested in checkpoint writes because even when a check-
point write does not succeed due to a node failure,
some amount of I/O effort was invested and some amount
of I/O resources were consumed by the unsuccessful
checkpoint write operation.

In order to ensure that the idealized and the minimally ide-
alized versions differ only in the above mentioned ways, they
needed to be deterministic in all other manner. The events
that introduce randomness in the simulation process are the
failure times and repair times. For each application run, at
every chosen checkpoint interval, we first ran a base version
of simulation to generated failure times and repair times in
conformance with the probability distribution of the corre-
sponding random variable. We recorded these times and
used them as failure times and repair times in the corre-
sponding application run in the idealized and minimally ide-
alized versions of simulation. Thus although failure times
and repair times in the idealized and minimally idealized
versions are still based on random variables, they have iden-
tical values for the corresponding runs of an application.
The results presented earlier were for the minimally ideal-
ized version of simulation since it simulated conditions that
are closer to reality.

We present absolute error of POCIMI with respect to mini-
mally idealized and idealized versions of simulation in Sub-
plot(a) of Figure 4. They are close to each other and there-
fore on cannot visually discern any difference between the
two of them. Again, we present the difference in relative
error between idealized version of simulation and the mini-
mally idealized version in Subplot(b) of the same figure. We
find that the contribution to the relative error made by the
idealization used in our analytical model is within the range
-2% and +1%. This demonstrates that the idealization used
by us is not too restrictive and therefore does not affect the
accuracy of the model too much.

For completeness sake, for the trial for which we presented
the plot of mean simulated number of I/O operations in Sub-
plot(a) of Figure 2, Trial 3, we present the plot of the mean
of the simulated execution time and and the interarrival time
of checkpoint I/O operations in Subplots(c) and (d) of Fig-
ure 4, respectively. The execution time shows trends that
conform to PETM and the mean interarrival time of check-
point I/O operations increases steadily with increase in the
value of the checkpoint interval which is also as expected.

4.5 Implications of Analytical Modeling Stud-
ies of Section 3

• An insight provided by the model is that while τopt and
τI/O are both functions of δ and M , τI/O is a function
of the restart time, R, in addition. τI/O decreases with
increasing values of R.

• Corollary 1 is key to promising avenues in performance
improvement. For values of τ in the range τopt ≤ τ ≤
τI/O, both the expected value of frequency of check-
point I/O operations and the expected value of the
number of checkpoint I/O operations decrease with
increase in checkpoint interval, enabling a tradeoff be-
tween execution time and number of checkpoint I/O
operations in order to achieve better performance.

• For running time-critical applications for which hav-



50  100 175 725 775 850 13751425 1500
0

100

200

300

400

500

600

700

Checkpoint Interval in Minutes

Nu
m

be
r o

f C
he

ck
po

int
 I/

O 
Op

er
at

ion
s

Subplot(a)

 

 

/~/ /~/

99% CI of Simulated Number
Analytical Model

50  100 175 725 775 850 13751425 1500
0

2

4

6

Checkpoint Interval in Minutes

Si
ze

 o
f 9

9%
 C

I

Subplot(b)

// //

50  100 175 725 775 850 13751425 1500
0

0.5

1

1.5

Checkpoint Interval in MinutesDi
sta

nc
e 

of
 C

I f
ro

m
 A

na
lyt

ica
l M

od
el

Subplot(c)

// //

Figure 2: Subplot(a):Plot of Number of Checkpoint I/O as a function of checkpoint Intervals. Subplot(b): Size
of the 99% confidence interval(CI) of the mean simulated number of checkpoint I/O operations. Subplot(c):
Distance of 99% CI from the value indicated by Analytical model POCIMI. Both these bar graphs show the
maximum values of the five trials.
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Figure 3: Subplot(a): Absolute error of POCIMI Subplot(b): Relative error. These cover maximum and
minimum values of the five trials.
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Figure 4: Subplot(a): Shows absolute errors of POCIMI wrt the idealized and the minimally idealized versions
of simulations. Subplot(b): Difference between relative errors of POCIMI wrt the idealized and the minimally
idealized version of simulation. Subplot(c): Execution time versus checkpoint intervals. Subplot(d): Mean
Interarrival time of checkpoint operations in hours.



ing a minimum wall clock execution time is impor-
tant, using τopt as a checkpoint interval makes perfect
sense. However, for all other applications it would be
of interest to find out whether, as explained in the
illustration in Section 1.1, it is possible to choose a
value of checkpoint interval that is larger than the τopt

such that the corresponding value of execution time
is marginally larger than the minimum execution time
while the corresponding number of checkpoint I/O op-
erations is drastically smaller than its value at τopt.

• If we explore clues from visual inspection of Figure 1 we
observe that for checkpoint intervals greater than and
in the vicinity of τopt, the execution time curve rises
slowly while the curve of the number of checkpoint I/O
operations falls steeply. This seems to indicate that,
probably, in this region, there are checkpoint intervals
such that the number of checkpoint I/O operations cor-
responding to these are drastically smaller than values
corresponding to τopt while the execution times are
marginally larger than the minimum execution time.
This, certainly, seems to be true for the example used
in Section 1.1 in which increasing the checkpoint in-
terval from τopt, a value of 9.8 minutes, to 67 minutes,
lead to an increase of the execution time by a mere
5% of its minimum value, whereas, the number of ag-
gregate checkpoint operations reduces steeply from a
value of 3121 at τopt to a value of 507 at 67 minutes.
This is an 83.78% reduction in the number of check-
point I/O operations. Whether or not this observation
holds good in general i.e., for all values of parameters,
is not clear unless we have a rigorous mathematical
analysis involving gradients of execution time function
and the number of checkpoint I/O operation function
in the region of interest. This seems to be a non-trivial
mathematical exercise and it could be prospective fu-
ture work. However, in the next section, we investigate
this idea for specific cases using parameters from four
MPP systems.

5. INVESTIGATION OF THE EXTENT OF
PROMISE OF FEW CHECKPOINT IN-
TERVALS

In this section, we present a summary of studies performed
by us to evaluate the impact of increasing checkpoint in-
tervals on the number of checkpoint I/O operations. Using
POCIME and the model presented in this paper for the num-
ber of checkpoint I/O operations, POCIMI, we model the
performance of four MPP architectures- SNL’s Red Storm,
ORNL’s Jaguar, LLNL’s Blue Gene/L (BG/L), and a the-
oretical Petaflop system, using parameters presented in Ta-
ble 1. We investigate the extent of reduction of number
of checkpoint I/O operations for a couple of checkpoint in-
tervals as compared to the number of checkpoint I/O op-
erations at τopt. We considered checkpoint intervals that
result in an expected execution of 105% of Emin and 110%
of Ts, denoted by τ1.05Emin and τ1.1Ts , respectively. These
are based on anecdotal evidence of what is considered a rea-
sonable checkpoint overhead. Note that τ1.1Ts is meaningful
only if Emin < 1.1 ∗ Ts. A representative application which
has a solution time, Ts = 500 hours and a restart time,
R = 10 minutes is considered for all experiments. For each
MPP system, assume

• the application runs on all nodes of the system,

• the MTTI of each node is 5 years, and
• the application checkpoints half of each processor’s

memory during every checkpoint cycle.

This set of assumptions is labeled Standard. We then con-
sider three other variations of the standard assumptions.
The first variation assumes that the application checkpoints
25% of its memory instead of 50%. Then we assume that the
MTTI of each node is 2.5 years instead of 5 years. Finally,
we assume that the application runs on 1/8th of the nodes
of each system instead of all the nodes. While computing
checkpoint latency in this case, the partition is considered to
have 1/8th of the storage bandwidth available to it. These
assumptions cover a few common cases.

For the sixteen cases discussed earlier the impact of increas-
ing the checkpoint interval from τopt to τ1.05Emin on the
number of checkpoint I/O operations, is presented in Ta-
ble 2. For each of the four systems considered the case
which has the largest decrease in the number of checkpoint
I/O operations is shown in bold. The reduction in the num-
ber of checkpoint I/O operations was in the range of 10.25%
to 61.07%. However, for all cases considered in the table
we found that the minimum execution time was larger than
1.1Ts so τ1.1Ts was not relevant. Note that for the four ma-
chines when a partition comprising of 1/8th of the total num-
ber of nodes was considered, for calculating checkpoint la-
tency we assumed that only 1/8th of the storage bandwidth
was available to the partition. Another possibility is to as-
sume that the entire storage bandwidth is available to the
smaller partition and we consider such scenarios next. With
the exception of Blue Gene/L, for all other machines, the
minimum achievable execution time was larger than 1.1Ts

and therefore we were able to explore the number of check-
point operations at τ1.1Ts Table 3 summarizes the results. In
comparison to the number of checkpoint I/O operations at
τopt, the corresponding numbers decrease and the percent-
age decrease is in the range 62% to 79% and 55% to 82%,
for τ1.05Emin and τ1.1Ts , respectively. These results provide
pointers to potential targets when an application program-
mer deems it appropriate to use checkpoint intervals larger
than τopt.

We envisage that there are several situations in high per-
formance computing environments executing checkpointing
applications where it could potentially be beneficial to use
such checkpoint intervals. Some examples are -

1. When, as suggested by [11], an overlay network is used
to increase effective I/O bandwidth via latency hiding
mechanism, this increased effective bandwidth is not
a sustainable one. Bursts of I/O can be handled at
this increased rate only if they arrive at a rate that is
less than a certain threshold value, depending on the
amount of I/O data being handled. For a periodically
checkpointing application running on a system with
overlay networks, if using a checkpoint interval of τopt

leads to checkpoint writes at a rate that is more than
the threshold value for the overlay network then one
needs to use a larger value of checkpoint interval.

2. When more than one checkpointing applications are
executing concurrently on a large MPP system sharing
I/O resources, if the performance of a high priority
application is deteriorating due to the large volume
of checkpoint I/O of a low priority application then it



Table 1: Parameter values for the studied MPPs
Parameter Red Storm Blue Gene/L Jaguar Petaflop
nmax × cores 12, 960 × 2 65, 536 × 2 11, 590 × 2 50, 000 × 2

dmax 1GB 0.25GB 2.0GB 2.5GB
Mdev 5 years 5 years 5 years 5 years
βs 50GB/s 45GB/s 45GB/s 500GB/s

Table 2: Decrease in the number of checkpoint I/O operations of the representative application at τ1.05Emin

MPP Systems Conditions

No of
Checkpoint
Operations
corresponding
to τopt

No of
Checkpoint
Operations
corresponding
to τ1.05Emin

% decrease in
the number of
checkpoint I/O
operations

Red Storm

Standard 962 587 38.94

25% of memory checkpointed 1248 669 46.35

Size of partition is 1/8th of nmax 280 109 61.04

MTTI of a node is 2.5years 1569 1091 30.48

Blue Gene/L

Standard 3407 2907 14.68

25% of memory checkpointed 3660 2773 24.24

Size of partition is 1/8th of nmax 631 380 39.42

MTTI of a node is 2.5years 6212 5571 10.25

Jaguar

Standard 712 482 32.53

25% of memory checkpointed 895 537 40.02

Size of partition is 1/8th of nmax 194 86 55.63

MTTI of a node is 2.5years 1215 924 23.94

Petaflop

Standard 2697 2100 22.35

25% of memory checkpointed 3166 2195 32.22

Size of partition is 1/8th of nmax 615 324 47.22

MTTI of a node is 2.5years 5568 4852 12.86

might be a good idea to try and increase the checkpoint
interval of the low priority application. This situation
and the next one might need a supervisory view of the
whole system which may not always be available.

3. When there are more than one checkpointing appli-
cations concurrently executing on a large MPP sys-
tem, it is desirable to have the full I/O bandwidth
of the system available to every application’s check-
point write data. This implies that we need to schedule
the checkpoint write operations of these applications
in such a way that no two of them collide. For periodic
checkpointing applications, theoretically, there are al-
gorithms that could be used to help achieve this. How-
ever, while using the algorithm, in case we encounter a
situation wherein it is infeasible to checkpoint all the
applications at their optimal checkpoint intervals, then
it is useful to explore increased checkpoint intervals for
some of these applications.

4. Combination of any of the above mentioned situations.

6. BACKGROUND AND RELATED WORK
There is a substantial body of literature regarding the op-
timal checkpoint problem and several models of optimal
checkpoint intervals have been proposed. Young proposed a
first-order model that defines the optimal checkpoint inter-
val in terms of checkpoint overhead and mean time to inter-
ruption (MTTI). Young’s model does not consider failures

during checkpointing and recovery [25]. However, POCIME,
which is an extension of Young’s model to a higher-order
approximation, does [4]. In addition to considering check-
point overhead and MTTI, the model discussed in [21] in-
cludes sustainable I/O bandwidth as a parameter and uses
Markov processes to model the optimal checkpoint interval.
The model described in [15] uses useful work, i.e., computa-
tion that contributes to job completion, to measure system
performance. The authors claim that Markov models are
not sufficient to model useful work and propose the use of
Stochastic Activity Networks (SANs) to model coordinated
checkpointing for large-scale systems. Their model considers
synchronization overhead, failures during checkpointing and
recovery, and correlated failures. This model also defines the
optimal number of processors that maximize the amount of
total useful work. Vaidya models the checkpointing over-
head of a uniprocess application. This model also considers
failures during checkpointing and recovery [24]. To evaluate
the performance and scalability of coordinated checkpoint-
ing in future large scale systems, [5] simulates checkpointing
on several configurations of a hypothetical Petaflop system.
Their simulations consider the node as the unit of failure
and assume that the probability of node failure is indepen-
dent of its size, which is overly optimistic. [8] is yet another
paper on optimal checkpoint interval.

Checkpointing for computer systems has been a major area



Table 3: In each of the four MPP systems, consider a partition which is an eighth of the maximum number
of nodes in the system and assume that the full storage bandwidth of the system is available to this partition.
Decrease in the number of checkpoint I/O operations at τ1.05Emin and τ1.1Ts are presented.

MPP Systems Number of
nodes

Number of
Checkpoint
I/O at τopt

Number of
Checkpoint
I/O at
τ1.05Emin

% decrease
in the
number of
checkpoint
I/O
operations
at τ1.05Emin

Number of
Checkpoint
I/O at τ1.1Ts

% decrease
in the
number of
checkpoint
I/O
operations
at τ1.1Ts

Red Storm 1620 741 151 79 130 82

Blue Gene/L 8192 1498 557 62 NA NA

Jaguar 1448 504 123 75 115 77

Petaflop 6250 1540 474 69 685 55

of research over the past few decades. There have been a
number of studies on checkpointing based on certain failure
characteristics [17], including Poisson distributions. Old-
field el.al., [12] present studies modeling the impact of check-
points on next-generation systems. Tantawi and Ruschitzka [22]
developed a theoretical framework for performance analy-
sis of checkpointing schemes. In addition to considering
arbitrary failure distributions, they present the concept of
an equicost checkpointing strategy, which varies the check-
point interval according to a balance between the check-
pointing cost and the likelihood of failure. Application-
initiated checkpointing is the dominant approach for most
large-scale parallel systems. Agarwal [2] developed application-
initiated checkpointing schemes for BG/L.

Yet another related area of research is failure distributions
of large scale systems. There has been a lot of research con-
ducted in trying to determine failure distributions of sys-
tems. Failure events in large-scale commodity clusters as
well as the BG/L prototype have been shown to be nei-
ther independent, identically distributed, Poisson, nor un-
predictable [10, 14]. [16] presents a study on system per-
formance in the presence of real failure distributions and
concludes that Poisson failure distributions are unrealistic.
Similarly, a recent study by Sahoo [19] analyzing the failure
data from a large scale cluster environment and its impact
on job scheduling, reports that failures tend to be clustered
around a few sets of nodes, rather than following a particular
distribution. In 2004 there was a study on the impact of re-
alistic large scale cluster failure distributions on checkpoint-
ing [14]. Oliner et. al.,[13] profess that a realistic failure
model for large-scale systems should admit the possibility
of critical event prediction. They also state that the idea of
using event prediction for pro-active system management is
a direction worth exploring [14, 18].

Recently, there has been a lot of research towards find-
ing alternatives for disk-based periodic checkpointing tech-
niques [13, 9] and there have been some promising results.
However, until these new techniques reach a level of matu-
rity, disk-based periodic checkpointing technique will con-
tinue to be the reliable and time-tested method of fault
tolerance [20]. Besides, a lot of important legacy scientific
applications use periodic checkpointing and therefore issues
related to periodic checkpointing still need to be addressed.

Note that PETM and POCIME do not make any assump-
tions on the failure distribution of the system for its entire
lifetime. However it assumes an exponential failure dis-
tribution only for the duration of the application run,
which might be a few days, weeks, or months. Note that this
is drastically different from assuming an exponential failure
distribution for the life of the system. This model offers
the application programmer the flexibility to use whatever
means is deemed right for the system, to determine the value
of MTTI, M , at the beginning of the application run. Given
this value of M , the model then assumes that during the
application run the failure distribution of the system is ex-
ponential. This makes the model mathematically amenable
and elegant and useful. The assumption of exponential fail-
ure distribution for the duration of the application run is
validated by the observation that a plot of the inter-arrival
times of 2050 single node unscheduled interrupts, gathered
on two different platforms from LANL over a period of a
year during January 2003 to December 2003 fits a Weibull
distribution with shape factor 0.91/0.97. Since an exponen-
tial distribution is equivalent to a weibull distribution with
a shape factor 1.0, Exponential distribution is a pretty close
approximation to the real failure distribution. Due to space
constraints, we do not present the plot in this paper.

7. CONCLUSION AND FUTURE WORK
We believe that the modeling work presented in this paper,
POCIMI, is complementary to PETM and POCIME, the
modeling work for execution time. Together they provide
pointers and insights for making an informed tradeoff be-
tween expected execution time and the number of checkpoint
I/O operations. This facilitates an application programmer
to chose a value of the checkpoint interval, a tunable pa-
rameter, balancing the frequency at which the application
performs checkpoint I/O operations as well as its expected
execution time. To the best of our knowledge, at this time
there is no quantitative guidance to facilitate such a trade
off. Both models do not factor-in the deterioration caused
by resource contention. However, they model the general
case which can be used as a guidance for specific cases.

In an MPP system where the runtime has a system-wide
view of all the applications and has control over the check-
point parameters of concurrent applications, one could tune
checkpoint intervals to provide performance differentiation
and performance isolation of concurrent applications. For



example, the application with highest priority can be run
with a checkpoint interval that is optimal w.r.t execution
time and applications with lowest priority can be set to run
with a checkpoint interval that is closer to the value of op-
timal w.r.t total number of checkpoint I/O operations. The
other applications can perhaps use checkpoint intervals that
are between their two optimal values. For periodic check-
pointing applications, both the expected wall clock execu-
tion time and the expected number of checkpoint I/O op-
erations are important metrics to be considered in order to
make decisions about checkpoint intervals. An important
future work could be to provide specific guidelines about
how to coordinate checkpoint operations of concurrent ap-
plications in order to achieve high system throughput.
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