Stochastic Volatility Models and Financial Risk
Measures: Towards New Justifications

Hung T. Nguyen'?, Vladik Kreinovich3?
and Songsak Sriboonchitta?,

'New Mexico State University
Las Cruces, NM 88003, USA, hunguyen@nmsu.edu
2Faculty of Economics, Chiang Mai University
Chiang Mai 50200 Thailand, songsak@econ.cmu.ac.th
3University of Texas at El Paso
El Paso, TX 79968, USA, vladik@utep.edu

Abstract

We provide theoretical justifications for the empirical successes of (1)
the asymmetric heteroskedasticity models of stochastic volatility in math-
ematical finance and (2) Wang’s distorted probability risk measures in
actuarial and investment sciences, using a unified framework of symmetry
groups.
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1 Introduction

Stochastic volatility and risk management: important economic prob-
lems. Time-varying stochastic volatility is an important feature of financial
markets, a feature that drastically affects the outcomes of different investments.
It is therefore important to take stochastic volatility into account in financial
economics and mathematical finance.

There are two related aspects of financial economics and mathematical fi-
nance in which stochastic volatility must be taken into account.

First, we must be able to predict stochastic volatility based on the past
behavior of the corresponding financial instruments (and of the markets in gen-
eral). Several stochastic volatility models have been developed for such predic-
tion; see, e.g., [6, 11, 14, 28]. These models take into account the time-varying
character of the corresponding stochastic processes and are therefore called het-
eroskedasticity models.



Second, we must be able to gauge the corresponding risk associated with
different financial instruments. Several risk measures have been proposed in
actuarial and investment sciences to describe and manage this risk. Among
the most widely used measures are “distorted probability” measures developed
originally by S. S. Wang.

Many existing stochastic volatility models and risk measures are semi-
heuristic: practical need for justification. Many existing models and
measures are semi-empirical, semi-heuristic. The semi-empirical nature of these
models and measures means that they have been selected largely based on the
past behavior of the financial markets. However, the financial markets change.
It is therefore necessary to decide which features of these models and measures
are still applicable in the changed markets and which need to be modified. To
be able to make this decision, it is necessary to analyze:

e which features of the existing models and measures follow from the general
economic principles; these features can be clearly applied to the changing
markets as well, and

e which features only follow from the past data; these features may need to
be modified when the financial markets undergo a drastic change.

In other words, to decide which features of the existing models and measures are
applicable in the changing markets, we must try to find theoretical justifications
for these models and measures.

What we do in this paper. In this paper, we provide theoretical justifi-
cations of heteroskedasticity models of stochastic volatility and of Wang’s risk
measures. In our justification, we use the idea of symmetry, an idea that appears
very naturally in the context of economics.

To exploit this idea, we use the technique of symmetry groups, a mathe-
matical techniques which was developed to study symmetries. To be able to
apply symmetry groups to economics, we also use notions from decision theory,
and then use known mathematical techniques to solve the resulting functional
equations.

The paper consists of two main parts. In the first part, we develop symmetry-
based justification of stochastic volatility models. In the second part, we de-
scribe a symmetry-based justification of the related risk measures.

Most of our results are new; other results further develop ideas outlined in
our previous publications [19, 27].

This paper may also be of interest to physicists. While the main purpose
of this paper is to provide rationale for some main successful proposed stochastic
volatility models and risk measure models in economics, it could be interesting
for physicists as well, as the technique of symmetry group that we used is quite
familiar to them; see, e.g., [8].



Starting from the quark theory which was originally formulated in terms
of an appropriate symmetry groups, symmetry groups have been one of the
main research tools of modern physics. The corresponding ideas of invariance
are behind Einstein’s special and general relativity theory, symmetries distin-
guish liquids from gases from solids, symmetries and supersymmetries abound
in quantum physics.

The successes of this idea in physics has led to many successful applications
of the invariance idea in other disciplines, including engineering and computer
science; see, e.g., [22]. In this paper, we show that similar techniques can be also
very useful in econometrics: namely, they help to justify (and thus, to better
understand) many successful heuristical methods.

Because of our desire to attract the attention of physicists, in each part, we
first describe the corresponding models before explaining how we can justify
these models.

2 Part 1: Asymmetric Heteroskedasticity Mod-
els of Stochastic Volatility

Let us start with a brief introduction to the existing models for describing
stochastic volatility.

One of the main goals of econometrics. One of the main objectives of

econometrics is to use the known values x;, x;_1, ;_o, ..., of different economic
characteristics x at different moments of time ¢, ¢t — 1, ¢ — 2, ..., to predict the
future values xyy1, Z¢yo, ..., of these characteristics.

First approximation: engineering models. A similar problem of analyz-
ing time series x; exists in engineering applications. So, historically the first
econometric models simply used the formulas developed in engineering applica-
tions.

In engineering, most processes are stationary. It is known that stationary
processes x; can be well-described by auto-regression (AR) models:

q

Te=ao+ Y ai- T+, (1)
i=1

where €; are independent normally distributed random variables with 0 means

and standard deviation o —i.e., &4 = 0 - z¢, where z; is normally distributed with

0 means and standard deviation 1. The more terms we take in the AR model,

i.e., the larger the value ¢, the better the corresponding AR(q) model describes

the stationary process.

Heteroskedisticity (non-stationarity): a specific feature of economet-
ric time series. In contrast to engineering time series, economic time series
are usually non-stationary (heteroskedastic).



Specifically, in the economic time series, the empirical standard deviation o
of the remainder term e; depends on time. In other words, instead of a single
value o, at different moments of time ¢, we have different values o;. Thus, to
appropriately describe the corresponding time series, we also need to know how
this value o; changes with time.

Second approximation: models that take heteroskedisticity into ac-
count. The heteroskedisticity phenomenon was first taken into account by
Engle [7] who proposed a linear regression model of the dependence of o; on the
previous deviations:

q
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This model is known as the Autoregression Conditional Heteroskedacity model,
or ARCH(q), for short.

An even more accurate Generalized Autoregression Conditional Het-
eroskedacity model GARCH(p,q) was proposed in [3]. In this model, the new
value o? of the variance is determined not only by the previous values of the
squared differences, but also by the previous values of the variance:

q p
af:ao+2ai~€t2_i+2ﬂi-ot2_i. (3)
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Several modifications of these models have been proposed. For example,
Zakoian [33] proposed to use regression to predict the standard deviation instead
of the variance:

q p
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Nelson [21] proposed to take into account that the values of the variance
must always be non-negative — while in most existing autoregression models,
it is potentially possible to get negative predictions for o2. To avoid negative

predictions, Nelson considers the regression for log o? instead of for oy:

q p
logo} = ao+ Y ai-le—| + Y fBi-logoi_;. (5)

i=1 i=1

Asymmetry: an additional feature of economic time series that
needs to be taken into account. The above models such as ARCH(q)
and GARCH(p,q) models are still not always fully adequate in describing the
actual econometric time series. One of the main reasons for this fact is that
these models do not take into account a clear asymmetry between the effects of
positive shocks €; > 0 and negative shocks e; < 0.

It is therefore desirable to modify the ARCH(q) and GARCH(p,q) models
by taking asymmetry into account.



Models that take asymmetry into account. Several modifications of the
ARCH(q) and GARCH(p,q) models have been proposed to take asymmetry into
account.

For example, Glosten et al. [13] proposed the following modification of the
GARCH(p,q) model:
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where I(¢) =0 fire > 0 and I(e) =1 for € < 0.
Similar modifications were proposed by Zakoian [33] and Nelson [21] for their
models. The asymmetric version of Zakoian’s model has the form

q P
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where:
e ct =cfore >0and et =0 for e <0;
e c  =cfore<0ande =0fore>0.

The asymmetric version of Nelson’s model has the form

q P
logo} = ag + Z(Oéi lev—il + i ee—i) + Zﬂi -logo?_;. (8)
i=1 i=1

Asymmetric heteroskedactic models: a general description. All the
above formulas can be viewed as particular cases of the following general scheme:

oy =f (ao +> i filem) + Y B 'gi(Ut—i)> : (9)

i=1 i=1
For example:

e ARCH(q) and GARCH(p,q) correspond to using f(z) = vz and f;(x) =

gi(z) = 2.

e Glosten’s formula corresponds to using fi(z) = (1 + (vi/c) - I(z)) - 2%

e A symmetric version of the Nelson’s formula corresponds to f(z) =

vexp(z), fi(r) = |x|, and g;(z) = log #?; the general (asymmetric) version
of this formula corresponds to f;(z) = |x| + (vi/) - .



Problem: the existing asymmetric modifications are very heuristic.
The main problem with the existing asymmetric models is that they are very ad
hoc. These model are obtained by simply replacing a symmetric expression &2
or |e| by an asymmetric one, without explaining why these specific asymmetric
expressions have been selected.

From the purely mathematical viewpoint, one can envision many other dif-
ferent functions f(z), f;(x), and g;(x). The asymmetric models — corresponding
to very specific selections of these functions — have worked well in describing the
past econometric time series. To find out to what extent these models can be
applicable to other situations, when the financial markets may have changed, it
is desirable to analyze which features of these models follows from the general
principles.

Such an analysis is proposed in this section. As a result, we justify the
specific form of the dependence on €,_; by the scale-invariance requirement.

Scale invariance: a natural feature of econometric descriptions. The
numerical value of each economic variable depends on the choice of a measuring
unit. If we choose another measuring unit, the situation remains the same, but
the numerical values change.

For example, for a US investor, it is natural to describe all the prices in
dollars. For a European investor, it is equally natural to translate all the prices
into Euros. If we replace the original unit with a new unit which is A times
smaller, then all numerical values need to be multiplied by A.

The models should not change if we simply change the units. When we
replace the original values ¢;_; by new numerical values €;_; = X\ - g;_; of the
same quantity, then each corresponding term f;(g;) is replaced with a new term
fi(eh) = fi(A-&;). Thus, the overall contribution of all these terms changes from

the original value I = Z a; - fi(et—;) to the new value I’ = Z a; - fi(A-er—y).

It is reasonable to requlre that the relative quantlty of dlfferent contributions

does not change, i.e., that if two different sets x(l) (1) and Z(-Q) def ti)i lead

to the same Contrlbutlons IW = 1) then after re—scahng7 they should also
lead to the same contributions I’. Thus, we arrive at the following condition:

Scale invariance: precise formulation of the requirement. Let the val-

ues o, ..., 04 be fixed. Then, the functions fi(x),..., fp(x) should satisfy the
(1 ) (1) (2) (2)

followmg condition: if for two sets x; .,z and zy ,Tq  , we have
g 1 g 2
Zai-fi(arﬁ )):Zai'fi(xi D, (10)
i=1 i=1

then for every A > 0, we must have
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Analysis of the problem: from scale invariance to the functional equa-
tion. For simplicity, let us start with the case when the values ac( ) are very

close to 1:( ) , i.e., when x(2) = :z:(l) + k; - h for some constants k; and for a very
small real number h. For small h we have

FiaM ki) = fiaD) + fl@) kb O(R?). (12)

Substituting the expression (12) into the formula (10), we conclude that
Zaz H(27) ki - h+ O(h?) = (13)
Dividing both sides by h, we get

Zal ((2;)) ki + O(h) = (14)

Similarly, the condition (11) leads to
Zal ‘N2 ki + O(h) = 0. (15)

In general, the condition (14) lead to (15). In the limit h — 0, we therefore
conclude that for every vector k = (k1,..., k), if

q

3 ki o @) =0, (16)

then

D ki fei fi ) =0, (17)

Functional equation: geometric analysis. The sum (16) is a scalar (dot)

product between the vector k& and the vector a with components a; - f/ (xgl)).

Similarly, the sum (17) is a scalar (dot) product between the vector k£ and the
vector b with components a; - fI(\ - xgl)). Thus, the above implication means
that the vector b is orthogonal to every vector k& which is orthogonal to a, i.e.,
to all vectors k from the hyperplane consisting of all the vectors orthogonal to
a.

It is easy to see geometrically that the only vectors which are orthogonal to
the hyperplane are vectors collinear with a. Thus, we conclude that b = § - a for
some constant 4, i.e., that

S -2) =6 ap i), (18)
Dividing both sides by «;, we conclude that
Hv-a)y =6 fia). (19)



Analysis of dependence and the resulting new differential equation.
In principle, § depends on A and on values zV

; /- From the equation (19) corre-
sponding to ¢ = 1, we see that

5 i)

20
flM) 20

Thus, 6 only depends on xgl) and does not depend on any other value xEl).

Similarly, by considering the case ¢ = 2, we conclude that § can depend only on
zgl) and thus, does not depend on :ngl) either. Thus, § only depends on A, i.e.,

the condition (19) takes the form
Sy =80 - fie). (21)

From the solution to the new differential equation to the solution
of our original problem. It is known that every continuous function f/(x)
satisfying the equation (19) has the following form:

o fl(z)= Cj -x% for x > 0, and

o« [@)=CF Ja

% for x < 0,

for some values O and a;; see, e.g., [1], Section 3.1.1, or [22]. (This result
was first proven in [24].) For differentiable functions, the easiest way to prove
this result is to differentiate both sides of (19) by A, set A = 1, and solve the
resulting differential equation.

For the corresponding functions, the condition (21) is satisfied with §(\) =
A% . Since the function §(A) is the same for all ¢, the value a; is therefore also
the same for all i: a3 = ... = a4. Let us denote the joint value of all these a;
by a.

Thus, all the derivatives have f/(z) are proportional to x®. Hence, the
original functions are proportional

e cither to 2t (for a # —1)
e or to log(x) (when a = —1).

The additive integration constant can be absorbed into the additive constant
ag, and the multiplicative constants can be absorbed into a factor «;.

Thus, without losing generality, we can conclude that in the scale invariant
case, either f;(x) =% - (1+b-1(x)), or fi(xz) =log(|z|).

Conclusion. We have proven that the natural scale-invariance condition im-
plies that each function f;(x) has either the form log(z), or the form f;(z) =
¢ - (14+b-I(x)). This conclusion covers all the functions which are efficiently
used to describe asymmetric heteroskedasticity:

e the function fi(x) =1+ (vi/a;) - I(z)) - 22 used in Glosten’s model;



e the function f;(z) =z" + (o~ /at) -2~ used in Zakoian’s model; and
e the function f;(x) = (1 + (y;/c) - sign(x)) - |z| used in Nelson’s model.

It is worth mentioning that this result also covers the functions g;(x) = 22 and
g:i(z) = log(x?) = 2log(z) used to describe the dependence on o;_;.

Thus, the exact form of the dependence on ;_; has indeed been justified by
the natural scale invariance requirement — as well as the dependence on o;_;.

Comment. It is worth mentioning that scale-invariance of the econometric for-
mulas describing heteroskedasticity was noticed and actively used in [5]. How-
ever, our approaches are somewhat different:

e In [5], the econometric formulas were taken as given, and scale invariance
was used to analyze heteroskedasticity tests.

e In contrast, we use scale invariance to derive the econometric formulas.

3 Part 2: Wang Transform Operators in Finan-
cial Risk Analysis

Pricing under risk: a problem. The price of most financial instruments
unpredictably (randomly) fluctuates. As a result of these unpredictable fluctua-
tions, investing in a financial instrument is risky: there is a always a possibility
that the price of this particular instrument will go down, and as a result, the
investors will suffer losses.

In many practical situations, based on the prior performance of a financial
instrument (and on the additional information that we may have), we can get
a pretty good understanding of the probabilities of different future prices. In
other words, we usually know the probability distribution of the future price
X. This distribution can be described, e.g., by describing the probabilities that
the future price does not go below a certain threshold, i.e., by the decumulative
distribution function

S(x) ef Prob(X > ). (22)
Alternatively, we can use the cumulative distribution function

F(z) % Prob(X < z) = 1— S(x). (23)
Once we know this probability distribution, what is a reasonable price of
this financial instrument?

First approximation to pricing under risk: a straightforward appli-
cation of the traditional probability approach. A seemingly natural ap-
proach to pricing can be obtained from a straightforward application of the
traditional probability approach; see, e.g., [26]. If we invest in similar financial



instruments, with a similar probability distribution, again and again, then on
average, due to the Law of Large Numbers, our average gain per investment

X, +...+X, (24
n
will be equal to the mean (expected) value E[X] of the corresponding random
variable X. Thus, from the traditional probability approach, it seems reasonable
to use this mean value as the fair price of the financial instrument.

In terms of the decumulative distribution function S(z), this mean E[X] has
the form

E[X]:/LOOProb(X>ac)olx—i—L:/LOOS(:v)alac—i—L7 (25)

where L is the smallest possible price. Usually, we take L = 0, so the formula
(25) takes the simplified form

E[X] = /000 Prob(X > z)dx = /000 S(z) dx. (26)

Comment. Strictly speaking, according to decision theory [9, 10, 16, 20, 25], we
must take the mean not of the future price itself, but of the utility corresponding
to the future price. This difference is important because people’s utilities are
non-linearly related to their gains and losses. So, strictly speaking, instead of the
distribution of the prices, we should start with the corresponding distribution
of utilities. For simplicity, in the future, we will simply talk about future prices
(gains, etc.), but all our considerations are applicable to utilities as well.

Need to go beyond the first approximation. According to the above
straightforward application of the traditional probability approach, the fair price
of the financial instrument should be equal to the expected value of the future
price. In real life, however, most people prefer to get, e.g., a $1 to a situation
in which, with probability 1/2, we get $2 and with probability 1/2, we get 0.

One may claim that this preference is caused by the non-linearity of the
corresponding utility function, but the same preference can be observed if we
use utils (units of utility) instead of dollars:

e On the one hand, theoretically, getting 1 util with certainty should be
equivalent to getting 2 units with probability 1/2 and 0 utils with proba-
bility 1/2.

e However, in practice, in this choice, most people prefer 1 util with cer-
tainty.

In other words, risk decreases the fair price of a financial instrument: the
more risk, the smaller the price.

For insurance instruments, a similar effect of risk moves the price in the
opposite direction: we need to pay extra insurance premium for risk: the larger
the risk, the larger this premium and thus, the larger the resulting price.

How can we describe the resulting fair pricing under risk?

10



Wang transform: an efficient empirical method for pricing under risk.
In his papers [30, 31], S. S. Wang proposed to replace the expression (26) with
a modified formula

/0 " 4(S(a)) da, (27)

where the Wang transform g(y) is defined by the formula

9(y) = (27 (y) + ), (28)

in which « is a constant, and ®(y) is a cumulative distribution function of some
appropriate distribution — e.g., of the standard normal distribution (with 0 mean
and standard deviation 1).

For financial instruments, when the presence of risk decreases the price, we
take a < 0. For estimating insurance premiums, when the presence of risk
increases the price, we should take oo > 0.

This method turned out to be highly efficient in practice. As a result, this
method (and its modifications and extensions) is now one of the main methods
for pricing under risk; see, e.g., [12].

Difference between subjective and objective probabilities. A partial
explanation of the Wang’s formula comes from the difference between subjective
and objective probabilities. Indeed, how can we explain the fact that, in spite
of the seeming naturalness of the mean, people’s pricing under risk is usually
different from the mean F[X]?

A natural explanation comes from the observation that the mean FE[X] is
based on the “objective” probabilities (frequencies) of different events, while
people use “subjective” estimates of these probabilities when making decisions.
For a long time, researchers thought that subjective probabilities are approxi-
mately equal to the objective ones, and often they are equal. However, in 1979,
a classical paper by D. Kahneman and A. Tversky ([15], reproduced in [29])
showed that our “subjective” probability of different events is, in general, dif-
ferent from the actual (“objective”) probabilities (frequencies) of these events.
This difference is especially drastic for events with low probabilities and proba-
bilities close to 1 — i.e., for the events that are most important when estimating
risk.

Specifically, Kahnemann and Tversky has shown that there is a one-to-one
correspondence g(y) between objective and subjective probabilities, so that once
we know the (objective) probability Prob(E) of an event E, the subjective
probability Probg,p;(E) of this event E is (approximately) equal to

Probgubj(E) = g(Prob(E)). (29)

This idea was further explored by other researchers; see, e.g., [2] and references
therein.

11



Resulting justification of the Wang-type formula. Let us apply the
Kahneman-Tversky idea to the events X > x corresponding to different values
x. For such an event F, its objective probability is equal to the decumulative
distribution function S(z). Thus, the corresponding subjective probability of
this event is equal to

Probgupi(X > z) = g(S(x)). (30)

If we compute the “subjective” mean Egup;[X] of X based on these subjective
probabilities, we get

Equbi [ X] :/ Probgupj(X > z) dx :/ g9(S(z)) dx. (31)
0 0
This is exactly the expression (27) for pricing under risk.

Remaining problem. From the purely mathematical viewpoint, we can use
different functions g(y), not necessarily functions of Wang’s type. As of now,
empirically, Wang’s formula is among of the most efficient ones.

A natural question is: which features of the Wang’s formula follow from
the general principles — and can therefore be applied when the financial mar-
kets change — and which features may reflect the specifics of the past financial
markets.

The existing justifications of Wang’s measures. There exist several jus-
tifications of the Wang transform method, justifications that show that this
method is uniquely determined by some reasonable properties. The first justi-
fications was proposed by Wang himself, in [32]; several other justifications are
described in [17].

The main limitations of the existing justifications of the Wang transform is
that these justifications are too complicated, too mathematical, and not very
intuitive — while our intent is to find justifications based on the economics-related
first principles.

What we do in this section. In this section, we provide a new justifica-
tions of the Wang transform based on the notion of symmetry, a notion which
naturally appears in the economics context.

Our new justification: main idea. Our first justification comes from the
fact that the Wang transform is not a single function: we have a family of
transforms g, (y) corresponding to different values «. Different values of «
correspond to different degree of dependence on risk.

These transforms form a transformation group in the sense that the following
three conditions are satisfied:

e First, the identity transform g(y) = y is a particular case of the Wang
transform: specifically, it corresponds to a = 0.

12



e Second, the inverse operation to a Wang transform g, (y) is also a Wang
transform: g, '(y) = gg(y) for some 3 in the sense that

98(9a(y)) = 98(9a(y)) =y (32)
for all y; specifically, this is true for 8 = —a.

e Third, the composition of Wang transforms is also a Wang transform: if
we first apply a transform g, (y), and then a transform gg(y), then this is
equivalent to applying the Wang transform with a single value ~:

98(90(y)) = 9+(y) (33)

for all y; specifically, this is true for v = a + (.

It is reasonable to require that we have a family of transformation that forms
a l-parametric group. It is also reasonable to require that the transformations
are continuous, and that the dependence on the parameter is also continuous,
i.e., that this is a Lie group; see, e.g., [4]. It is known that every 1-dimensional
Lie group (i.e., a Lie group described by a single parameter) is (at least locally)
isomorphic to the additive group of real numbers. In precise terms, this means
that instead of using the original values of the parameter v describing different
elements of this group, we can use a re-scaled parameter o = h(v) for some
non-linear function h, and in this new parameter scale:

e the identity element corresponds to a = 0;

e the inverse element to an element with parameter « is an element with
parameter —a: g_, = g, '; and

e the composition of elements with parameters o and [ is an element with
the parameter o + 3: go © g3 = Ga+3-

Let us denote ®(z) e 92(0.5). Then, for every y = ®(x) and for every real

number «, we get

9o (¥) = 9a(®(2)) = 9a(9:(0.5)) = (ga © 92)(0.5). (34)

Because of our choice of parameters, we have

9o © gz = Gr+a (35)
and thus, the formula (34) takes the form
9a(y) = ga+a(0.5). (36)
By definition of the function ®(z), this means that
9a(y) = (z + ). (37)
Here, y = ®(z), hence z = ®~1(y) and thus,
9a(y) = 2(27(y) + ). (38)

This is exactly the Wang transform formula (28).

13



Towards a yet more natural justification. The above justification was
based on the assumption that we have a l-parametric family of transforma-
tions, i.e., the family depending on a single parameter a. It is indeed true that
in the Wang transform formula (28), there is exactly one parameter, but this
1-parametric character of the family of transforms sounds more like a mathe-
matical assumption that an economically meaningful fact. To get a more natural
justification, it is therefore desirable to provide a more intuitive explanation for
this 1-parametric character.

Indeed, such an explanation comes from the fact that in many important
economic situations, the decision making is done not by a single individual, but
rather by a group of individuals, with slightly different objectives and slightly
different attitudes to risk.

Different attitude to risk can be represented by different distortion trans-
formations g(y) in the formula (27). In the individual decision making, the
decision maker estimates all the related probabilities. Thus, the corresponding
distortion transformation is applied to the objective probabilities — and result
in the (slightly distorted) subjective probabilities of the decision maker.

In group decision making, especially in a group decision making in a com-
plex situation, it is very difficult for each individual to estimate all the related
probabilities. A natural strategy for a group is to divide this complex estima-
tion task between different participants, so that different participants estimate
different probabilities. Then, the participants communicate their estimates to
one another, and make a decision based on all these estimates.

This group process leads to an additional distortion of probabilities. Namely,
first, the participants who is asked to estimate the corresponding probabilities
somewhat distorts these probabilities — corresponding to his or her level of risk
aversion. Other participants, however, view these probabilities as reasonable
approximations to the objective ones — and thus, also somewhat distort these
probabilities in accordance with their own degree of risk aversion. Thus, in
group decision making, the objective probabilities are distorted twice:

e first, the original estimator e transforms the objective probabilities y into
somewhat distorted values ' = g.(y);

e after that, another decision maker d transforms the values 3’ into some-
what different subjective probabilities y” = gq4(v') = 9a(ge(y))-

In other words, the distortion y” = g(y) corresponding to the interaction be-
tween two decision makers is equal to the composition of the distortion functions
ga and g corresponding to them individually: ¢(y) = ga(ge(y)), i-e., using the
mathematical notation o for the composition, g = g4 © ge.

In our main justification, we have already emphasized the importance of the
composition, so at first glance, one may think that we do not gain anything
new by considering group decision making. However, the group-decision aspect
opens new possibilities. For example, it is known that often, group decisions are
reasonable stable, even when the roles of different individuals within a group
slightly change. In other words, whether the participant e collects the original
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estimates and passes them to the participant d, or, vice versa, d collects the
original estimates and passes them to e, the final decisions are (largely) the
same.

In terms of composition, the difference between these two situations is that
in the first situation, we have the composition g4 o g, while in the second situa-
tion, we have a different composition g. o g4. Thus, the above invariance means
that the order of the composition does not matter: gg 0 go = ge © g4. In math-
ematical terms, we can say that the corresponding transformations commute,
and the transformation group is thus commutative. Now, the following simple
mathematical result shows that commutative groups are indeed 1-parametric.

Proposition. Let X be a set, and let G be a commutative group of transforma-

tions g : X — X with the property that for every two values v € X and x' € X

there exists a transformation g, .+ € G that transforms x into «': g, . (z) = 2'.

Then, for every x € X and x' € X, there exists only one transformation g € G
/

for which g(x) = .

Discission. In the economic case, we have a group of transformations g :
(0,1) — (0,1), with X = (0,1).

For every objective probability x € (0, 1) of the positive event, we can have
extremely risk-averse individuals for whom the corresponding subjective prob-
abilities g(x) are close to 0. We can also have extremely risk-prone individuals
for which the corresponding subjective probability of the positive event is close
to 1. Of course, we can also have all the values in between.

Thus, for the group of distortion transformations, it is very reasonable to
assume that for every objective probability z € (0,1), the quantity g(x) can
take all possible values from the interval (0, 1).

Under this reasonable assumption, the above Proposition implies that for
every x € (0,1), the transformation g € G is uniquely determined by a single
number — the value g(z). Thus, the family of distortion transformations is
indeed 1-parametric.

Comment. In mathematics, groups that can transform every element z into
every other element are called transitive, and groups for which, for every x and
z’, there exists exactly one transformation mapping = to z’, are called simply
transitive. In these terms, the above Proposition states that every commutative
transitive group is simply transitive.

Proof of the Proposition. Let ;1 € X and zo € X, and let f and g be
transformations for which f(z1) = g(x1) = x2. We need to prove that f = g,
i.e., that for every x € X, we have f(z) = g(x).

Indeed, let us pick any value € X, and let us prove that f(x) = g(z). Since
the group G is transitive, there exists a transformation h for which h(z1) = .
The group G is also commutative, so we have f o h = h o f; in particular, for
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x1, we have f(h(x1)) = h(f(x1)). We know that f(z1) = zo. By our choice of
h, we have h(x1) = x. Thus, we conclude that f(z) = h(z2).

Similarly, we have g o h = h o g, hence g(h(z1)) = h(g(x1)). We know that
g(z1) = z2. By our choice of h, we have h(z1) = . Thus, we conclude that
9(x) = h(x2).

Therefore, both f(z) and g(x) are equal to the exact same value h(z2) and
are, hence, equal to each other. The proposition is proven.

Comment. A similar argument can explain why “modifiers” in fuzzy logic,
i.e., transformations g : (0,1) — (0,1) that describe how linguistic modifiers
like “very”, “almost”, etc., also usually form a l-parametric family; see, e.g.,
[18, 23].

Additional idea. Symmetry groups can be used to justify not only the Wang
transform formula (28), they can also explain the original formula (27).

This explanation comes from the fact that in many cases, an investor is most
interested in his ability to have enough cash after a certain period of time. For
example, a person who invests as part of his retirement plan, would like to have,
at the moment of his or her retirement, enough money to spend on the basics
during the retirement.

To describe this idea in precise mathematical terms, let us denote the cor-
responding minimal return by x. Then, what is most important to the in-
vestor is the probability that this return will be attained, i.e., the probability
Prob(X > z). This is, in effect, the decumulative distribution function S(x).
Thus, from this viewpoint, the utility of the investment to each investor can be
characterized by the corresponding value S(x).

Different investors have different thresholds x. So, for different investors, the
same financial instrument is characterized by the values S(x) corresponding to
different values z. We need to somehow combine these utility values into a single
numerical criterion — the price describing this particular financial instrument.

How can we combine different utility values? For example, if we have two
investors with utilities @ and b, what combination a * b of these values should
we use? It is reasonable to assume that this combination does not depend on
the order in which we combine these utilities, i.e., in mathematical terms, that
the corresponding combination function a * b is commutative (a *b = b*a) and
associative (a* (bxc) = (a*b) xc). It is also reasonable to assume that for each
“positive” utility value u, there is a corresponding negative value v for which
uxv = 0. In other words, it is reasonable to require that the set of real numbers
(possible utility values) with the operation * form a group.

We have already mentioned that every 1-dimensional Lie group is (at least
locally) isomorphic to the group of real numbers. This isomorphism means that
there exists a mapping g(y) from the original utility scale to the new scale in
which, for every two real numbers a and b, we have

glaxb) = g(a) + g(b), (39)
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and thus,

axb=g""(g(a) +g(b)). (40)
Similarly, for n utilities wuq, ..., u,, we have
up K.k Uy =g H(g(ur) ..+ glun)). (41)
If we have n investors, with thresholds x1,...,x,, then their utilities are
equal to uy = S(x1), ..., up, = S(x,) and therefore, the combined utility is
equal to
up k. kun =g (g(S(x1) 4 ..+ g(S(xn))). (42)

In real life, we have a large number of investors, with different values x;, so it is
reasonable to approximate the sum by the corresponding integral. As a result,
the combined utility is equal to u = g=*([ g(S(z))dz). To price the financial
instrument, we must compare it with a simple investment X, that provides a
certain value v with guarantee. In other words, we must find the value v for

o o ([ atsonas) = ([ atsu@yar). (43)

where S, is the decumulative distribution function corresponding to the
guaranteed-return investment v. By applying the function g(y) to both sides of
the equality (43), we conclude that

/ 9(S(x)) da = / oS, () de. (44)

For the guaranteed investment, for every x, we have either S,(x) = 0 or
Sy(z) = 1 and thus, g(S,(z)) = Sy(x) for all z. So, for this investment, the
integral [ g(S,(z))dz is thus equal to [ S,(z)dz, ie., to the mean return of
this investment — which is exactly v. Thus,

/g(Sv(x)) dxr = v. (45)

So, according to the formula (44), the fair price v of an investment is determined
by the formula

v= /g(S(:c)) dz. (46)

This is exactly the formula (27).
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