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Abstract

As is well known, Huffman’s algorithm is a remarkably simple, and wonderfully illustrative
example of how to use the greedy method to design algorithms. However, the Huffman coding
problem, which is to find an optimal binary character code (or an optimal binary tree with
weighted leaves) is intrinsically technical, and its specification is ill-suited for students with
modest mathematical sophistication.

This difficulty is circumvented by introducing an alternative precursor problem that is very
easy to understand, and where this understanding enables students to use the greedy method
to find the solution themselves. The problem is how to merge k sorted lists of varying lengths
as efficiently as possible. Once students have solved it, they are better prepared to understand
the Huffman coding problem, and why it reduces trivially to the list merging problem they just
solved. Even the correctness argument is simplified by this approach.



1 Introduction

Introducing abstract problems with unfamiliar mathematical underpinnings to students with
modest mathematics backgrounds can be challenging for all participants involved in such an
exercise. For example, Huffman’s algorithm for finding an optimal binary encoding of a set
of symbols with differing frequency counts is commonly taught to computer science students
with little prior exposure to coding theory, greedy algorithms, probability, and optimization.
Students with modest backgrounds may be at risk to miss fundamental content from traditional
presentations of this topic not because they are unprepared for the concepts, but because they
are ill prepared for the application.

When practical, we adopt teaching strategies that gently prepare students to solve abstract
problems by introducing key concepts and problem-solving techniques in the context of concrete
precursor problems selected from familiar domains. This TR illustrates this approach with a
detailed example to show how these strategies were used to teach Hoffman’s coding algorithm
in classes at NYU and UTEP. To improve student-readiness for Huffman codes, we begin with
a precursor list merging problem that requires basic familiarity with binary trees, the merging
of sorted lists, and little else.

Section 2 presents optimal list merging to concretize the more subtle Huffman coding prob-
lems, and to separate its complications from the underlying algorithm design problem. Section
3 presents an optimality proof for the list merging algorithm, and introduces – en passant –
some of the necessary content that is required for an understanding of Huffman codes. Section
4 introduces Huffman codes, explains additional underlying subtleties, and shows why these
coding problems are, mutatis-mutandis, completely solved by the list merging algorithm of
Section 2 and the correctness argument of Section 3. Finally, Section 5 offers commentary
about our emerging pedagogical approach to low-overhead instruction in algorithms. Subse-
quent TRs will present additional examples of this pedagogy, as well as further developments
of the underlying techniques.

2 Optimal merging as a precursor to Huffman Coding

In this section, we examine optimal merging as an easily understood precursor to the problem
of designing optimal Huffman Codes.

Merging two sorted lists.

Let L and M be sorted lists of numbers with respective lengths ` and m. It is easy to
merge them into a single sorted list Z with an operation count that is proportional to ` + m.
For specificity, suppose that each list is sorted to have increasing values. To merge them, one
simply compares the first element in each list (if neither is empty), removes the smaller of the
two values, and appends that element to be the last element in the growing list Z. The process
is repeated until L and M are both empty.

The exact operation count is not at all important for the two-list merging problem, but for
specificity, let’s define an explicit cost function for merging two such sorted lists to be the sum
of the element counts in each list. This is not an exact operation count, but has the advantage
of being a precise cost that we can use to define the following optimization problem.

Merging k sorted lists.

Suppose that we have k > 2 lists of sorted numbers to merge together, and that they can
only be merged pair-wise. Thus any two lists can be selected from the k lists, and merged to
form a single list, which will leave k − 1 lists that remain to be merged. It follows that k − 1
pairwise mergings must take place, and the problem is to determine the sequence of pairwise
merges where the sum of the costs for these k − 1 merges is as small as possible.
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In more formal terms, the optimal merging problem is as follows.

Given: The k sorted lists L1, L2, . . . , Lk with respective lengths `1 ≤ `2 ≤ · · · ≤ `k.

Given: The cost to merge two sorted lists of ` and m elements is exactly ` + m.

Question: What is the least cost way to use pairwise mergings of these lists to
form one sorted list of `1 + `2 + · · ·+ `k numbers?

For example, if `k = n and each of the other lengths is one, then the worst way to merge
the lists is to combine `k with `1 and then to merge each singleton list one-by-one with the
long list for a total cost of (n + 1) + (n + 2) + (n + 3) + · · · + (n + k). If n ≥ k − 1, then the
short lists should be combined first in some way, and then merged with Lk, so that the long
Lk would be used in just one merging operation.

In a classroom setting, it is worthwhile emphasizing that there will be k − 1 mergings no
matter how the lists are selected. Students can also be asked which two lists would a lazy person
select to merge first. It is not difficult to see that the two shortest lists should be merged first.

Virtually all students can be expected to see that the least-cost first step is to merge the
two shortest lists first, and most will realize that the idea can be repeated.

This list merging problem illustrates a fundamental property of greedy algorithm design
that may not be apparent to beginners: greedy algorithms are based on program invariants
that repeatedly drive (and simplifies) the algorithm until it is done.

Some students might make a conceptual error by suggesting that the lists L1, L2, . . . should
be merged one-by one with a growing list of consecutive merges, so that at iteration h, Lh+1

would be merged with the merge of L1 through Lh. It is easy to see that this approach does
not follow the heuristic of always selecting the two shortest lists to merge together at each
iteration. (Just set all of the list lengths to one. The rule will be broken at iteration 2).

Others might decide that the best solution is to merge L1 with L2, and then L3 with L4.
It can be pointed out that many algorithms use dynamic decisions based on the evolution of
the data, and this problem illustrates the point very well. If `1 = 1, `2 = 1, and `3 = 3, then
the second merging step must merge L3 with the merge of L1 and L2.

Of course, most students will see the overall strategy. In pseudo-code, a solution might
read:

function ListMerge(k, L1, . . . , Lk);
Create an empty set S;
for i← 1 to k do

Insert Li into S
endfor;
while S has more than one list do

A← remove shortest list from S;
B ← remove the shortest list from S;
C ←Merge(A,B);
Insert C into S

endwhile;
A← remove list in S;
return(A)

end ListMerge;

As reasonable and complete as this program logic is, two key questions remain.

• Is this greedy (no look-ahead) approach really the best possible? (We need to prove this.)
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• What is the best structure for managing the deletes?

The second question has an answer that students can readily understand, but are not
so likely to discover. A naive approach would be to use a priority queue, which might require
θ(k log2 k) operations. But the initial data is sorted, so the minimum size of the as yet unmerged
lists can always be determined in constant time, since the initial set of k lists are sorted by
size. As for the merged lists, their lengths are non decreasing; at each iteration of the while
loop, the newly formed list will be at least as long as any of the previous merging results. So
these new lists can be maintained in a queue, which will be guaranteed to be sorted by the
algorithmic processing of increasingly longer lists. Thus the shortest list to delete at each step
can be found by comparing the shortest list among the original as yet unprocessed lists, and
the shortest of the (remaining) lists in the queue of merged lists.

We now address the correctness problem.

3 Is the greedy ListMerge really optimal?

To figure out if this solution is indeed the most efficient way to merge the k lists, we need to
know how to measure the number of operations that would be used to merge the lists in the
way prescribed by ListMerge.

So the next question is how to model or formalize the k−1 mergings executed by ListMerge.

Curiously, very few students will realize that they know enough to answer the question.
But it is still a good idea to ask a class to reflect on how the specific merge steps might be
modeled or represented as an abstract process.

Students will need help in recognizing that the total cost to perform the merges can be
formulated by following the bottom-up “data flow” of the lists in the merge tree. In our
experience, a particularly effective prompt is to point at a particular leaf and ask how many
different merging steps will use the contents of that list.

Let T be any merge tree such as (but not necessarily) the one generated by ListMerge.
Let leaf Li have depth depthi in T , for i = 1, 2, . . . , k, and let C be the total cost for executing
the k − 1 pairwise merges prescribed by T .

Then C is the sum of list (leaf) lengths multiplied by the depth of the respective leaves. In
more formal terms:

C = `1 × depth1 + `2 × depth2 + · · ·+ `k × depthk,

where depthi is the depth of leaf Li in the merge tree.

The instructor may wish to explain this relationship or might challenge the class to derive
it via guided collaborative discussion.

And now that we have a precise way to compute the operation count for any merge tree of
sorted lists, we can prove that the greedy algorithm ListMerge builds a merge tree with the
least cost.

We proceed with an implicitly inductive proof-of-correctness. It is obvious that the algo-
rithm is the best possible when k = 2 because there is just one way to do the merging. So let
k be the smallest index where this algorithm fails to find the most efficient solution, and let
L1 through Lk be the merging problem with explicit list lengths `1 through `k where there is
a better solution.

Let the merge tree TLM be the structure that results from the ListMerge algorithm, and
let Tbp be the tree that gives a best possible answer, which by assumption is less than the
solution for TLM .
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We will show that Tbp is not better. So the assumption that there is a data set where the
algorithm ListMerge does not give the best possible tree is wrong.

Well, we know that TLM merges the two shortest lists together as a first step. There could
be several candidate pairs of equally shortest lists; it does not matter. Some two shortest pair
of lists are the first to be merged by ListMerge.

What about Tbp?

Tbp has some deepest pair of leaves in the structure. (Notice that the deepest leaf must
have a sibling leaf since it should be one level higher if its sibling is Nil, and its sibling cannot
have any descendants since the leaf is the deepest vertex in the tree.) There might be just
two deepest leaves, but there could be some larger (even number) of deepest leaves in Tbp. So
where are those two shortest lists that are merged together by the first step for TLM? If they
are not at a deepest level in Tbp, then there must be some other pair of equally short lists at
the deepest level: otherwise swapping a short list with a longer list at a deeper level of the tree
will decrease the total work.

So we can conclude that by swapping equally sized lists, if necessary, the two shortest lists
first processed by ListMerge will be at the deepest level of (Tbp or an equally efficient variant
of) Tbp. Now, there can be more than one pair of leaf-lists at this level, but the total work does
not change if we rearrange these lowest level leaves, because the merging work to precess these
lists completely is just the product of their lengths and their depth. So we can group those two
lists to be siblings at the bottom level of (a possibly new but equally efficient) Tbp. So let us
merge these two lists in the two trees.

The work to merge them is the same for both structures, and the two structures now solve
the exact same merging problem for k−1 lists. But by hypothesis, we know that for k−1 lists,
the reduced tree produced by ListMerge is the best possible. That is, after one merging step,
ListMerge solves the problem of merging k − 1 lists together, and by definition of k, must do
so with a best possible solution. So the work to merge the k− 1 lists in the reduced Tbp cannot
be any less than that for TLM . It follows that TLM and Tbp must have the same merging cost,
which shows that there is no k where the cost for the best possible tree Tbp is less than the cost
computed by ListMerge.

Thus, we conclude ListMerge finds an optimal ordering for merging k sorted lists for any
k and any set of list lengths.

4 Reducing Huffman Codes to ListMerge

Our objective in this portion of the lesson is to help students understand that the metrics
and algorithm for merging lists generalizes to solve the Huffman coding problems. Thus, the
immediate objective is – as is standard – to teach the Huffman algorithm and correctness
argument. At the same time, it is hoped that this approach reinforces a recurrent theme that
any algorithm might be suitable for adaptation as a programming schema to solve not only
similar – but even seemingly unrelated – problems of interest. The course curriculum includes
the notion of problem equivalences (or reductions) where problems are transformed as opposed
to algorithms, and the Huffman coding problem offers – en passant – an engaging and gentle
introduction to this concept.

As a cost-minimizing algorithm, we have seen that Listmerge builds the k-leaf binary tree
with the smallest sum

`1 × depth1 + `2 × depth2 + · · ·+ `k × depthk,

where depthi is the depth of leaf-record Li in the tree, and `i is the length of list Li.

4



Students should be asked of the algorithms will work if the values `i are positive real
numbers.

With some thought, it can be seen that nothing in the algorithm or correctness argument
required the weights to be integers.1

At this point, the problem of designing an optimal Huffman tree can be introduced, and
likewise the problem of designing optimal prefix-free character codes for a block of data with
(integer) frequency counts `1, `2, . . . , `k for a k-character alphabet. Similarly, the encoding of
the characters by the zero-one interpretations of the paths from the tree root to its character
leaves is readily introduced.

Below, we provide the necessary definitions and show that the solution algorithm ListMerge
and correctness argument are applicable solve these more complex problems with no modifica-
tion whatsoever.

4.1 A Review of the Huffman coding problem

We begin by reducing the Huffman tree problem (HT) to the optimal list-merge problem, and
then, as is standard, reduce Huffman coding (HC) to the Huffman tree problem. The simplest
interpretation of the Huffman tree problem is to design an optimal binary tree T in the case
where the records are stored as leaves, have prespecified probabilities of access, and have no
constraints on their ordering in T :

Inputs: The k pointers L1, L2, . . . , Lk, and associated access probabilities p1, p2,
. . . , pk.

Problem HT: Build a k-leaf binary tree T where each leaf is a different one of the
k pointers, and the expected tree depth of the leaves is as small as possible.

For this problem, the expected depth of the leaves is
k∑

i=1

di × pi, where di is the depth of

pointer Li in T , and there are no restrictions on the ordering of the pointers as leaves in T .
For specificity, the depth of the root of T can be taken to be zero.

Of course, this problem is just a scaled version of the list merging problem as discussed in
the previous subsection. So there is nothing new (apart from the irrelevant (and pragmatically
unlikely) possibility that the probabilities might not be rational.

One of the standard applications of this problem is to use this tree for data compression.
In somewhat informal terms, the data compression problem is as follows.

Suppose you have a fixed block of text, and want a fixed binary encoding for each letter,
digit, punctuation mark, tab and space. What encoding uses the least number of bits?

Such an encoding is just a sequence of zeros and ones; there are no separators to partition
the stream of zeros and ones into the encodings for the individual letters. One solution is to
use a fixed number of bits (such as ASCII) for each character. But it is wasteful to use as
many bits for a space (which appears frequently) as for the (infrequent) ‘x.’ It will be more
efficient to use shorter encodings for the characters with a high frequency of use, and to use
longer strings to encode the less common characters.

To ensure that there is no ambiguity in the separation of the stream into individual character
encodings, the code should be prefix-unique, which means that no character has an encoding
that is an initial prefix of some longer code for some other character.

1If students have difficulty understanding this, it may be desirable to concretize this subproblem by supposing
that the `i are rational, and then rescaling the data by multiplying these weights by a common denominator.
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For example, Morse code is not prefix-unique. It encodes the letter j as ·---, and the digit
1 as ·----. The code avoids ambiguity by requiring a pause between encoded characters, which
permits the human decoder to separate the code for one character from the next. Thus, there
is no confusion between the code for jt (·--- -) and the code for 1.

It is probably a very good idea to give humans that brief rest and marker between characters.
But for computers, the pause is just a waste of time. With prefix-unique codes, a character is
recognized as soon as its code has been transmitted, and the next bit is understood to begin the
code for the next character. So with prefix-unique encodings, the characters can be extracted
by a greedy bit-by-bit processing to extract the characters one-by one.2

The Huffman coding problem is: given a block of text, find a prefix-unique binary encoding
for the characters in the text that results in an encoding that is as short as possible.

A more formal description of the coding problem is:

Input: The k frequency counts n1, n2, . . . , nk for a block of text with n1 + n2 + · · ·+ nk

consecutive characters from an alphabet of k characters.

Problem HC: Find k prefix-unique binary codes b1, b2, . . . , bk with bit lengths `1, `2,

. . . , `k where
k∑

i=1

ni × `i is as small as possible.

As is well known, the solution to problem HC is just to build the least cost weighted binary
tree with k leave that have the leaf weightings `1, `2, . . . , `k in some order, and the tree cost

k∑
i=1

d1 × `i is as small as possible. The codes are read off the tree by encoding the path from

the root to a leaf as a sequence of zeros and ones where a zero corresponds to the selection of
the left descendant as the next step on the path, and a one represents the selection of the right
descendant. Each code has a bit count that is exactly depth of the record that it represents in
the Hoffman tree. Since each record is a leaf, the records are prefix-unique, and likewise, every
prefix-unique encoding can be represented by such a binary tree.

Thus, a best solution to the HT problem with weights `1, `2, . . . , `k gives a code for problem
HC. Is it the best possible? Well, suppose that there is a better prefix-unique code for HC.
Its zero-one bits define a binary tree THC where each character is a leaf because it is prefix free.
And if THC were better for the HC problem, then it would also be better for the HT problem.

In short, these two problems are equivalent.

For completeness, it is worth noting that such a coding will not give the best possible data
compression. The problem statement is worded to prohibit codes that adapt as the frequencies
of character usage changes in the text, or that builds codes for sequences of letters. For example,
in English, some extra efficiency would result by providing a special code for the word “the.”
A small gain would occur by providing a code for the 2-character sequence qu, and allocating
a longer code for the very rare q that is not followed by a u. But the Huffman coding problem
is restricted to the encoding of individual characters, punctuation, spaces, etc. Nevertheless,
this algorithms does provide an nice introduction to information theory and data compression
– not to mention the use of the greedy method to design algorithms.

2Actually, it is worth noting that Morse code is really a prefix-unique ternary encoding scheme that uses the
three symbols ·, -, and ’ ’ (a space). It is prefix-unique because each character code ends with a space, and has
no spaces anywhere else within the code sequence. However, this limited use of the space character is wasteful,
since a good ternary code would make full use of all three characters to provide better data compression: there
would be far more short words to use as character codes.
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5 The underlying pedagogy

Subjects that require mathematical sophistication present difficulties for students with modest
mathematics skills. Combinatorial algorithms is a subject that concerns the modeling and
solving of a rich and widely varying set of problems. As such, it is steeped in, and enriched by
a substantial mathematical heritage. Yet the subject does not require extensive mathematical
knowledge, although some degree of mathematical reasoning is absolutely necessary. The overall
objective behind this article and the project that has produced it is to design a high quality
algorithms course that is accessible to as wide an audience of students as possible, and to do
so effectively. The educational, economic, and sociological reasons for the democratization of
technical knowledge and access to computer science in particular are manifest. At issue is how
to present the full content of a standard curriculum (and more) without leaving a significant
percentage of a class lost due to modest mathematics skills.

In the process of experimenting with many different approaches, the authors of this report
have noticed that certain techniques have consistently emerged as the most successful. This
report presents two of these pedagogical perspectives, and illustrates (with additional examples
to follow) their application in the teaching of a standard algorithms problem: designing Huffman
codes.

Principle 1. Build chains of reasoning that are rigorous but are as short and background-free
as possible.
Mathematical arguments, by way of contrast, often build long chains of definitions, lemmas,
and other logical constructs that are readily absorbed by those with significant training, but
which soon lose all others as the abstractions and dependence on newly internalized content
build.

When teaching algorithms, the intermediate definitions and complex arguments may seem
difficult to circumvent, and some of these intermediate reasonings will even have conceptual
value in their own right. These difficulties are precisely why improvements in teaching algo-
rithms is intrinsically evolutionary as opposed to revolutionary, and why the approach is worthy
of investigation in its own right. This TR series is intended to support the contention that there
are a rich set of improved presentations that await those willing to search for them. Thus, this
TR is written because Principle 1, though easy to state, is difficult to implement: Algorithm
presentations should follow the shortest, simplest chain of rigorous reasoning that leads to al-
gorithmic understanding. The unanswered question is how. In this TR, we endeavored to offer
an evolving answer for Huffman codes.

This first principle includes an implicit mandate that both the problem and its solution be as
easy to state and implement as possible. However, if an idea that has been eliminated from the
simplified presentation has educational value, then it should be introduced after the algorithm
has been taught, and used to reinforce or refine student understanding as opposed to using it
to insert yet another link in a chain of reasonings that lead to an uncertain (cognitive) end.
With this reversal in sequencing, students may well be better prepared and better motivated
to internalize the idea because it is built on top of a fundamental technique (the algorithm).

Principle 2. Restructure abstract ideas to present them in as concrete a manner as possible.

Of course, such a prescription is open ended, and easy to misinterpret. Moreover, the use of
abstraction has been a matter of contention between two very different schools of thought about
best practices in teaching. In the majority of k-12 mathematics education studies and reform
textbooks, there has been an unmistakable movement to avoid abstraction because students
find it difficult to absorb. In the cognitive psychology literature, the prevailing view is that
abstractions must be explicitly taught because naive learners are unable to extract fundamental
principles and systematic methods from examples alone.

In view of this controversy, it would seem appropriate to say what kinds of concretized
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abstraction seem to work and what does not. Based on years of teaching certain content
that is difficult to formalize, we have accumulated informal — but convincing — evidence to
support the notion that examples of clear ideas are inadequate for most students, whereas
the same content is absorbed far more successfully when taught in conjunction with abstract
formulations. Thus, our approach to concretize abstractions is not to eliminate the teaching of
abstract principles, but rather to teach them in as concrete a formulation as possible, and to
merge – as much as possible – the use of examples and the application of abstractions into a
unified presentation where each part supports the other.

In this TR, the real problem of interest had nothing to do with the merging of sorted lists.
The emphasis on list merging was a very concrete ruse to enable the greedy method to be
applied before introducing the structural analysis needed to quantify the total cost of a merge
tree, and to eliminate any confusions that might be caused by replacing a subtree of weighted
leaves by a leaf whose weight is the sum of the leaf-weights in the subtree.
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