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Abstract: Fuzzy transform is a new type of function transforms that has been suc-
cessfully used in different application. In this paper, we provide a broad prospective
on fuzzy transform. Specifically, we show that fuzzy transform naturally appears
when, in addition to measurement uncertainty, we also encounter another type of
localization uncertainty: that the measured value may come not only from the
desired location x, but also from the nearby locations.
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1. Need for data processing

Idea. In many real-life situations, we are interested in the value of a quantity
which is difficult (or even impossible) to measure directly. For example, we may
be interested:

• in the distance to a faraway star, or

• in the amount of water in an underground water layer.

Since we cannot measure the corresponding quantity y directly, we measure it
indirectly. Specifically,

• we find easier-to-measure quantities x1, . . . , xn which are related to the de-
sired quantity y by a known dependence y = f(x1, . . . , xn);

• we measure the values of the auxiliary quantities x1, . . . , xn; and
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• we use the results x̃1, . . . , x̃n of measuring the auxiliary quantity to compute
the estimate ỹ = f(x̃1, . . . , x̃n) for the desired quantity y.

-

· · ·
-

-

x̃n

x̃2

x̃1

-ỹ = f(x̃1, . . . , x̃n)f

Comment. In the simplest cases, we know an explicit analytical expression for the
dependence f(x1, . . . , xn). In many other cases, we only have an implicit descrip-
tion of the dependence between the desired quantity y and the easier-to-measure
quantities x1, . . . , xn. For example, we may have a system of equations (or a system
of differential equations) that relates y and xi. In such situations, we usually have
an algorithm for transforming the values x1, . . . , xn into the desired value y. For
example, we may have have an algorithm that solves the corresponding system of
differential equations.

In this paper, we consider the most general case of the dependence – when
f(x1, . . . , xn) is an algorithm. The case of an explicit analytical dependence is
also covered; in this case, we have a simple explicit algorithm for computing this
expression.

Example. To find the distance y to a faraway star, we can use the following
parallax method:

• we measure the orientations x1 and x2 to this star at two different seasons,

• we measure the the distance x3 between the spatial locations of the corre-
sponding telescopes at these two seasons (i.e., in effect, the diameter of the
earth orbit);

• then, reasonably simply trigonometric computations enable us to describe
the desired distance y as a function of the easier-to-measure quantities x1,
x2, and x3.

General case. In general, computations related to such indirect measurements
form an important particular case of data processing.

2. Need to Take Uncertainty Into Account

Measurements are never absolutely accurate. As a result, the measurement results
x̃i are, in general, different from the actual (unknown) values xi of the measured
quantities: ∆xi

def= x̃i − xi 6= 0. Because of this, the result ỹ = f(x̃1, . . . , x̃n)
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of data processing is, in general, different from the actual (unknown) value y =
f(x1, . . . , xn): ∆y

def= ỹ − y 6= 0.

-

. . .

-

-

∆xn

∆x2

∆x1

-∆yf

Thus, in practical applications, we need to take this uncertainty into account.
!!! also f may be known with uncertainty

3. Probabilistic uncertainty and its limitations

Traditional probabilistic approach. Traditional approach to uncertainty es-
timation is based on the assumption that we know the probability distribution for
the measurement errors ∆xi.

Usually, it is assumed that the measurement errors ∆xi are independently nor-
mally distributed, with zero means and known standard deviations σi; see, e.g.,
[10]. In this case, we can use standard statistical techniques to determine the
probability distribution of the resulting measurement error ∆y.

Probabilistic approach beyond normal distributions. In some cases, the
distribution of the measurement errors is known to be non-Gaussian – and we know
the exact shape of the corresponding probability distribution.

For example, if the main component of the measurement error comes from the
sinusoidal electric filed generated by the electric plugs – then the measured errors
are distributed according to the arcsine law.

In such cases, we can use statistical techniques – e.g., Monte-Carlo simulations
(if no analytical techniques are known for this distribution) to find the desired
probability distribution for ∆y.

Where do probabilities come from? In some important practical situations,
we do not know the probabilities of different values ∆xi. Indeed, in the measure-
ment practice, these probabilities usually come from the calibration of the corre-
sponding measuring instrument (MI), i.e., by comparing its measurement results
with the results of measuring the same quantity by a much more accurate (“stan-
dard”) measuring instrument.

Since the standard measuring instrument is much more accurate than the one
that we are calibrating, its measurement error can be safely ignored in comparison
with the measurement errors of our original MI. Thus, for each measurement k, the
difference x̃ (k)−x̃

(k)
st between the values measured by the original and the standard
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MI can serve as a reasonable approximation to the actual (unknown) measurement
error x̃ k − x(k). In this approximation, the statistics of the calibration differences
x̃ (k) − x̃

(k)
st can serve as a good description of the probability distribution of the

measurement error.
In many practical situations, this calibration is a standard measurement prac-

tice. In such situations, we do indeed know the probabilities of different values of
∆xi. However, there are important situations when this calibration is not done.

Situations when we do not know probabilities: fundamental science.
The first such situation occurs in fundamental sciences, when we process state-of-
the-art measurements. For example, the Hubble telescope provides unique state-
of-the-art measurements of celestial bodies. It would be nice if there was a five
time more accurate telescope floating nearby that we could use for calibration –
but the Hubble telescope is the best we have.

Similarly, it would be nice to have a “standard” (more accurate) super-collider
to calibrate the existing CERN colliders – but they are the best we have.

In such situations, we only know upper bounds on the measurement
error. In such situations, we do not know the probabilities of different values
∆xi. What we do know is the upper bound ∆i on the (absolute value of) the
measurement error. Indeed, if we do not even know the upper bound, this means
that difference the actual (unknown) value xi and the measured value x̃i can be
as large as possible – so the value x̃i is not a measurement, it is just a wild guess
which can be completely wrong.

Another situation when we do not know probabilities: manufacturing.
Another important practical situation when we do not know the probabilities of
different values of ∆xi is the situation of manufacturing practice. In principle,
we can calibrate every single sensor, every single measuring instrument. However,
calibration is a very expensive process, involving expensive super-accurate “stan-
dard” measuring instruments. In manufacturing practice, where the profit margins
are low, any unnecessary expense is avoided – in particular, most sensors are not
calibrated. For such sensors, we do not know the probabilities of different values
of measurement errors ∆xi, we only know the upper bounds ∆i provided by the
manufacturers of these sensors and measuring instrument.

4. Interval uncertainty

As we have mentioned, in practice, we often only know the upper bound ∆i on
the measurement errors ∆xi

def= x̃i − xi: |∆xi| ≤ ∆i. In this case, the only
information that we have about the actual values xi is that xi belongs to the
interval xi

def= [x̃i −∆i, x̃i + ∆i].
Under such interval uncertainty, we need to find the range of possible values

of y:
y = {f(x1, . . . , xn) : xi ∈ xi}.
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The problem of computing this range is known as interval computations; see,
e.g., [1].

-

· · ·
-

-

xn

x2

x1

-y = f(x1, . . . ,xn)f

5. Need to measure physical fields

In practice, the situation is often more complex: the values that we measure can
be:

• values v(t) of a certain dynamic quantity v at a certain moment of time t

• or, more generally, the values v(x, t) of a certain physical field v at a certain
location x and at a certain moment of time t.

For example, in geophysics, we are interested in the values of the density at different
locations and at different depth.

6. Need to take uncertainty into account when
measuring physical fields

When we measure physical fields,

• not only we get the measured value ṽ ≈ v with some inaccuracy, but

• also the location x is not exactly known.

Moreover, the sensor picks up the “averaged” value of v at locations close to the
approximately known location x̃.

In other words,

• in addition to inaccuracy ṽ 6= v,

• we also have a finite resolution x̃ 6= x.

7. Estimating uncertainty related to measuring phys-
ical fields: challenging problems

In general, the measured value ṽi differs from the averaged value vi by the mea-
surement imprecision ∆vi = ṽi−vi. In the interval case, we know the upper bound
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∆i on this measurement error |∆vi| ≤ ∆i. Thus, the averaged quantity vi can take
any value from the interval [vi, vi], where vi

def= ṽi −∆i and vi
def= ṽi + ∆i.

Based on these bounds on vi, what can we learn about the original field v(x)?
The answer to this questions depends on what we know about the averaging, i.e.,
on the dependence of vi on v(x).

In principle, there are three possible situations:

• sometimes, we know exactly how the averaged values vi are related to v(x);

• sometimes, we only know the upper bound δ on the location error x̃−x (this
is similar to the interval case);

• sometimes, we do not even know δ.

In the following sections, we describe how to process all these types of uncertainty.

8. Possibility of linearization

Sometimes, the signal v(x) that we are measuring is large, i.e., the values of the
signal are much larger than the noise (and the measurement errors in general). In
such situations, the measured values well represent the actual signal, and for many
applications, the measurement errors can be safely ignored.

The need to take into account measurement errors becomes important only
when the signal v(x) is relatively weak. In this case, we can expand the dependence
of vi on v(x) in Taylor series and ignore quadratic and higher order terms in this
dependence. As a result, we get a linear expression for vi in terms of v(x):

vi =
∫

wi(x) · v(x) dx.

9. Case of full information about the resolution

Description. In this section, we consider the case when we know the exact ex-
pression for this dependence, i.e., when we know the weights wi(x).

The notion of fuzzy transform. Intuitively, each “averaged” value vi can be
viewed as the value of the field v(x) at a “fuzzy” point characterized by uncertainty
wi(x). Because of this interpretation, the transformation from the original function
v(x) to the set of values v1, . . . , vn is also known as a fuzzy transform; see, e.g.,
[6, 7, 8].

What we want to predict. Based on the measurement results ṽ1, . . . , ṽn, we
would like to reconstruct the field v(x). From the pragmatic viewpoint, knowing
the field means being able to predict the results of all other measurements of this
field.

Each such measurement can be characterized by its own averaging function
w(x). Thus, predicting the result of the measurement means predicting the corre-
sponding averaged value y =

∫
w(x) · v(x) dx.
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Of course, the space of functions is infinite-dimensional, which means that to
uniquely reconstruct a function, we need to know infinitely many parameters. Thus,
based on n numbers ṽ1, . . . , ṽn, we cannot uniquely reconstruct the function v(x)
– and thus, we cannot uniquely reconstruct the desired averaged value y. So, the
problem is to find the range [y, y] of this value y.

Prediction problem as a particular case of linear programming. The
lower endpoint y is the smallest possible value of y, the upper endpoint y is the
largest possible value of y. Thus, the problems of finding the desired endpoints y
and y can be formulated in the following optimization form:

Minimize (maximize) y =
∫

w(x) · v(x) dx
under the constraints

vi ≤
∫

wi(x) · v(x) dx ≤ vi, 1 ≤ i ≤ n.

In both problems, we optimize the value of a linear functional under linear
constraints, so from the mathematical viewpoint, these problems are (infinite-
dimensional) linear programming problems.

Without prior restrictions on the field v(x), we cannot predict anything.
In general, if we do not impose any conditions on the function v(x), then both
bounds are infinite – unless w(x) is a linear combination of wi(x).

Indeed, it is known that every vector w which is orthogonal to all the vectors
t, which are orthogonal to all the vectors w1, . . . , wn, belongs to the linear space
generated by the vectors w1, . . . , wn – i.e., is a linear combination of w1, . . . , wn.
Thus, if a vector w cannot be represented as a linear combination of the vectors
w1, . . . , wn, then there exists a vector t which is orthogonal to all wi but not
to w. With respect to the space of all the functions, this means that if w(x)
cannot be represented as a linear combination of the functions wi(x), then there
exists a function t(x) which is orthogonal to all wi(x) (in the sense that 〈wi, t〉 def=∫

wi(x) · t(x) dx = 0) but not to w(x) (〈w, t〉 6= 0).
For an arbitrary real number λ, instead of the actual field v(x), we can now

consider a new field vλ(x) def= v(x)+λ·t(x). For this new field vλ(x), the values of vi

are the same as for the original field v(x) – and hence, satisfy the same inequalities.
However, the new value y is equal to yλ = 〈w, v〉 + λ · 〈w, t〉. Since 〈w, t〉 6= 0, for
appropriate λ, we can get this value yλ equal to any given real number. Thus,
indeed, the smallest possible value of y is y = −∞, and the largest possible value
of y is y = +∞.

Non-negative fields. In many practical problems, the field v(x) can only have
non-negative values v(x) ≥ 0. For example, in geophysics, the density v(x) cannot
be negative.

Under this additional restrictions, we already have non-trivial bounds y and y.
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Dual linear programming techniques. For solving these problems, we can
use the experience of imprecise probabilities [4, 11] where in similar linear pro-
gramming problems, v(x) is the non-negative probability density function (and the
weights are, e.g., functions x2 corresponding to moments). According to this expe-
rience, many efficient algorithms come from considering dual linear programming
problems, i.e., by computing the range [v, v], where

v = sup
{∑

yi · vi :
∑

yi · wi(x) ≤ w(x)
}

;

v = inf
{∑

yi · vi : w(x) ≤
∑

yi · wi(x)
}

.

Indeed, if
∑

yi ·wi(x) ≤ w(x), then, by multiplying both sides of this inequality
by v(x) ≥ 0 and integrating over x, we conclude that

∑
yi · vi ≤ y. Since we know

that vi ≥ vi, we thus get a lower bound for y: y ≥ ∑
yi · vi. Thus, y is larger than

the largest of these bounds, i.e., y ≥ v. So, we can conclude that y ≥ v. Similarly,
we can conclude that y ≤ v, i.e., that the dual linear programming interval [v, v] is
the enclosure for the desired range [y, y].

Comments.

• For discrete linear programming problems, the dual interval is exactly equal
to the original one.

• Our problems are easier than the imprecise probability ones, since the func-
tions wi(x) are usually localized and thus, for each x, usually at most a few
functions wi(x) differ from 0. This makes checking the sums easier.

• Checking the inequalities like
∑

yi·wi(x) ≤ w(x) is even easier in a practically
important case of piece-wise linear functions wi(x) and w(x). In this case, it
is sufficient to check this inequality at endpoints of linearity intervals – then,
due to linearity, it will be automatically true for all internal points as well.

10. Situations in which we only know upper bounds

General idea. In other cases – similarly to the interval setting – we do not only
know the upper bounds δ on the location error x̃− x. A natural question is: when
is a model v(x) consistent with the given observation (ṽ, x̃)?

In this case, the measured value ṽ is ∆-close to a convex combination of values
v(x) for x s.t. ‖x− x̃‖ ≤ ∆x. Thus, vδ(x̃)−∆ ≤ ṽ ≤ vδ(x̃) + ∆, where:

vδ(x̃) def= inf{v(x) : ‖x− x̃‖ ≤ δ}, and vδ(x̃) def= sup{v(x) : ‖x− x̃‖ ≤ δ}.

Case of interval models. In real life, we rarely have an exact model v(x). Usu-
ally, we have bounds on v(x), i.e., an interval-valued model v(x) = [v−(x), v+(x)].
An observation (ṽ, x̃) consistent with this “interval-valued” model if these exists a
model v(x) ∈ v(x) which is consistent with this observation.

Since the values vδ and vδ monotonically depend on v(x), this consistency
leads to

v−δ (x̃)−∆ ≤ ṽ ≤ v+
δ (x̃) + ∆.
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Relation to Hausdorff metric. In many practical problems, the field v(x)
continuously depends on x. For continuous functions, inf and sup on a bounded
closed set {x : ‖x− x̃‖ ≤ δ} are attained at some value. Thus, the above criterion
for consistency between a model and observations can be simplified.

Namely, in this case, the set m̃ of all measurement results (ṽ, x̃) is consistent
with the model v(x) if and only if

∀(ṽ, x̃) ∈ m̃ ∃(v(x), x) ∈ v ((ṽ, x̃) is (∆, δ)-close to (v(x), x)),

i.e., |ṽ − v| ≤ ∆ and ‖x− x̃‖ ≤ δ.
This definition is similar to the standard definition of the Hausdorff metric dH :

dH(A,B) ≤ ε means that

∀a ∈ A∃b ∈ B (d(a, b) ≤ ε) and ∀b ∈ B ∃a ∈ A (d(a, b) ≤ ε).

(This similarity was noticed in [1].)
Specifically, the above definition is an asymmetric version of Hausdorff metric.

Let us show, on a simple example, that our “distance” is indeed asymmetric.

Case 1: -¾

r

In this example,

• the actual field has the form v(0) = 1 and v(x) = 0 for x 6= 0, and

• the measurements results are all zeros, i.e., ṽ = 0 for all x̃.

In this case, all the measurements are consistent with the model:

• the values ṽ = 0 for x̃ 6= 0 are consistent with v = 0 for x = x̃, and

• the value ṽ = 0 for x̃ = 0 is consistent with v(x) = 0 for x = δ s.t. |x̃−x| ≤ δ.

Case 2: -¾

r

In this example,

• the actual field is all zeros, i.e., v(x) = 0 for all x, and

• the measurement results are ṽ = 1 for x̃ = 0, and ṽ = 0 for all x̃ 6= 0.

Here, when ∆ < 1, the measurement (1, 0) is inconsistent with the model, because
for all x which are δ-close to x̃ = 0, we have v(x) = 0 hence we should have
|x̃− v(x)| = |x̃| ≤ ∆.

11. Case of minimal knowledge about uncertainty

Idea. Yet another case is when we do not even know δ. It happens, e.g., when
we solve the seismic inverse problem to find the velocity distribution [2, 9].

In this case, a natural heuristic idea is:
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• to add a perturbation of size δ0 (e.g., sinusoidal) to the reconstructed field
ṽ(x),

• to simulate the new measurement results,

• to apply the same algorithm to the simulated results, and

• to reconstruct the new field ṽnew(x).

If the perturbations are not visible in ṽnew(x)− ṽ(x), this means that details of size
δ0 cannot be reconstructed and so, the actual resolution is δ > δ0. This approach
was partially described in [2, 9].

Linearization and its consequences. Which perturbations should we choose?
To select the optimal perturbations, we will take into account the fact that since
perturbations are usually small, we can safely linearize their effects. Thus, if we
know the results ∆v1(x), . . . , ∆vk(x) of applying perturbations e1(x), . . . , ek(x),
we can predict the result ∆v(x) of applying an linear combination

e(x) = c1 · e1(x) + . . . + ck · ek(x),

as
∆v(x) = c1 ·∆v1(x) + . . . + ck ·∆vk(x).

In other words, once we know the results of applying k different perturbations e1(x),
. . . , ek(x), we thus also know the results of applying an arbitrary perturbation from
the linear space

L = {c1 · e1(x) + . . . + ck · ek(x)}.
From this viewpoint, it does not matter what exactly perturbations ei(x) we select
as long as they are within the same space L.

Thus, the question of optimally selecting a given number k of perturbations
can be formulated as the question of optimally selecting a k-dimensional linear
subspace L in the space of all functions.

Shift-invariance: a natural requirement. To select the space L, let us use the
fact that in most physical problems, there is no preferred spatial location. Thus,
in principle, we can choose different locations as origins (x = 0) of the coordinate
system.

It is reasonable to require that the optimal family of perturbations do not
change if we simply change the origin x = 0. For example, if we select a point
with the original coordinates x0 as the origin of a new coordinate system, then the
new coordinates will have the form xnew = x− x0. In the original coordinates, the
optimal family of perturbations has the form

{c1 · e1(x) + . . . + ck · ek(x)}.

In the new coordinates xnew, we should expect the exact same family of perturba-
tions

{c1 · e1(xnew) + . . . + ck · ek(xnew)}.
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In terms of the original coordinates, this new family has the form

{c1 · e1(x− x0) + . . . + ck · ek(x− x0)}.

This “shifted” family must coincide with the original one. In particular, every basis
function ei(x − x0) from the shifted basis must belong to the original family, i.e.,
must have the form

ei(x− x0) =
k∑

j=1

cij(x0) · ej(x)

for some coefficients cij which are, in general, depending on the shift x0.

Smoothness: an additional requirement. In many physical problems, it is
reasonable to consider smooth perturbations, i.e., perturbations for which the func-
tions ei(x) are differentiable. In this case, by considering different values x, we get
a system of linear equations for determining cij(x0) in terms of the smooth func-
tions ei(x− x0) and ej(x). The solution of a system of linear equations is – due to
Cramer’s rule – a smooth function of the coefficients and of the right-hand sides.
Thus, the solutions cij(x0) are also smooth.

From the requirements to the description of the desired family L. Let
us fix one of the spatial coordinates, e.g., the coordinate x1. For shifts w.r.t. this
coordinate, we have

ei(x1 − x0, x2, . . .) =
k∑

j=1

cij(x0) · ej(x1, x2, . . .).

Since the functions ei(x1− x0, . . .) and cij(x0) are smooth, we can differentiate
both sides of the above equation with respect to x0 and take x0 = 0. For each
components of x0, we get a system of linear differential equations

e′i = −
∑

c′ij(0) · ej

with constant coefficients. A general solution to such a system is well known: it
is a linear combination of expressions x

k1j

1 · exp(a1j · x1) with complex values a1j

(eigenvalues of the matrix −c′ij(0)) and integers k1j ≥ 0 (multiplicities of these
eigenvalues).

Some of these solutions tend to infinity exponentially fast. Such solutions are
not useful as perturbations, since perturbations must be uniformly small. So, it is
reasonable to restrict ourselves to bounded perturbations.

This boundedness eliminates the terms with Re(a1j) 6= 0. Thus, the only re-
maining terms correspond to imaginary values a1j – i.e., to sinusoids. For these
terms, boundedness also eliminates terms with k1j > 0, so we only get pure sinu-
soids:

ei(x1, x2, . . .) =
∑

j

Cj(x2, . . .) · sin(ω1j · x1).
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The functions Cj(x2, . . .) can be computed as linear combinations of the values
ei(x1, x2, . . .) corresponding to different values x1. On the other hand, the depen-
dence of ei on x2 is also a linear combination of sinusoids. Thus, the functions
Cj(x2, . . .) are linear combinations of sinusoids in x2. Substituting these linear
combinations instead of Cj(x2, . . .) into the above formula, and taking into ac-
count that sin(a) · sin(b) is a linear combination of cos(a + b) and cos(a − b), we
conclude that the dependence of ei on x1 and x2 takes the form

ei(x1, x2, x3, . . .) =
∑

k

Ck(x3, . . .) · sin(ω1k · x1 + ω2k · x2).

Similarly, we can add x3, etc., and conclude that each function ei(x) is a linear
combination of the sinusoids sin(

∑
ωj · xj + ϕ).

Comment. In the above text, we assumed that the desired linear space is shift-
invariant. Instead, as we show in the Appendix, we can assume that the desired
linear space is optimal with respect to some reasonable optimality criterion – and
get the same conclusion, that we should use sinusoids.

Conclusion. We conclude that the optimal perturbations are linear combina-
tions of sinusoids. We thus arrive at the following recommendation: use sinusoidal
perturbations.
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A Perturbation Selection as an Optimization Prob-
lem

Which linear space is the best? In this Appendix, we consider the problem
of selecting the perturbations as the precise optimization problem – and then solve
this problem.

Among all possible linear spaces of functions L of a given dimension k, we want
to choose the best one. In formalizing what “the best” means we follow the general
idea described in [5].

The criteria to choose may be computational simplicity, efficiency of detecting
small features, or something else. In mathematical optimization problems, numeric
criteria are most frequently used, when to every space we assign some value express-
ing its performance, and choose a space for which this value is maximal. However,
it is not necessary to restrict ourselves to such numeric criteria only. For example,

• if we have several different spaces that have the same (numerically described)
ability A to detect small features,

• we can choose, between these spaces, the one that has the minimal compu-
tational complexity C.

In this case, the actual criterion that we use to compare two spaces is not numeric,
but more complicated: a space L1 is better than the family L2 if and only if either
A(L1) > A(L2) or A(L1) = A(L2) and C(L1) < C(L2).

A criterion can be even more complicated. What a criterion must do is to allow
us for every pair of spaces L1 and L2 to tell whether

• the first space is better with respect to this criterion (we’ll denote it by
L1 > L2),

• or the second space is better (L1 < L2),

• or these spaces have the same quality in the sense of this criterion (we’ll
denote it by L1 ∼ L2).

Of course, it is necessary to demand that these choices be consistent, e.g., if L1 > L2

and L2 > L3 then L1 > L3.
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The criterion must select a unique optimal space. Another natural demand
is that this criterion must choose a unique optimal space (i.e., a space which is better
with respect to this criterion than any other space). The reason for this demand
is very simple.

If a criterion does not choose any space at all, then it is of no use.
If several different spaces are “the best” according to this criterion, then we

still have a problem to choose among those “best”. Therefore, we need some
additional criterion for that choice. For example, if several spaces turn out to have
the same ability to detect small features, we can choose among them a space with
the minimal computational complexity. So what we actually do in this case is
abandon that criterion for which there were several “best” spaces, and consider
a new “composite” criterion instead: F1 is better than F2 according to this new
criterion if

• either it was better according to the old criterion

• or according to the old criterion they had the same quality and F1 is better
than F2 according to the additional criterion.

In other words, if a criterion does not allow us to choose a unique best space, it
means that this criterion is not final; we have to modify it until we come to a final
criterion that will have that property.

The criterion must be shift-invariant. The next natural condition that the
criterion must satisfy is connected with the shift. Shifting simply means that we
change the origin of the coordinate system. Thus, shift should not change the
relative quality of the two spaces: if a space L1 is better than the space L2, then
the “shifted” space Tx0(L1) = {e(x− x0) : e ∈ L1} must be better than a similarly
shifted space Tx0(L2).

Now, we are ready for the formal definitions.

Definition 1. A pair of relations (>,∼) is called consistent if it satisfies the
following conditions:

(1) if a > b and b > c then a > c;

(2) a ∼ a;

(3) if a ∼ b then b ∼ a;

(4) if a ∼ b and b ∼ c then a ∼ c;

(5) if a > b and b ∼ c then a > c;

(6) if a ∼ b and b > c then a > c;

(7) if a > b then b > a or a ∼ b are impossible.
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Definition 2. Assume a set A is given. Its elements will be called alternatives.

• By an optimality criterion we mean a consistent pair (>,∼) of relations on
the set A of all alternatives.

• If a > b, we say that a is better than b.

• If a ∼ b, we say that the alternatives a and b are equivalent with respect to
this criterion.

• We say that an alternative a is optimal (or best) with respect to a criterion
(>,∼) if for every other alternative b either a > b or a ∼ b.

Definition 3. We say that a criterion is final if there exists an optimal alterna-
tive, and this optimal alternative is unique.

In this paper, we fix an integer k, and we consider optimality criteria on the set L
of all k-dimensional linear spaces of bounded smooth (= differentiable) functions.

Definition 4. Let x0 be a vector.

• By the x0-shift of a function e(x) we mean a function enew = Tx0(e) for which
enew(x) = e(x− x0).

• By the x0-shift of a space L, we mean a space Tx0(L) = {e | e ∈ L}.

• We say that an optimality criterion on the set L is shift-invariant if for every
two spaces L1 and L2 and for every vector x0, the following two conditions
are hold:

i) if L1 is better than L2 in the sense of this criterion (i.e., L1 > L2), then
Tx0(L1) > Tx0(L2);

ii) if L1 is equivalent to L2 in the sense of this criterion (i.e., L1 ∼ L2),
then Tx0(L1) ∼ Tx0(L2).

Discussion. As we have already remarked, the demands that the optimality
criterion is final and shift-invariant are quite reasonable. The only problem with
them is that at first glance they may seem rather weak. However, they are not, as
the following theorem shows:

Theorem. If a space L is optimal in the sense of some optimality criterion that
is final and shift-invariant, then all elements of L are linear combinations of sinu-
soids.

15



Neural Network World ?/09, ??

Proof: first part. Let us first prove that the optimal space Lopt exists and
is shift-invariant in the sense that Lopt = Tx0(Lopt) for all vectors x0. Indeed,
we assumed that the optimality criterion is final, therefore there exists a unique
optimal space Lopt. Let’s now prove that this optimal family is shift-invariant.

The fact that Lopt is optimal means that for every other space L, either Lopt > L
or Lopt ∼ L. If Lopt ∼ L for some L 6= Lopt, then from the definition of the
optimality criterion we can easily deduce that L is also optimal, which contradicts
the fact that there is only one optimal family. So for every L,

• either Lopt > L

• or Lopt = L.

Let us take an arbitrary x0 and let L = Tx0(Lopt). If Lopt > L = Tx0(Lopt), then
from the shift-invariance of the optimality criterion (condition ii) we conclude that
T−x0(Lopt) > Lopt, and this conclusion contradicts the choice of Lopt as the optimal
space. So Lopt > L = Tx0(Lopt) is impossible, and therefore Lopt = L = Tx0(Lopt).
Thus, the optimal space is really shift-invariant.

Proof: second part. In the main text, we have already proven that in every
shift-invariant linear space of bounded smooth functions, all elements are linear
combinations of sinusoids.

So, the theorem is proven.
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