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Abstract

In many practical applications, it turns out to be useful to use the no-
tion of fuzzy transform: once we have functions A1(x) ≥ 0, . . . , An ≥ 0,

with
n∑

i=1

Ai(x) = 1, we can then represent each function f(x) by the coef-

ficients Fi =

∫
f(x) ·Ai(x) dx∫

Ai(x) dx
. Once we know the coefficients Fi, we can

(approximately) reconstruct the original function f(x) as
n∑

i=1

Fi · Ai(x).

The original motivation for this transformation came from fuzzy model-
ing, but the transformation itself is a purely mathematical transforma-
tion. Thus, the empirical successes of this transformation suggest that
this transformation can be also interpreted in more traditional (non-fuzzy)
mathematics as well.

Such an interpretation is presented in this paper. Specifically, we show
that the 2002 probabilistic interpretation of fuzzy modeling by Sánchez
et al. can be modified into a natural probabilistic explanation of fuzzy
transform formulas.

Keywords: F-transform, fuzzy modeling, probabilistic interpretation,
fuzzy control

1 Introduction: Fuzzy Transform and the Need
for Its Probabilistic Interpretation

Fuzzy transform: a definition. The notion of a fuzzy transform (F-
transform, for short) turned out to be very useful in many application areas
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such as image compression, solving differential equations under initial uncer-
tainty, etc.; see, e.g., [12, 13] and references therein.

Generally speaking, the F-transform of function f is a vector with weighted
local mean values of f as components. The first step in the definition of the
F-transform of f : X −→ R is a selection of a fuzzy partition of universal set X
(e.g, a bounded interval [a, b] on R) by a finite set of basic functions

A1(x) ≥ 0, . . . , An(x) ≥ 0,

which are continuous and satisfy the condition:
n∑

i=1

Ai(x) = 1. Basic functions

are called membership functions of respective fuzzy sets, or, alternatively, gran-
ules, information pieces, etc. Their choice reflects the type of uncertainty which
is related to the knowledge of x.

Once the basic functions are selected, we define the F-transform of a contin-
uous function f : X −→ R as a vector (F1, . . . , Fn) where

Fi
def
=

∫
f(x) ·Ai(x) dx∫

Ai(x) dx
. (1)

F-transform satisfies the following properties [12, 13]:

• y = Fi minimizes
∫ b

a
(f(x)− y)2Ai(x)dx,

• for a twice continuously differentiable function f , Fi = f(xi) + O(h2
i ),

where hi is the length of the support of Ai.

F-transform is used in applications as a “skeleton model” of f . This model
provides a compressed image if f is an image [3], values of a trend if f is a time
series [14], a numeric model if f is used in numeric computations (integration,
differentiation) [15], etc.

Once we know the F-transform components Fi, we can (approximately) re-
construct the original function f as

f(x) =
n∑

i=1

Fi ·Ai(x). (2)

In [12], the formula (2) is called the F-transform inversion formula. The formula
(2) represents a continuous function that approximates f . Under certain reason-
able conditions, a sequence of functions represented by (2) uniformly converges
to f (see [12] for more details).

Example. Let us give an example of the F-transform of x2 on the domain
[0, 1] with respect to A1, . . . , A5. For simplicity, we assume that basic functions
A1, . . . , A5 are of triangular shape and constitute a uniform fuzzy partition of

2



[0, 1]. Their analytical representation is as follows:

A1(x) =

{
1− 4x, if x ∈ [0, 0.25],

0, otherwise,
A2(x) =


4x, if x ∈ [0, 0.25],

2− 4x, if x ∈ [0.25, 0.5],

0, otherwise,

A3(x) =


4x− 1, if x ∈ [0.25, 0.5],

3− 4x, if x ∈ [0.5, 0.75],

0, otherwise,

A4(x) =


4x− 2, if x ∈ [0.5, 0.75],

4− 4x, if x ∈ [0.75, 1.0],

0, otherwise,

A5(x) =

{
4x− 3, if x ∈ [0.75, 1.0],

0, otherwise.

By (1), the value of the components F1, . . . , F5 of the F-transform are:

F1 =
1

0.125
·
∫ 0.25

0

x2 · (1− 4x) dx ≈ 0.01,

F2 =
1

0.25
·
(∫ 0.25

0

x2 · 4x dx+

∫ 0.5

0.25

x2 · (2− 4x) dx

)
≈ 0.08,

F3 =
1

0.25
·
(∫ 0.5

0.25

x2 · (4x− 1) dx+

∫ 0.75

0.5

x2 · (3− 4x) dx

)
≈ 0.26,

F4 =
1

0.25
·
(∫ 0.75

0.5

x2 · (4x− 2) dx+

∫ 1

0.75

x2 · (4− 4x) dx

)
≈ 0.58,

F5 =
1

0.125
·
∫ 1

0.75

x2 · (4x− 3) dx ≈ 0.85.

Figure 1 provides a graphical representation of the basic functions A1, . . . , A5,
of the function f(x) = x2, of its F-transform components F1, . . . , F5, and of the
inverse F-transform f(x) of x2.

F-transform: original motivation. The original motivation for F-
transform came from fuzzy modeling [12, 13]. For example, in the situation
corresponding to the inverse F-transform, we have n rules

IF x is A1 THEN y = F1;
. . .

IF x is An THEN y = Fn.

These rules are Takagi-Sugeno (TSK) rules with singleton (constant) right-hand
sides. For TSK rules, the value corresponding to a given input x is f(x) =
n∑

i=1

Fi ·Ai(x)

n∑
i=1

Ai(x)
. Since

n∑
i=1

Ai(x) = 1, we get the above formula (2).
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Figure 1: Function x2 on [0, 1] and its F-transform components F1, . . . , F5 with
respect to A1, . . . , A5 (on the left). Function x2 on [0, 1] and its inverse F-
transform f (on the right).

The purpose was to show that this type of modeling can be as useful in ap-
plications as more traditional techniques such as Fourier transform and wavelet
transform. Moreover, F-transform has a potential advantage over Fourier and
wavelet transforms: in contrast to the purely mathematical basic functions used
in Fourier and wavelet transforms, the basic functions Ai in a fuzzy partition
usually come from natural language terms like “low” or “high”. (For a detailed
description of fuzzy modeling, see, e.g., [5, 10].)

Just like any other tool of applied mathematics, F-transform is not a
panacea. It is more successful in some problems, and in other problems, it is less
successful. It is therefore desirable to combine F-transform with other mathe-
matical tools, so as to combine relative advantages of different techniques. For
combining F-transform with other mathematical tools, it is desirable to come
up with a purely mathematical (non-fuzzy) interpretation for this transform.

In particular, since most mathematical data processing tools are based on
probability and statistics, it is desirable to come up with a probabilistic inter-
pretation for F-transform.

The known probabilistic interpretation of fuzzy modeling leads to a
probabilistic interpretation of F-transform. We have mentioned that F-
transform was originally designed as a particular case of fuzzy modeling. A
seminal paper [17] provided a reasonable probabilistic model for a particular
case of fuzzy modeling. Specifically, this paper shows that if we use piece-wise
constant probability density functions for describing the output, then we get
a particular case of a fuzzy model – the case when we use product for “and”
and sum for “or”. Since F-transform corresponds to exactly this type of fuzzy
modeling, we thus get a probabilistic model for F-transform as well.
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What we do in this paper. In this paper, we show that a modification
of the probabilistic interpretation from [17] enables us to justify formulas of
F-transform without making any additional assumptions about the probability
distributions. In mathematical terms, this modification consists of using Bayes
formulas – and making assumptions about prior distributions (a natural way to
describe prior knowledge in statistics) instead of making assumptions about the
actual distributions.

Thus, we get an even more natural probabilistic interpretation of F-
transform. Specifically:

• the paper [17] shows, in effect, that there exists a reasonable probabilistic
interpretation of the F-transform formulas;

• however, in principle, this interpretation leaves the possibility that there
exist other equally reasonable assumptions about the probability distribu-
tions can lead to different formulas;

• in our modified interpretation, we show that the basic probabilistic setting
uniquely determines the F-transform formulas – without the need to make
any assumptions about the probability distributions.

We also show that a similar modification can be applied to the probabilistic
interpretation of general fuzzy modeling formulas.

Comment. From the mathematical viewpoint, the resulting formulas are very
similar to the formulas from [17] (with the exception of the Bayes formula step).
However, in our opinion, this mathematically minor modification leads to a
major change in interpretation: now, to probabilistic researchers, F-transform is:

• not just a possible model, corresponding to one of the possible reasonable
choices of probability distributions,

• but the model uniquely emerging from the natural probabilistic setting.

Similar conclusion can be made about the probabilistic interpretation of more
general fuzzy models.

In other words, our minor modification uncovers an even deeper fundamental
meaning of the probabilistic interpretation originally proposed in [17].

2 A Natural Practical Problem that Leads to
F-transform

Physical setting: general discussion. Let us assume that we have a phys-
ical process that is characterized by two quantities x and z, and we know that
these quantities are related by a functional dependence z = f(x).

In the ideal situation of complete knowledge,

• we know the exact value of x, and
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• we have the exact description of the function f .

In this case, we can get the corresponding exact value z = f(x) of the second
quantity.

In practice, we know the value x with uncertainty, i.e., several different values
of x are consistent with our knowledge. We must therefore provide a reasonable
estimate for z. Finding such an estimate will be the first problem with which we
will be dealing. In this first problem, we assume that the function f is known
exactly.

If this function has to be determined empirically, then we shall transform
the empirical (often, partial) knowledge about f into a reasonable estimate for
this function. This will be the second problem with which we will be dealing in
this section.

First problem: estimating the value f(x) for an imprecisely known x.
If we only know one piece of information Xi about x, what is the reasonable
estimate for z = f(x)?

Second problem: estimating the function z = f(x) based on partial
information about the dependence between x and z. Assume that for
every information piece Xi, 1 ≤ i ≤ n, we have the corresponding measured
value Fi of z. Since we know only n numerical characteristics Fi of the unknown
function f , we cannot exactly reconstruct this function. Instead, we need to
provide a good estimate for each value f(x) of this function.

3 A Natural Probabilistic Problem that Leads
to the Probabilistic Interpretation of F-
transform

Uncertainty in x: a general probabilistic description. Assume that we
have a model of the estimation procedure, that enables us, given the actual value
x, to compute the probability P (Xi |x) ≥ 0 of this procedure resulting in Xi –
under the condition that the actual (unknown) value of the estimated quantity
is x.

To simplify formulas, we denote

Ai(x)
def
= P (Xi |x). (3)

Since for every x, we must have exactly one of the n possible outcomes, we thus
conclude that the probabilities P (X1 |x), . . . , P (Xn |x) of different estimation
results must add up to one, i.e., we must have

P (X1 |x) + . . .+ P (Xn |x) = 1. (4)

In the above simplified notation, this formula takes the form

A1(x) + . . .+An(x) = 1. (5)
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First problem: estimating the value f(x) for an imprecisely known
x. Let us consider the first problem. In practice, we do not know the exact
value of the quantity x. Instead, we only have one of the information pieces
Xi, 1 ≤ i ≤ n. Under the assumption that we know Xi, what is the reasonable
estimate for z = f(x)?

In terms of probability theory, we would like to find the conditional expected

value Fi
def
= E[z |Xi] = E[f(x) |Xi] of z = f(x) under the condition Xi.

By definition, this expected value is equal to

Fi = E[f(x) |Xi] =

∫
f(x) · P (x |Xi) dx. (6)

Thus, to compute this expected value, we must know the probabilities P (x |Xi).
Instead, we know the probabilities P (Xi |x).

In general, the problem of reconstructing

• probabilities P (Hx |Xi) of different hypotheses Hx based on the observa-
tion Xi from

• conditional probabilities P (Xi |Hx) of this observation under different hy-
potheses Hx

is well known in probability theory; it is solved by applying the Bayes theorem.
The continuous version of this theorem is

P (Hx |Xi) =
P (Xi |Hx) · P (Hx)∫
P (Xi |Hy) · P (y) dy

, (7)

in which P (Hx) is a prior probability of the hypothesis Hx (strictly speaking,
P (Hx |Xi) and P (Hx) are probability densities).

In our case, different hypotheses Hx correspond to different possible values
x of the quantity of interest. Thus, (7) takes the form

P (x |Xi) =
P (Xi |x) · P (x)∫
P (Xi | y) · P (y) dy

. (8)

Since there is no a priori reason to prefer one value of x to the other, it is
reasonable to assume that all the values x are equally probable, i.e., that all
prior values P (x) are equal to each other: P (x) = P0.

Substituting P (x) = P0 into the formula (8) and dividing both the numerator
and the denominator by the common factor P0, we get the expression

P (x |Xi) =
P (Xi |x)∫
P (Xi | y) dy

.

Substituting this expression into formula (6) (and renaming the variable in the
denominator), we get

Fi = E[f(x) |Xi] =

∫
f(x) · P (Xi |x) dx∫

P (Xi |x) dx
.
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In terms of the simplified notation (3), we thus get

Fi = E[f(x) |Xi] =

∫
f(x) ·Ai(x) dx∫

Ai(x) dx
, (9)

i.e., exactly the formula (1) corresponding to F-transform.

Second problem: estimating the function z = f(x) based on partial
information about the dependence between x and z. In some practical
situations, we do not know the exact expression for the function f(x). Instead,
we must estimate f(x) from the empirical data, i.e., from the previous results
of simultaneous measuring x and z.

In each such measurement, the only information that we get about x is one
of the values X1, . . . , Xn. For each case when the information about x is Xi, we
have one or several values z.

Ideally, we should have a large number of values z corresponding to each
x-measurement result Xi. Based on these values z, we should then be able to
reconstruct the conditional distribution of z under the condition of Xi. Based
on these conditional distributions, we should be able to reconstruct the values
f(x) for all x.

In practice, however, we have only a few values z corresponding to each x-
measurement result Xi. In this case, at best, instead of the entire conditional
probability distribution, we can only reconstruct a single parameter – the con-
ditional mean Fi = E[z |Xi]. Since we only know n characteristics Fi of the
unknown function f(x), we cannot exactly reconstruct this function. Instead,
we need to describe a good estimates for each value f(x) of this function.

Similarly to the first problem, we take the mean as a reasonable estimate.
Thus, in the above practical setting, the problem of estimating the function
f(x) takes the following form:

• for every i, we know the conditional mean Fi = E[f(x) |Xi];

• based on these conditional means, for every x, we want to estimate the

mean value f(x)
def
= E[z |x].

For this problem, the formula of full probability leads to the following result:

E[z |x] =
n∑

i=1

E[z |Xi] · P (Xi |x). (10)

By using the notations f(x) for E[z |x], Fi for E[z |Xi], and Ai(x) for P (Xi |x),
we can transform the formula (10) into the form

f(x) =

n∑
i=1

Fi ·Ai(x), (11)

i.e., exactly the F-transform inversion formula (2).
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Conclusion. The above (minor) modification of a probability model from [17]
uniquely determined both basic formulas (1) and (2) related to F-transform.

Relation with the random set interpretation of fuzzy sets. It is worth
mentioning that the probabilistic interpretation from [17] is related to the ran-
dom set interpretation of fuzzy sets (see, e.g., [6]).

In this interpretation, the meaning of an imprecise (fuzzy) term like “small”
is based on the following idea. The fact that the term is imprecise means that
for the same value x, some people will say that this value is small, while other
people will say that this value is not small. To take this imprecision into account,
we can store, for each person, a set of all the values that this person considers
small.

Since there is no prior reason to prefer the opinion of one of these folks, we
consider their opinions equally reasonable. We can then take the ratio µsmall(x)
of people who consider x to be small as a reasonable measure of smallness.
(This is actually one of the standard ways to construct a membership function
corresponding to a certain term.)

We can describe this ratio in probabilistic terms if we assume that all the
persons are equally probable. In these terms, the value µsmall(x) can be inter-
preted as the probability P (small |x) that a randomly selected person would
consider x to be small.

This interpretation of the membership function Ai(x) as the conditional
probability P (Xi |x) is exactly what we used in our probabilistic interpretation
of F-transform.

Terminological comment. For completeness, let us explain why the above in-
terpretation is called the random sets interpretation.

For crisp (well-defined) properties, each property can be described by the
set of all the values that satisfy this property.

For each imprecise property like “small”, instead of a single set describing all
the values that satisfy this property, we have several sets describing the opinions
of several persons. We consider the opinions of all these persons to be equally
valid, so each of N persons has the exact same probability 1/N of being correct.
In this case, we have different sets, each occurring with probability 1/N .

In mathematical terms, we can describe this situation by saying that we
have a probability distribution on the class of all possible sets. In probability
theory, such a distribution is called a random set – similarly to the fact that a
probability distribution on the class of all possible numbers is called a random
number.
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4 Discussion

Let us discuss what are the consequences of the above results for the mean-
ing and usage of F-transforms1. To start this discussion, let us recall why
F-transforms were proposed in the first place.

Need for F-transforms and the resulting main advantage of F-
transforms: reminder. One of the main objectives of F-transform is to
approximate general functions by functions from a selected finite-parametric
family. This is well-known mathematical problem, and many successful tech-
niques have been developed for solving this problem. For example, we can
expand the original function by a polynomial, and then use the first few terms
in this expansion as the desired approximation. We can also use transforms such
as Fourier transform or wavelet transform, and keep only the first few terms in
the corresponding expansion as the desired approximation.

All existing approximation techniques take a function f(x) and approximate
this function. In situations in which the only information that we have about the
desired dependence y = f(x) are the values of y measured for several values of x,
this is the only thing we can do. However, in practice, we often have additional
expert knowledge about the dependence y = f(x). It is therefore desirable to
take this understanding into account when we approximate a function.

The expert knowledge is often imprecise (“fuzzy”), i.e., formulated in terms
of imprecise expert rules. A natural way to describe imprecise rules is to use
fuzzy logic and fuzzy modeling, and, as we shown, the fuzzy modeling approach
naturally leads to F-transforms.

The ability to take into account expert knowledge is thus the main advan-
tage of F-transforms, the main reason reason why F-transform has led to many
successful applications.

The probabilistic interpretation of F-transform leads to an additional
advantage of F-transform in comparison with other approximation
techniques. The above probabilistic interpretation of F-transforms shows
that each component Fi of an F-transform can be interpreted as a mean value
E[f(x) |Xi] of the approximating function f(x) under the condition that the
unknown value x is consistent with the measurement result Xi. It is well known
that in probability theory, the mean value can be alternatively described as
the value z that minimizes the mean square difference between this value and
the actual value f(x), i.e., that minimizes the expression E

[
(f(x)− z)2 |Xi

]
.

Thus, the above relation provides an additional advantage of F-transforms in
comparison with other approximation tools:

• F-transforms not only reflect expert knowledge,

1The authors are greatly thankful to the anonymous referees who proposed the main ideas
of this discussion.
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• F-transforms also provide a solution which is optimal (in a well-defined
reasonable sense).

Gauging the accuracy of the resulting approximation. We have shown
that each component z = Fi of the F-transform provides the approximation to
f(x) which is the most accurate. The next natural question is: how accurate
is it? In other words, what is the corresponding mean square difference σ2 =
E
[
(f(x)− z)2 |Xi

]
? It turns out that the answer to this question can also be

provided in terms of F-transforms.
Namely, as it is known, for z = Fi = E[f(x) |Xi], we have

σ2 = E
[
(f(x)− z)2 |Xi

]
= E

[
f2(x) |Xi

]
−

(
E
[
(f(x)− z)2 |Xi

])2
,

i.e., σ2 = E
[
f2(x) |Xi

]
− F 2

i . The expression E
[
f2(x) |Xi

]
can also be de-

scribed in terms of F-transforms. Indeed, our result about the relation between
F-transform and conditional expected value applies to all possible functions,
including the square f2(x) of the original function f(x). Thus, each value
E
[
f2(x) |Xi

]
is equal to the i-th component Si of the F-transform of this square.

So, we arrive at the following conclusion. If we only know that x is consistent
with the measurement result Xi, then:

• a reasonable approximation for f(x) is the value Fi: the i-th component
of the F-transform, and

• the root mean square accuracy σ of this approximation is determined by
the formula σ2 = Si − F 2

i , where Si is the i-th component of the F-
transform of the function f2(x).

Similarly, for the second problem – reconstructing f(x) when we know only
know finitely many values corresponding to different i – the mean square accu-
racy of the corresponding approximation of the actual (unknown) function f(x)
by its inverse F-transform f(x) is equal to

σ2(x)
def
= E

[(
f(x)− f(x)

)2 |x
]
= E

[
f2(x) |x

]
−

(
f(x)

)2
.

The first term E
[
f2(x) |x

]
in this difference is equal to the inverse F-transform

f2(x) =
n∑

i=1

Si ·Ai(x),

where the values S1, . . . , Sn form an F-transform of the squared function f2(x).
Thus, we arrive at the following conclusion:

• If we only know the values F1, . . . , Fn of the F-transform of the actual
(unknown) dependence f(x), then, as a reasonable approximation to f(x),

we can take the inverse F-transform f(x) =
n∑

i=1

Fi ·Ai(x).
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• If, in addition to the values Fi, we also know the F-transform S1, . . . , Sn

of the square f2(x), then we can estimate the root means square accuracy

σ(x) =

√
E
[(
f(x)− f(x)

)2 |x
]
by using the formula

σ2(x) = f2(x)−
(
f(x)

)2
,

where f2(x) =
n∑

i=1

Si · Ai(x) is the inverse F-transform of the squared

function.

5 A Similar Modification of a Probabilistic In-
terpretation Is Possible For Mamdani-Style
Fuzzy Modeling (and Fuzzy Control)

From F-transform to fuzzy modeling. Let us show that the above mod-
ification of a probabilistic interpretation from [17] can be extended from F-
transform to a more general case of Mamdani-type fuzzy modeling and fuzzy
control.

Comment. In this section, we concentrate on Mamdani’s approach since F-
transform can be viewed as a particular case of this approach, and since for
Mamdani’s approach, a probabilistic interpretation is possible [17]. Please note
that while Mamdani’s approach was historically the first, at present, there are
many different approaches to fuzzy modeling and fuzzy control; we mention
some of them in this chapter, but there are many others; see, e.g., [7, 8, 9]. How
to best interpret these other approaches in probabilistic terms – and whether
such an interpretation is at all possible – is an interesting open question.

For example, an interesting question is how to interpret type-2 approaches
to fuzzy modeling and fuzzy control; see, e.g., [1, 2, 4, 20]; maybe via interval-
valued probabilities?

Mamdani’s approach to fuzzy modeling and fuzzy control: a brief
reminder. In Mamdani’s approach, we start with rules like

“if x is small, then u should be medium”,

and then use membership functions for “small” and “medium” to transform
these rules into an exact control strategy.

In general, we have rules

“if x has a property Ai then u has the property Bi” (1 ≤ i ≤ n),

with known membership functions Ai(x) and Bi(u) for the corresponding prop-
erties. Mamdani’s methodology is based on saying that for each input x, the
value u is a reasonable value of control if and only if one of the above n rules is
applicable, i.e.,
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• either the first rule is applicable, i.e., x satisfies the property A1 and u
satisfies the property B1,

• or the second rule is applicable, i.e., x satisfies the property A2 and u
satisfies the property B2,

• . . .

• or the n-th rule is applicable, i.e., x satisfies the property An and u satisfies
the property Bn.

Once we select functions f&(a, b) and f∨(a, b) to represent “and” and “or” (these
functions are called t-norm and t-conorm), we can thus describe the degree of
our belief µx(u) that u is reasonable (for a given input x) as

µx(u) = f∨(f&(A1(x), B1(u)), . . . , f&(An(x), Bn(u))). (12)

In particular, if we select f&(a, b) = a · b and f∨(a, b) = min(a+ b, 1) (and if the
added values do not go beyond 1), we get

µx(u) =

n∑
i=1

Ai(x) ·Bi(u). (13)

Once we know this membership function, we can find the appropriate value of
u by using the so-called centroid defuzzification:

u(x) =

∫
u · µx(u) du∫
µx(u) du

. (14)

A natural probabilistic analog of Mamdani’s approach to fuzzy model-
ing. In [17], it was shown that in a probabilistic setting, we get formulas similar
to Mamdani rules corresponding to f&(a, b) = a ·b and f∨(a, b) = min(a+b, 1) –
if we assume a uniform distribution on the outputs. Let us show that by using
Bayes formula, we can avoid this additional assumption, and thus, make the
resulting probabilistic analog of Mamdani’s fuzzy modeling even more natural.

Similarly to the above probabilistic interpretation of F-transform, let us as-
sume that we have possible pieces of information X1, . . . , Xn about the quantity
x, and that for each piece of information, we also know the corresponding prob-
ability P (Xi |x) which we will be denoted by Ai(x).

Similarly, let us assume that we have possible pieces of information U1, . . . ,
Um about u, and we know the corresponding probabilities P (Ui |u) which we
will denote by Bi(u).

We know that u depends on x, but we do not know the exact dependence. In-
stead, for each information Xi about x, we know the corresponding information
Uj about the corresponding u.

Since we did not select any specific order for the informations Ui, we can
select the value corresponding to X1 as U1, the value corresponding to X2 by
U2, etc. Under this selection, the available information simply means that if x is

13



described by the piece of information Xi, then the corresponding u is described
by the piece of information Ui.

Our objective is, given these rules and given a new value x, to find a good
estimate for the appropriate u.

Due to the formula of full probability, the conditional probability density
P (u |x) of u under the condition x has the form

P (u |x) =
n∑

i=1

P (u |Ui) · P (Xi |x). (15)

We know the probabilities P (Xi |x) = Ai(x). The probability densities P (u |Ui)
can be determined by using the Bayes theorem – similarly to the F-transform
case – as

P (u |Ui) =
P (Ui |u)∫
P (Ui | y) dy

, (16)

i.e., in terms of the values Bi(u), as

P (u |Ui) =
Bi(u)∫
Bi(y) dy

. (17)

Substituting the formula (17) and the expression (3) into the formula (15) (and
changing the multiplication order), we get the formula

P (u |x) =
n∑

i=1

Ai(x) ·
Bi(u)∫
Bi(y) dy

. (18)

Once we know these probabilities, we can produce the mean u as a reasonable
estimate for u:

u(x) =

∫
u · P (u |x) du∫
P (u |x) du

. (19)

These are exactly the formulas derived in [17] from the additional assumption
of a piece-wise constant output distribution. Thus, our (minor) modification
of [17] indeed uniquely determines the corresponding probabilistic analog of
Mamdani’s formulas.

In Mamdani-type setting, fuzzy and probabilistic formulas are, in
general, different. It is worth mentioning that

• while in F-transform, the probabilistic and fuzzy derivations lead to ex-
actly the same formulas,

• in the general fuzzy modeling case, as mentioned in [17], the formulas are
somewhat different:

– while the formula (19) is exactly the same as (14), with P (u |x)
instead of µx(u);

– the formula (18) is slightly different from Mamdani’s formula (13) –
by the integral in the denominator.
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Cases when fuzzy and probabilistic formulas coincide. For F-transform
(and, more generally, in all the cases when the value

∫
Bi(y) dy is the same for

all i), this additional denominator simply divides all the values P (u |x) by the
constant. This constant appears both in the numerator and in the denominator
of the formula (18) and thus, it does not affect the resulting value u(x).

Another case when the fuzzy and probabilistic formulas coincide is the case
of the Takagi-Sugeno (TSK) approach; see, e.g., [7]. This equivalence is, in
effect, proven in [17]. In the TSK approach, rules have the type

“if x has a property Ai then u = fi(x)” (1 ≤ i ≤ n),

for known functions fi(x). In the probabilistic setting, we assume that under
piece of information Ui, we must take u = fi(x). Thus, for a given input

x, we select fi(x) with probability P (Xi |x) = Ai(x), where
n∑

i=1

Ai(x) = 1.

The resulting mean u(x) is thus equal to
n∑

i=1

Ai(x) · fi(x). For the case when

n∑
i=1

Ai(x) = 1, this is exactly the TSK formula.

Comparison between fuzzy and probabilistic modeling. For Mamdani-
type situations when fuzzy and probabilistic formulas are different, the compar-
ison of the corresponding probabilistic and fuzzy rules is done, in detail, in
[17].

Let us add three more situations to this comparison, situations that are
naturally related to our modified derivation.

Case when probabilistic control is better. When the values
∫
Bi(y) dy are

different, probabilistic control and fuzzy control lead, in general, to a different
value u. We will show, on an example originally proposed by R. Yager, that in
this case, the result of the probabilistic control is closer to common sense that
the result of Mamdani’s control.

Indeed, let us consider the situation in which we have two rules:

• the first rule is a more general rule saying that if x is small, then u should
be small;

• the second rule is a very specific rule, saying that if x is very close to 0.11,
then u should be very close to 0.15.

Intuitively, if we have a value x for which a very specific rule is applicable, e.g.,
the value x = 0.11, then this specific rule should have a priority over the general
rule. However, since the width of the membership function B2(u) is small, the
corresponding term in (13) will practically not affect the resulting estimate (14).

In contrast, in the probabilistic control, the effect of B2(u) is normalized by,
crudely speaking, the total width of the corresponding function B2(u). Thus,
even the most specific rules will have – as desired – the significant influence on
the result (19).
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Comment. It should be mentioned that the problem with specific rules occurs
only in Mamdani’s approach to fuzzy control. In the alternative logical approach,
this problem does not appear; see, e.g., [11].

Another case when probabilistic control is better. The probabilistic
interpretation enables us to naturally consider more general situations in which
the rules are themselves probabilistic, i.e., when, for each i and j, we know the
conditional probability P (Ui |Xj) that if x has the property Xj , then u has the
property Ui.

In other words, instead of the original rules

“if x has the property Xi, then u has the property Ui”,

we now have rules

“if x has the property Xj , then u has the property Ui

with probability P (Ui |Xj)”.

Indeed, in this case, due to the formula of full probability, the conditional
probability density P (u |x) of z under the condition x has the form

P (u |x) =
n∑

i=1

n∑
j=1

P (u |Ui) · P (Ui |Xj) · P (Xj |x). (20)

Here, we know the original probabilities P (Ui |Xj) and the probabilities
P (Xi |x) = Ai(x). The probability densities P (u |Ui) can be determined by
using the Bayes theorem as an expression (17). Substituting the formula (17)
and the expression P (Xi |x) = Ai(x) into the formula (20) (and changing the
multiplication order), we get the formula

P (u |x) =
n∑

i=1

n∑
j=1

P (Ui |Xj) ·Aj(x) ·
Bi(u)∫
Bi(y) dy

. (21)

Once we know these probabilities, we can produce the mean u by using the
formula (19).

In some cases, fuzzy control is better. We have shown that in some
situations, probabilistic control is better than the original Mamdani’s fuzzy
control. However, in other situations, the fuzzy control is better. Let us give
two examples.

Case when Mamdani’s formulas are better. The above probabilistic for-

mulas only work for the case when
n∑

i=1

Ai(x) = 1 – i.e., in the probabilistic

terms, when the properties Ai are mutually exclusive. In practice, we may have

non-exclusive properties, in which case we may have
n∑

i=1

Ai(x) > 1.
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It is not clear how to handle this situation within the probabilistic approach.
However, such situations are not a problem if we apply fuzzy control: its formu-

las are applicable no matter whether we satisfy the requirement
n∑

i=1

Ai(x) = 1

or not.

Other cases when Mamdani’s formulas are better. The probabilistic
interpretation is only possible when we use multiplication and addition as “and”
and “or” operations f& and f∨.

Fuzzy control does not necessarily have to use these operations, it can use
different t-norms and t-conorms. It is an empirical fact that in many control
situations, the use of t-norm different from the product and of the t-conorm
different from the sum leads to a much better quality control – e.g., a more
stable or a smoother one.

In [19], we have formulated the problem of selecting the t-norm and the t-
conorm as a precise optimization problem, and for several objective functions
like smoothness or stability, we gave an explicit analytical solutions to these
optimization problem – specifically, we described the selection that leads to the
optimal values of smoothness or stability. In many of these case, the optimal
selection is indeed different from the probabilistic case of product and sum.
Thus, fuzzy control methodology indeed leads to a better quality control.

6 Conclusion

The fuzzy transform (F-transform) techniques have been lately shown to be very
successful in various applications, including applications where until recently,
only more traditional tools like Fourier transform or wavelet transform have
been applied. In many other applications, however, the traditional tools have a
clear advantage. It is therefore desirable to combine F-transform with the more
traditional tools, so as to combine the relative advantages of both techniques.
To make this combination easier, it is desirable to interpret F-transform in
traditional mathematical terms.

In this paper, we describe a modification of a probabilistic interpretation
described in [17]. In this modification, the corresponding probabilistic model
uniquely leads to the formulas of the F-transform. A similar modification is
described in a more general situation of fuzzy modeling.
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prediction of time series using fuzzy transform. In: Proceedings of WCCI
2008, IEEE International Conference on Neural Networks IJCNN’2008,
Hong Kong, June 1–6, 2008, pp. 3875–3879.

18



[15] I. Perfilieva, H. De Meyer, B. De Baets, D. Pľsková, Cauchy problem with
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