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Abstract

In the early 1920s, Pavel Urysohn proved his famous lemma (some-
times referred to as “first non-trivial result of point set topology”). Among
other applications, this lemma was instrumental in proving that under
reasonable conditions, every topological space can be metrized.

A few years before that, in 1919, a complex mathematical theory
was experimentally proven to be extremely useful in the description of
real world phenomena: namely, during a solar eclipse, General Relativity
theory – that uses pseudo-Riemann spaces to describe space-time – has
been (spectacularly) experimentally confirmed. Motivated by this success,
Urysohn started working on an extension of his lemma and of the metriza-
tion theorem to (causality-)ordered topological spaces and corresponding
pseudo-metrics. After Urysohn’s early death in 1924, this activity was
continued in Russia by his student Vadim Efremovich, Efremovich’s stu-
dent Revolt Pimenov, and by Pimenov’s students (and also by H. Buse-
mann in the US and by E. Kronheimer and R. Penrose in the UK). By
the 1970s, reasonably general space-time versions of Uryson’s lemma and
metrization theorem have been proven.

However, these 1970s results are not constructive. Since one of the
main objectives of this activity is to come up with useful applications
to physics, we definitely need constructive versions of these theorems –
versions in which we not only claim the theoretical existence of a pseudo-
metric, but we also provide an algorithm enabling the physicist to generate
such a metric based on empirical data about the causality relation. An
additional difficulty here is that for this algorithm to be useful, we need
a physically relevant constructive description of a causality-type ordering
relation.

In this paper, we propose such a description and show that for this de-
scription, a combination of the existing constructive ideas with the known
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(non-constructive) proof leads to successful constructive space-time ver-
sions of the Uryson’s lemma and of the metrization theorem.

1 Introduction

Urysohn’s lemma. In the early 1920s, Pavel Urysohn proved his famous
lemma (sometimes referred to as “first non-trivial result of point set topology”).
This lemma deals with normal topological spaces, i.e., spaces in which every two
disjoint closed sets have disjoint open neighborhoods; see, e.g., [12]. As the very
term “normal” indicates, most usual topological space are normal, including the
n-dimensional Euclidean space.

Urysohn’s lemma states that is X is a normal topological space, and A
and B are disjoint closed sets in X, then there exists a continuous function
f : X → [0, 1] for which f(a) = 0 for all a ∈ A and f(b) = 1 for all b ∈ B.

Resulting metrization theorem. Urysohn’s lemma has many interesting
applications. Among other applications, this lemma was instrumental in proving
that under reasonable conditions, every topological space can be metrized.

Specifically, from this lemma, we can easily conclude that every normal
space X with countable base is metrizable, i.e., there exist a metric – a function
ρ : X ×X → R+

0 for which the following three conditions are satisfied

ρ(a, b) = 0 ⇔ a = b;

ρ(a, b) = ρ(b, a);

ρ(a, c) ≤ ρ(a, b) + ρ(b, c);

and for which the original topology on X coincides with the topology generated
by the open balls Br(x) = {y : ρ(x, y) < r}.

Comment. It is worth mentioning that the normality condition is too strong
for metrizability: actually, it is sufficient to require that the space is:

• regular, i.e., for every closed set A and every point b 6 A can be separated
by disjoint open neighborhoods, and

• Hausdorff, i.e., that every two different points have disjoint open neigh-
borhoods.

Space-time geometry and how it inspired Urysohn. A few years be-
fore Urysohn’s lemma, in 1919, a complex mathematical theory was experi-
mentally proven to be extremely useful in the description of real world phe-
nomena. Specifically, during a solar eclipse, General Relativity theory – that
uses pseudo-Riemann spaces to describe space-time – has been (spectacularly)
experimentally confirmed; see, e.g., [20].
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From the mathematical viewpoint, the basic structure behind space-time
geometry is not simply a topological space, but a topological space with an
order a ¹ b whose physical meaning is that the event a can causally influence
the event b.

For example, in the simplest case of the Special Relativity theory, the event
a = (a0, a1, a2, a3) can influence the event b = (b0, b1, b2, b3) if we can get from
the spatial point (a1, a2, a3) at the moment a0 to the point (b1, b2, b3) at the
moment b0 > a0 which traveling with a speed which is smaller than or equal to
the speed of light c:

√
(a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2 ≤ c · (b0 − a0).

-
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Motivated by this practical usefulness of ordered topological spaces, Urysohn
started working on an extension of his lemma and of the metrization theorem
to (causality-)ordered topological spaces and corresponding pseudo-metrics.

Space-time metrization after Urysohn. P. S. Urysohn did not have time
to work on the space-time extension of his results, since he died in 1924 at an
early age of 26.
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After Urysohn’s early death, this activity was continued in Russia by his
student Vadim Efremovich, by Efremovich’s student Revolt Pimenov, and by
Pimenov’s students – and also by H. Busemann in the US and by E. Kronheimer
and R. Penrose in the UK [10, 13, 22] (see also [16]).

This research actively used the general theory of ordered topological spaces;
see, e.g., [21].

By the 1970s, reasonably general space-time versions of Uryson’s lemma and
metrization theorem have been proven; see, e.g., [14, 15].

Space-time metrization results: main challenge. One of the main objec-
tives of the space-time metrization activity is to come up with useful applications
to physics.

From this viewpoint, we definitely need constructive versions of these theo-
rems – versions in which we not only claim the theoretical existence of a (pseudo-
)metric, but we also provide an algorithm enabling a physicist to generate such
a metric based on empirical data about the causality relation.

The original 1970s space-time metrization results are not constructive. It is
therefore necessary to make them constructive.

An additional difficulty here is that for this algorithm to be useful, we need a
physically relevant constructive description of a causality-type ordering relation.

What we do in this paper. In this paper,

• we propose a physically relevant constructive description of a causality-
type ordering relation, and

• we show that for this description, a combination of the existing construc-
tive ideas with the known (non-constructive) proof leads to successful con-
structive space-time versions of the Uryson’s lemma and of the metrization
theorem.

2 Known Space-Time Metrization Results: Re-
minder

Causality relation: the original description. The current formalization
of space-time geometry start with a transitive relation a ¹ b on a topological
space X.

The physical meaning of this relation is causality – that an event a can
influence the event b. This meaning explains transitivity requirement: if a can
influence b and b can influence c, this means that a can therefore (indirectly)
influence the event c.

Need for a more practice-oriented definition. On the theoretical level,
the causality relation ¹ is all we need to known about the geometry of space-
time.
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However, from the practical viewpoint, we face an additional problem – that
measurements are never 100% accurate and therefore, we cannot locate events
exactly. When we are trying to locate an event a in space and time, then, due to
measurement uncertainty, the resulting location ã is only approximately equal
to the actual one: ã ≈ a.

From this viewpoint, when we observe that an event a influences the event
b, we record it as a relation between the corresponding approximations – i.e.,
we conclude that ã ¹ b̃. However, this may be a wrong conclusion: for example,
if an event b is at the border of the future cone Fa

def= {b : a ¹ b} of the event
a, then

• we have a ¹ b, but

• the approximate location b̃ may be outside the cone,

so the conclusion a ¹ b̃ is wrong.

a
*

* * b̃
b

-
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Kinematic causality: a practice-oriented causality relation. To take
into account measurement uncertainty, researchers use a different causality re-
lation a ≺ b, meaning that every event in some small neighborhood of b causally
follows a, i.e., that b belongs to the interior Int(Fa) of the future cone Fa.
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In the simplest space-time of special relativity, this means that we are exclud-
ing the border of the future cones (that corresponds to influencing by photons
and other particles traveling at a speed of light c) and only allow causality by
particle whose speed is smaller than c. The motion of such particles is known
as kinematics, hence this new practice-oriented causality relation is called kine-
matic causality.

These definition implies, e.g., that the kinematic casuality relation is tran-
sitive, as well as several other reasonable properties. These properties lead to
the following formal definition of the kinematic causality relation.

Resulting definition of kinematic causality. A relation ≺ is called a kine-
matic causality if it is transitive and satisfies the following properties:

a 6≺ a; ∀a ∃a, a (a ≺ a ≺ a); a ≺ b ⇒ ∃c (a ≺ c ≺ b);

a ≺ b, c ⇒ ∃d (a ≺ d ≺ b, c); b, c ≺ a ⇒ ∃d (b, c ≺ d ≺ a).

Topology and causality can be defined in terms of kinematic causality
relation. We started our description with a pre-ordered topological space X
with a causality relation ¹. Based on topology and on the causality relation,
we defined the kinematic causality ≺.

It turns out that in many reasonable cases, it is sufficient to know the kine-
matic causality relation ≺. Based on this relation, we can uniquely reconstruct
both the topology and and the original causality relation ¹.

Indeed, as a topology, we can take a so-called Alexandrov topology in which
intervals

(a, b) def= {c : a ≺ c ≺ b}
form the base.

Once the topology is defined, we can now describe causality as

a ¹ b
def≡ b ∈ a+,

where a+ def= {b : a ≺ b} and S denotes the closure of the set S.

Comment. In principle, we can use a dual definition a ¹ b
def≡ a ∈ b−, where

b− def= {c : c ≺ b}. To make sure that these two definitions lead to the same
result, the following additional property is usually required:

b ∈ a+ ⇔ a ∈ b−.

Towards a space-time analog of a metric. Traditional metric is defined
as a function ρ : X ×X → R+

0 for which the following properties are satisfied:

ρ(a, b) = 0 ⇔ a = b;
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ρ(a, b) = ρ(b, a);

ρ(a, c) ≤ ρ(a, b) + ρ(b, c).

The usual physical meaning of this definition is that ρ(a, b) is the length of the
shortest path between a and b. This meaning leads to a natural explanation for
the triangle inequality ρ(a, c) ≤ ρ(a, b) + ρ(b, c). Indeed, the shortest path from
a to b (of length ρ(a, b)) can be combined with the shortest path from b to c (of
length ρ(b, c)) into a single combined path from a to c of length ρ(a, b)+ ρ(b, c).
Thus, the length ρ(a, c) of the shortest possible path between a and c must be
smaller than or equal to this combined length: ρ(a, c) ≤ ρ(a, b) + ρ(b, c).

In space-time, we do not directly measure distances and lengths. The only
thing we directly measure is (proper) time along a path. So, in space-time
geometry, we talk about times and not lengths.

It is well known that if we travel with a speed close to the speed of light,
then the proper travel time (i.e., the time measured by a clock that travels with
us) goes to 0. Thus, in space-time, the smallest time does not make sense: it is
always 0. What makes sense is the largest time. In view of this, we can define a
“kinematic metric” τ(a, b) as the longest (= proper) time along the path from
event a to event b.

Of course, such a path is only possible if a kinematically precedes b, i.e., if
a ≺ b.

If a ≺ b and b ≺ c, then the longest path from a to b (of length τ(a, b)) can
be combined with the longest path from b to c (of length τ(b, c)) into a single
combined path from a to c of length τ(a, b)+ τ(b, c). Thus, the length τ(a, c) of
the longest possible path between a and c must be larger than or equal to this
combined length: τ(a, c) ≥ τ(a, b) + τ(b, c). This inequality is sometimes called
the anti-triangle inequality.

These two properties constitute a formal definition of a kinematic metric.

Definition of a kinematic metric. By a kinematic metric on a X with a
kinematic causality relation ≺, we mean a function τ : X × X → R+

0 that
satisfies the following two properties:

τ(a, b) > 0 ⇔ a ≺ b;

a ≺ b ≺ c ⇒ τ(a, c) ≥ τ(a, b) + τ(b, c).

Space-time analog of Urysohn’s lemma. The main condition under which
the space-time analog of Urysohn’s lemma is proven is that the space X is
separable, i.e., there exists a countable dense set {x1, x2, . . . , xn, . . .}.

The lemma states that if ≺ is a kinematic causality relation on a separable
space X, and a ≺ b, then there exists a continuous ¹-monotonic function

f(a,b) : X → [0, 1]

for which:
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• f(a,b)(x) = 0 for all x for which a 6≺ x, and

• f(a,b)(x) = 1 for all x for which b ¹ x.

This lemma is similar to the original Urysohn’s lemma, because it proves
the existence of a function f(a,b) that separates two disjoint closed sets:

• the complement −a+ to the set and

• the set b+.

The new statement is different from the original Urysohn’s lemma, because:

• first, it only considers special closed sets, and

• second, in contrast to the original Uryson’s lemma, the new lemma also
requires that the separating function f be monotonic.

Space-time analog of the metrization theorem. If X is a separable topo-
logical space with a kinematic causality relation ≺, then there exists a continu-
ous kinematic metric τ which generates the corresponding kinematic causality
relation ≺ — in the sense that a ≺ b ⇔ τ(a, b) > 0.

Comment. Since, as we have mentioned, the kinematic causality relation ≺
also generates the topology, we can conclude that the kinematic metric τ also
generates the corresponding topology.

How the (non-constructive) space-time metrization theorem is proved.
First, we prove that for every x, there exists a ¹-monotonic function

fx : X → [0, 1]

for which fx(b) > 0 ⇔ x ≺ b.
The proof of this statement is reasonably straightforward: since the space

is separable, there exists a decreasing sequence yi that converges to x. We can

then take fx(b) =
∞∑

i=1

2−i · f(x,yi)(b).

Next, we prove that for every x, there exists a ¹-decreasing function

gx : X → [0, 1]

for which gx(a) > 0 ⇔ a ≺ x. The proof of this second statement is similar to
the proof of the first statement.

Once these two auxiliary statements are proven, we can use the countable ev-
erywhere dense sequence {x1, x2, . . . , xn, . . .} to construct the desired kinematic
metric as

τ(a, b) =
∞∑

i=1

2−i ·min(gxi(a), fxi(b)).

It is reasonably easy to prove that thus defined function is indeed a kinematic
metric.
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3 Towards a Physically Reasonable Construc-
tive Definition of Causality

Need for a constructive definition of causality. As we have mentioned, in
order to provide a physically meaningful constructive version of the space-time
metrization theorem, we must come up with a physically meaningful construc-
tive definition of causality.

Towards a constructive definition of casuality: analysis of the physical
situation. To come up with a physically meaningful constructive definition of
causality, let us recall how causality can be physically detected.

In the ideal world, detecting whether an event a is causally related to the
event b (i.e., whether a ¹ b) is straightforward. We send a signal at event a,
and we check whether this signal was detected at b:

• if this signal is detected at b, we conclude that a ¹ b;

• if this signal is not detected at b, we conclude that a 6¹ b.

In practice, we can only locate an event with a certain accuracy. As a result,
when we try to detect whether a ¹ b, then, instead of two, we now have three
possible options:

• if the signal is detected in the entire vicinity of b, then we conclude that
a ≺ b;

• if no signal is detected in the entire vicinity of b, then we conclude that
a 6¹ b;

• in all other cases, we cannot make any conclusion.

As we increase the location accuracy, we can get more and more information
about the casuality. In general, if a ≺ b, this means that the event a affects
all the events in some vicinity of b. Thus, when the location inaccuracy is
sufficiently small, we will able to detect that a ≺ b. In other words, a ≺ b if and
only we can detect this causality for an appropriate (sufficiently high) level of
accuracy.

We can describe this situation by saying that we have a sequence of decidable
relations ≺n corresponding to increasing location accuracy, and

a ≺ b ⇔ ∃n (a ≺n b).

To detect whether a ≺ b, we repeat the above experiments with the increase
accuracy. If in all these experiments, we do not detect the effect of a on b, this
means that a is not in kinematic causality relation with b: a 6≺ b. In this negative
phenomenon does not occur, this means that for some accuracy level n, we will
be able to detect the causality. Thus, we conclude that ¬(a ≺ b) ⇒ a ≺ b,
i.e., in other words, the “Markov principle” ¬¬(a ≺ b) ⇒ a ≺ b holds for the
constructive kinematic causality relation.
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As a result, we arrive at the following constructive version of kinematic
causality.

Constructive version of kinematic causality: a definition. A relation ≺
is called a constructive kinematic casuality if it satisfies the following properties:

• ≺ is transitive: (a ≺ b & b ≺ c) ⇒ a ≺ c.

• ≺ satisfies the formula ¬¬(a ≺ b) ⇒ a ≺ b.

• ≺ satisfies the following properties:

a 6≺ a; ∀a ∃a, a (a ≺ a ≺ a); a ≺ b ⇒ ∃c (a ≺ c ≺ b);

a ≺ b, c ⇒ ∃d (a ≺ d ≺ b, c); b, c ≺ a ⇒ ∃d (b, c ≺ d ≺ a).

• If a ≺ b, then ∀c (a ≺ c ∨ b 6¹ c).

• There exists a sequence {xi} for which

a ≺ b ⇒ ∃i (a ≺ xi ≺ b).

• There exists a decidable ternary relation xi ≺n xj for which

xi ≺ xj ⇔ ∃n (xi ≺n xj).

Constructive meaning: reminder. The main difference between this new
definition and the original definition of the kinematic causality is that the ex-
istential quantifier ∃ (and the disjunction ∨) are understood constructively: as
the existence of an algorithm that provides the corresponding objects; see, e.g.,
[1, 2, 3, 4, 9, 18, 19]. In these terms:

• The formula ∀a∃a, a (a ≺ a ≺ a) means that there exists an algorithm
that, given an event a, returns events a and a for which a ≺ a ≺ a.

• The formula a ≺ b ⇒ ∃c (a ≺ c ≺ b) means that there exists an algorithm
that, given two events a and b for which a ≺ b, returns an event c for
which a ≺ c ≺ b.

• The formula a ≺ b, c ⇒ ∃d (a ≺ d ≺ b, c) means that there exists an
algorithm that, given events a, b, and c for which a ≺ b, c, returns an
event d for which a ≺ d ≺ b, c.

• The formula b, c ≺ a ⇒ ∃d (b, c ≺ d ≺ a) means that there exists an
algorithm that, given events a, b, and c for which b, c ≺ a, returns an
event d for which b, c ≺ d ≺ a.

• The formula a ≺ b ⇒ ∀c (a ≺ c ∨ b 6¹ c) means that there exists an
algorithm that, given events a, b, and c for which a ≺ b, returns either a
true statement a ≺ c or a true statement b 6¹ c.
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• The formula a ≺ b ⇒ ∃i (a ≺ xi ≺ b) means that there exists an algorithm
that, given events a and b for which a ≺ b, returns a natural number i for
which a ≺ xi ≺ b.

• The formula xi ≺ xj ⇔ ∃n (xi ≺n xj) means that there exists an algorithm
that, given natural numbers i and j for which xi ≺ xj , returns a natural
number n for which xi ≺n xj .

• Finally, the fact that the ternary relation xi ≺n xj is decidable can be
described as

∀i∀j ∀n (xi ≺n xj ∨ xi 6≺n xj).

Comment. In strictly constructive terms, we can say that points xi are simply
natural numbers, xi ≺n xj is a ternary relation between natural numbers, and
an arbitrary constructive event a can be described by two constructive sequences
mi and Mi for which xmi

≺ a ≺ xMi
, xmi

→ x, and xMi
→ x.

In these terms, if an event a is described by sequences mi and Mi and an
event b is described by sequences ni and Ni, then a ≺ b means that there exist
i and j for which xMi ≺ xnj .

4 Constructive Space-Time Version of Urysohn’s
Lemma

Formulation of the result. For every constructive kinematic casuality rela-
tion, for every a ≺ b, there exists a monotonic function f(a,b) : X → [0, 1] for
which f(a,b)(−a+) = 0 and f(a,b)(b+) = 1.

Comment. This formulation is interpreted constructively.
A real number x is given constructively if we have an algorithm that, given

accuracy k, returns a rational number rk for |rk − x| ≤ 2−k. A function f(x) is
given constructively if, given an input x, we can compute the value f(x) with a
given accuracy.

In this sense, the above formulation means the existence of an algorithm,
that, given a, b, x, and a given accuracy k, computes the rational number which
is 2−k-close to f(a,b)(x).

Proof: Part 1. Let us define ≺-monotonic values γ(p/2q) for all natural
numbers p and q for which p ≤ 2q. We will define them inductively, first for
q = 0, then for q = 1, etc.

• For q = 0: We take γ(0) = a and γ(1) = b.

• From q to q + 1: Since (2p)/2q+1 = p/2q, the values γ((2p)/2q+1) are
already defined. We just need to define the values γ((2p + 1)/2q+1) corre-

11



sponding to a midpoint

(2p + 1)/2q+1 =
p/2q + (p + 1)/2q

2

between p/2q = (2p)/2q+1 and (p + 1)/2q = (2p + 2)/2q+1. For each p,
since γ(p/2q) ≺ γ((p + 1)/2q), there exists an i for which

γ(p/2q) ≺ xi ≺ γ((p + 1)/2q).

We then take γ((2p + 1)/2q+1) = xi.

Comment. In this paper, we operate within an algorithmic approach to con-
structive mathematics, where existence means the existence of an algorithm. For
readers who are more familiar with more general axiomatic approach to con-
structive mathematics, it is worth mentioning that this construction requires
dependent choice.

Proof: Part 2. For every x, we now define f(a,b)(x) def= sup{r : γ(r) ≺ x}.
Let us explain how this function can be computed.

Due to the properties of the constructive kinematic causality relation, for
each x and for each p and q, we have

γ(p/2q) ≺ x ∨ γ((p + 1)/2q) 6¹ x,

hence
f(a,b)(x) > p/2q ∨ f(a,b)(x) ≤ (p + 1)/2q.

In other words, there exist an algorithm that, given x, p, and q, tells us whether
f(a,b)(x) > p/2q or f(a,b)(x) ≤ (p+1)/2q. For each q, by applying this algorithm
for different p ≤ 2q, we can compute the value f(a,b)(x) with accuracy 2−q.

So, the function f(a,b)(x) is indeed computable. The lemma is proven.

5 Constructive Space-Time Metrization Theo-
rem

Formulation of the result. For every constructive kinematic causality rela-
tion ≺, there exists a kinematic metric τ(a, b) for which a ≺ b ⇔ τ(a, b) > 0.

Comment. This formulation is meant as a constructive one: that there exists
an algorithm that computes the values of τ(a, b).
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Proof. In this proof, we use the above lemma, that for all a ≺ b, there exists
a ¹-monotonic function f(a,b) : X → [0, 1] for which f(a,b)(−a+) = 0 and
f(a,b)(b+) = 1.

Let us define, for every i, the following auxiliary function fxi : X → [0, 1]:

fxi(b)
def=

∑

j,n: xi≺nxj

2−j · 2−n · f(xi,xj)(b).

Since the relation xi ≺n xj is decidable, this function is computable: to compute
it with accuracy 2−p, it is sufficient to consider finitely many terms (j, n).

From the ¹-monotonicity of the functions f(xi,xj)(x), one can conclude that
their linear combination fxi

(b) is also ¹-monotonic.
It is also possible to prove that

fxi
(b) > 0 ⇔ xi ≺ b.

Indeed:

• If fxi(b) > 0, this means that f(xi,xj)(b) > 0 for some j. Since

f(xi,xj)(−x+
i ) = 0,

this means that b cannot belong to the complement −x+
i , i.e., that

¬¬(xi ≺ b).

Thus, we have xi ≺ b.

• Vice versa, if xi ≺ b, then there exists a j for which xi ≺ xj ≺ b and thus,
f(xi,xj)(b) = 1. Since xi ≺ xj , there exists an n for which xi ≺n xj and
thus, fxi(b) ≥ 2−j · 2−n > 0.

Similarly, we define functions gxi(a) which are ¹-decreasing and for which
gxi(a) > 0 ⇔ a ≺ xi.

Now, we can define the kinematic metric in the same way as in the non-
constructive proof:

τ(a, b) =
∞∑

i=1

2−i ·min(gxi(a), fxi(b)).

Since 0 ≤ gxi(a) ≤ 1 and 0 ≤ fxi(b) ≤ 1, we have

0 ≤ min(gxi(a), fxi(b)) ≤ 1.

One can easily check that this formula defines a computable function: to com-
pute it with accuracy 2−p, it is sufficient to compute the sum of the terms
i = 1, . . . , p, the remaining terms are bounded from above by the sum

2−(p+1) + 2−(p+2) + . . . = 2−p.

So, to complete the proof, we need to prove:
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• that the function τ(a, b) is in correct relation with the kinematic causality
relation, and

• that this function satisfies the anti-triangle inequality.

Let us first prove that a ≺ b ⇔ τ(a, b) > 0:

• If a ≺ b, then there exists i for which a ≺ xi ≺ b. Thus, by the properties
of the functions fxi

and gxi
, we have gxi

(a) > 0 and fxi
(b) > 0 and thus,

min(gxi
(a), fxi

(b)) > 0. Hence, we have τ(a, b) > 0.

• Vice versa, if τ(a, b) > 0, this means that there exists an i for which
min(gxi

(a), fxi
(b)) > 0, i.e., for which gxi

(a) > 0 and fxi
(b) > 0. By the

properties of the functions fxi and gxi , this means that a ≺ xi and xi ≺ b.
By transitivity, we can now conclude that a ≺ b.

To prove the anti-triangle inequality, let us prove that a similar anti-triangle
inequality holds for each of the expressions min(gxi(a), fxi(b)), i.e., that

a ≺ b ≺ c

implies that

min(gxi(a), fxi(b)) + min(gxi(b), fxi(c)) ≤ min(gxi(a), fxi(c)).

Once we prove this, the desired anti-triangle inequality can be obtained by
simply multiplying each of these inequalities by 2−i and adding them.

To prove the above inequality, let us take into account that for every real
number x, it not possible not to have x > 0 ∨ x ≤ 0:

¬¬(x > 0 ∨ x ≤ 0).

Thus, we can consider separately

• situations when min(gxi(a), fxi(b)) > 0 and

• situations when min(gxi(a), fxi(b)) = 0,

and conclude that the double negation of the desired inequality holds. Since for
constructive real numbers, ¬¬(p ≤ q) is constructively equivalent to p ≤ q, we
get the desired inequality.

If min(gxi(a), fxi(b)) > 0, this means that xi ∈ (a, b). Since a ≺ b ≺ c, this
implies that we cannot have xi ∈ (b, c), and hence, that min(gxi(b), fxi(c)) = 0.
Since the function fxi(b) is ¹-monotonic and b ≺ c, we have fxi(b) ≤ fxi(c) and
thus, min(gxi(a), fxi(b)) ≤ min(gxi(a), fxi(c)). Due to min(gxi(b), fxi(c)) = 0,
we have min(gxi(a), fxi(b)) + min(gxi(b), fxi(c)) = min(gxi(a), fxi(b)) and thus,
we get the desired inequality

min(gxi(a), fxi(b)) + min(gxi(b), fxi(c)) ≤ min(gxi(a), fxi(c)).
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If min(gxi(b), fxi(c)) > 0, this means that xi ∈ (b, c). Since a ≺ b ≺ c, this
implies that we cannot have xi ∈ (a, b), and hence, that min(gxi

(a), fxi
(b)) = 0.

Since the function gxi
(b) is ¹-decreasing and a ≺ b, we have gxi

(b) ≤ gxi
(a) and

thus, min(gxi(b), fxi(c)) ≤ min(gxi(a), fxi(c)). Due to min(gxi(a), fxi(b)) = 0,
we have min(gxi

(a), fxi
(b)) + min(gxi

(b), fxi
(c)) = min(gxi

(b), fxi
(c)) and thus,

we get the desired inequality

min(gxi(a), fxi(b)) + min(gxi(b), fxi(c)) ≤ min(gxi(a), fxi(c)).

Finally, if min(gxi(a), fxi(b)) = 0 and min(gxi(b), fxi(c)) = 0, then

min(gxi(a), fxi(b)) + min(gxi(b), fxi(c)) = 0

and hence, since min(gxi
(a), fxi

(c)) ≥ 0, we also have the desired anti-triangle
inequality.

The theorem is proven.

6 Auxiliary Results

Similar techniques enable us to prove constructive versions of other results about
space-time models.

Time coordinate. A time coordinate t on a space X with a kinematic causal-
ity relation ≺ can be defined as a function t : X → R for which:

• a ≺ b ⇒ t(a) < t(b); and

• a ¹ b ⇒ t(a) ≤ t(b).

The constructive version of a time coordinate can be designed as follows:

t(b) def=
∞∑

i=1

2−i · fxi(b).

Since fxi(b) ∈ [0, 1], this is constructively defined (computable): to compute
t(b) with accuracy 2−p, it is sufficient to add first p terms in the sum.

Let us prove that this function is indeed the time coordinate. Indeed, since
each of the functions fxi(b) is ¹-monotonic, their convex combination t(b) is
also ¹-monotonic.

To prove that the function t(b) is ≺-monotonic, we can use the fact that
a ≺ b implies the existence of a natural number i for which a ≺ xi ≺ b. For this
i, we have fxi(a) = 0 and fxi(b) > 0, hence fxi(a) < fxi(b). For all other j 6= i,
due to a ≺ b ⇒ a ¹ b and ¹-monotonicity of fxj , we have fxj (a) ≤ fxj (b).
Thus, by adding these inequalities, we get t(a) < t(b).

Comment. This result is similar to the constructive existence of a utility func-
tion u(x), i.e., a function for which a ≺ b implies u(a) < u(b), where ≺ is a
preference relation; see, e.g., [5, 6, 7, 8].
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All possible time coordinates determine the causality relation: non-
constructive case. In Newtonian physics, time t(a) is absolute, and

a ¹ b ⇔ t(a) ≤ t(b).

One of the main discoveries that led Einstein to his Special Relativity theory
is the discovery that time is relative: a time coordinate corresponding to a mov-
ing body is different from the time coordinates corresponding to the stationary
one. In general, there are many possible time coordinates t, each of which has
the same property:

a ¹ b ⇒ ∀t (t(a) ≤ t(b)).

For each of these time coordinates t, the mere fact that t(a) ≤ t(b) does not
necessarily mean that a causally precedes b: it may happen that in some other
time coordinate, we have t(a) > t(b). What is true is that if a is not causally
preceding b, then there exist a time coordinate for which t(a) > t(b):

a 6¹ b ⇒ ∃t (t(a) > t(b)).

In non-constructive space-time geometry, the above two statements simply
mean that

a ¹ b ⇔ ∀t (t(a) ≤ t(b)),

i.e., that the causality relation is uniquely determined by the class of all possible
time coordinates.

All possible time coordinates determine the causality relation: con-
structive case. Let us show that in the constructive case, we also have the
implication

a 6¹ b ⇒ ∃t (t(a) > t(b)).

For that, we will need to impose an additional physically reasonable requirement.
For every event b, the past cone Pb

def= {c : c ¹ b} is a closed set; thus, its
complement −Pb = {c : c ¹ b} is an open set. The point a belongs to this set;
thus, the whole open neighborhood of a belongs to this set as well. Since the
topology is the Alexandrov topology, with intervals as a base, this means that
there exist values a and a which which a ≺ a ≺ a and the whole interval (a, a)
belongs to the complement −Pb.

Since the sequence {xi} is everywhere dense in X, there is a point xi in the
interval (a, a), i.e., a point xi for which xi ≺ a and xi 6¹ b. By measuring the
event locations with higher and higher accuracy, we will be able to detect this
relation. Thus, it is reasonable to require that the following addition condition
constructively holds:

a 6¹ b ⇒ ∃i (xi ≺ a &xi 6¹ b).

Let us show that under this condition, if a 6¹ b, then there exists a (con-
structive) time coordinate t for which t(a) > t(b). Indeed, let i0 be an index for
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which xi0 ≺ a and xi0 6¹ b. For this i0, we thus have fxi0
(a) > 0 and fxi0

(b) = 0.
Let us now construct the following time coordinate:

t(x) =
2

fxi0
(a)

· fxi0
(x) +

∞∑

i 6=i0

2−i · fxi
(x).

Similar to the above formula, we can check that thus defined function is indeed
a time coordinate. It is therefore sufficient to show that t(a) > t(b). Indeed:

• For x = a, the first term in the sum is equal to
2

fxi0
(a)

· fxi0
(x) = 2, so

t(a) ≥ 2.

• For x = b, the first term is equal to 0. Since fxi(x) ≤ 1 for all i, we thus
conclude that

t(b) =
∞∑

i 6=i0

2−i · fxi(x) ≤
∞∑

i=1

2−i = 1.

Here, t(a) ≥ 2 and t(b) ≤ 1, hence indeed t(a) > t(b).

Comment. Without this additional requirement, we can only prove that

a 6¹ b ⇒ ¬¬∃t (t(a) > t(b)).

The existence of a standard metric. Another constructive result is the
existence of a standard metric on each space-time model. The constrictive
metric can be defined as follows:

ρ(a, b) def=
∞∑

i=1

2−i · |fxi(a)− fxi(b)|.

One can easily check that this function is computable, and that it is indeed a
metric – i.e., that it is symmetric and satisfies the triangle inequality.

7 Remaining Challenges

Need to take symmetries into account. In this paper, given space-time
X with the kinematic causality relation ≺, we designed a kinematic metric τ
that is consistent with this relation.

In physics, however, causality is not everything. One of the most important
notions of physics is symmetry. If space-time has symmetries – i.e., is invari-
ant with respect to some transformations – it is therefore desirable to find a
kinematic metric τ which is invariant with respect to these symmetries.

In the simplest case of a finite symmetry group G, we can explicitly define
such a invariant constructive kinematic metric as

τinv(a, b) def=
∑

g∈G

τ(g(a), g(b)).
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An important case if when X is both an ordered group and a space with a
kinematic causality relation ≺, and the closures of all intervals are compact sets.
It known that in the non-constructive case, there exists a left-invariant metric
τ(a, b): namely, τ(a, b) = µH({c : a ¹ c ¹ b}) where µH is the (left-invariant)
Haar measure; see, e.g., [14]. It is desirable to constructivize this (and similar)
results.

Need for feasible algorithms. In this paper, we have analyzed the existence
of algorithms for computing the kinematic metric. From the practical viewpoint,
it is important to make sure that not only such algorithms exist, but that they
are feasible (i.e., can be computed in polynomial time); see, e.g., [11].

Partial analysis of feasibility of different computational problems related to
space-time models is given in [17]. It is desirable to extend this analysis to the
problem of computing kinematic metric.
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