
On the Use of Abstract Workflows to Capture
Scientific Process Provenance

Paulo Pinheiro da Silva, Leonardo Salayandia, Nicholas Del Rio, and Ann Q. Gates
Computer Science Department

University of Texas at El Paso, El Paso, Texas 79968
Email: see http://www.cs.utep.edu/paulo

Abstract—Capturing provenance about artifacts produced by
distributed scientific processes is a challenging task. For example,
one approach to facilitate the execution of a scientific process
in distributed environments is to break down the process into
components and to create workflow specifications to orches-
trate the execution of these components. However, capturing
provenance in such an environment, even with the guidance
of orchestration logic, is difficult because of important details
that may be hidden by the component abstractions. In this
paper, we show how to use abstract workflows to systematically
enhance scientific processes to capture provenance at appropriate
levels of detail. Abstract workflows lack the specification of an
orchestration logic to execute a scientific process, and instead,
are intended to document scientific processes as understood by
scientists. Hence, abstract workflows can be specifically designed
to capture the details of scientific processes that are relevant to
the scientist with respect to provenance. In addition, abstract
workflows are coupled with a representation of provenance that
can accommodate distributed provenance-generating source code.
We also show how the approach described in this paper has been
used for capturing provenance for scientific processes in the Earth
science, environmental science and solar physics domains.

I. MOTIVATION

Most scientists capture provenance about their data and
process executions and record it in the form of logs, meta
data, annotations, and others. However, it is often hard for
other scientists to reuse provenance. For example, scientists
may store collected provenance in databases that may not be
designed to support sophisticated provenance-based queries
in support of scientific activities such as understanding sci-
entific data. A common representation for provenance, i.e.,
a provenance language, has been identified as a necessity to
facilitate the reuse of provenance by scientists. This language
should be used to capture provenance for the relevant parts
of the scientific process, whether the process is executed
within a machine, executed in a distributed environment, or
even if the process is not executed in an electronic way,
i.e., human activity. We use the Proof Markup Language [1]
as our preferred domain-independent language for encoding
provenance.

Computational platforms including scientific workflow en-
vironments such as Kepler [2] and Taverna [3] have been
extended to record provenance: meta data about services
invoked by their workflow engines and about input and output
information consumed and produced by these services. Spec-
ifications that are executed by workflow engines, however,

tend to be unaware of services indirectly invoked during
execution, i.e., other services called within services that are
invoked by a workflow engine. In this context, we see that
results of workflow executions would benefit of a distributed
approach for capturing provenance consisting of aggregating
provenance-related information from the individual services
executed on behalf of the process to build provenance for the
entire process.

The task of capturing provenance is a downside of the use
of distributed provenance since it may be much harder to be
accomplished in a distributed environment than in a centralized
one. In this paper, we discuss the issue of enhancing scien-
tific processes with automated ways of capturing provenance
whether these processes are specified as scientific workflows
or not, and whether they are centralized or distributed. The
use of abstract workflows [4], which are not committed to
be executed by machines, has been developed to facilitate
the sharing of process knowledge (as defined in [5]) among
scientists. Because of this flexibility, these specifications are
neither restricted to boundaries of a cyber-environment nor to
any specific technology for executing workflow specifications.
This means that these abstract workflows are capable of
describing how scientific processes can be executed in dis-
tributed environments. In this paper, we describe how abstract
workflows have been used to generate code that enhances
distributed scientific processes with functionalities for receiv-
ing, capturing and propagating provenance, namely the data
provenance annotators. The paper also demonstrates that the
use of data provenance annotators establishes a systematic
approach for enhancing scientific processes with distributed
provenance.

The rest of the paper is organized as follows. Section II
introduces a scientific process use case for distributed prove-
nance. Section III describes the languages and tools used for
capturing distributed provenance for the scientific process use
case. Section IV described the provenance capturing approach.
Section V reports on other efforts to use the provenance
capturing approach. Section VI describes approaches for cap-
turing provenance used in other computational platforms.
Conclusions are presented in Section VII.

II. USE CASE - HOLE’S CODE

To illustrate how our techniques can be integrated into
complex workflows, we will refer to a process that cre-

holewdo:Punch

holewdo:Cover

holewdo:Addc

holewdo:Tomo

holewdo:Duadd

pmlp:Human

pmlp:Dataset

holewdo:Initial 3D Velocity Model

•holewdo:Travel Time Residuals
•holewdo:Shot Points
•holewdo:Gridded Time Field

•holewdo:Ray Coverage
•holewdo:Slowness Perturbation
•holewdo:Perturbation along ray

holewdo:Smoothed 3D Velocity Model

holewdo:Filtered 3D Velocity Model

t

tholewdo:3D Velocity Model

holewdo:Vel1‐3D

pmlp:Database

holewdo:Field
Measurements

holewdo:Experiment
Parameters

Fig. 1. Semantic Abstract Workflow for Hole’s Code

ates a seismic velocity model of the Earth’s crust using
a nonlinear tomography inversion procedure [6] and a fi-
nite difference calculation [7] using observed velocities of
seismic waves through structures of the Earth’s crust. The
process, referred to as Hole’s Code, is illustrated in Fig-
ure 1. The process starts by obtaining a preliminary velocity
model of the Earth’s crust that is constructed from field
measurement data (holewdo:Vel1-3D). Next, the velocity
model is refined gradually by executing an iterative process
that uses seismic waves generated from controlled shot-point
explosions (holewdo:Punch) and corresponding measure-
ments of the arrival times of the waves at geophone stations
(holewdo:Cover). The last three steps of the iteration
correspond to a smoothing step (holewdo:Tomo), a filtering
step (holewdo:Duadd), and a step to incorporate the refine-
ments to the velocity model (holewdo:Addc). Such models
are useful for earthquake analysis and oil exploration.

III. BACKGROUND

A. Ontologies and Abstract Workflows

It is important for scientists to document the scientific
processes that they use to generate scientific artifacts. It is
also important for other scientists to be able to understand
the processes that were used to produce scientific artifacts.
Scientific workflows is one approach to document scientific
processes.

By using technologies from the Semantic Web community,
as well as elemental principles from software engineering
practices, the CI-Miner approach [4] provides a technique to
document scientific workflows that is amenable to users of
non-technical fields of expertise. The approach consists of

creating task ontologies to capture domain knowledge that
effectively represents a controlled vocabulary of a project,
as well as additional knowledge that suggests the use of
this vocabulary towards the description of processes for that
project. Next, the scientist uses the knowledge encoded in
the ontology to document scientific processes in the form
of abstract workflows. The ontologies used in this approach
are referred to as Workflow-Driven Ontologies (WDOs) [8] ,
and the WDO-based workflow specifications are referred to
as Semantic Abstract Workflows (SAWs). Both are discussed
further in the next subsections, as well as the WDO-It! tool
that assists the user through the approach.

1) Workflow-Driven Ontologies: Guarino [5] suggested the
classification of ontologies according to their level of depen-
dence to a particular task or point of view. In this classification,
WDOs are task ontologies; WDOs are encoded in OWL and
are used to document concepts about a domain for the purposes
of capturing process knowledge.

The two main classes of WDOs are Data and Method. The
Data class is representative of the data components of the sci-
entific process. These can be things such datasets, documents,
instrument readings, input parameters, maps, and graphs. The
Method class is representative of discrete activities involved in
the scientific process that transform the data components. As
described in [8], the intention of WDOs is to allow scientists
to capture process-related classes by extending the hierarchies
of Data and Method. Furthermore, Data and Method classes
can be related through isInputTo and isOutputOf relations to
capture their data-flow interdependencies with respect to a
scientific process.

2) Semantic Abstract Workflows (SAW): From the perspec-
tive of an end-user, scientific workflows can be generalized
as graphical structures that contain nodes representing dis-
crete activities, and directed vertices representing data flow
between those activities. Activities connected through vertices
effectively determine data dependencies between the activities.
Traversing the graph from its initial data sources to its final
data sinks simulates the action of carrying out a complex
process conformed of simpler activities. To deploy such a
representation of a process as an automated or semi-automated
system, additional control flow information is necessary to
determine the rules that guide the graph traversal.

According to the CI-Miner approach, the main artifact for
scientists to capture scientific processes is a SAW. Semantic
refers to the meaning inherited by using ontological classes
captured in a WDO. Abstract refers to the fact that the
workflows captured lack the additional constructs necessary to
produce automated systems that would implement the modeled
workflow. In this sense, SAWs are not committed to be
executable workflow specifications.

Figure 1 shows an example of the graphical notation of
SAWs. Data are represented by directed edges and Methods
are represented by rectangles. Data and Methods are labeled
with the name of their corresponding user-defined WDO class.
Sources and Sinks are introduced in the graphical notation of
SAWs as a bootstrapping mechanism to indicate the starting

and ending points of a process, and these are represented by
ovals. Sources and Sinks are also labeled with the name of
their corresponding class defined in the provenance component
of the Proof Markup Language (PML-P) ontology discussed
below.

3) WDO-It!: In terms of the Semantic Web community, and
the OWL language in particular, WDOs are OWL documents
that capture ontological classes and relations, while SAWs
are OWL documents that capture knowledge bases based on
the knowledge captured in the WDOs. Hence SAWs do not
contain class or property definitions, but instead, include only
instances of the classes and properties defined in WDOs.

WDO-It! (http://trust.utep.edu/wdo) is a Java-based tool
intended to help scientists in the creation of WDOs and
SAWs encoded in OWL. In order to document scientific
processes with SAWs, a scientist would start by creating and
subsequently referring to a WDO that documents the classes
related to the project of interest, and start to create instances
of the Data and Method classes contained in the WDO. As
these classes are instantiated, the instances are represented
graphically in the SAW with the notation previously described.

The instances that effectively document a scientific process
in a SAW can be customized by assigning labels that can serve
as differentiators between different instances of the same class.
Additionally, formats can be assigned to instances of Data
classes to ground their specific representation. For example,
the instance holewdo:3D Velocity Model in Figure 1
could be assigned the format mime:Text.

Lastly, as the instances are introduced to the SAW and their
corresponding graphical representations are created, additional
information about their graphical layout position is attached to
the instances.

B. Proof Markup Language

The goal of capturing provenance about data is to support
the explanation of how data is created or derived, e.g., which
sources were used, who encoded the data, and more. The Proof
Markup Language (PML) ontology defines primitive concepts
and relations for representing provenance about data. PML is
divided into three parts [9]:

• The justification ontology (PML-J) defines concepts and
relations to represent dependencies between identifiable
things;

• The provenance ontology (PML-P) defines concepts to
represent identifiable things from the real world that are
useful to determine data lineage. For example, sources
such as organization, person, agent, service, and others
are included in PML-P;

• The trust relation ontology (PML-T) defines concepts and
relations to represent belief assertions and to use those
assertions in explanations about data.

The goal of the justification ontology is to provide the
concepts and relations used to encode the information ma-
nipulation steps used to derive a conclusion. A justification
requires concepts for representing conclusions, conclusion
antecedents, and the information manipulation steps used to

transform/derive conclusions from antecedents. Although these
terms stem from the theorem proving community they can
be mapped to more familiar workflow terms; for example,
conclusions refer to intermediate data and antecedents re-
fer to the inputs of some processing step. The justifica-
tion vocabulary has two main concepts: pmlj:NodeSet
and pmlj:InferenceStep. A pmlj:NodeSet includes
structure for representing a conclusion and a set of alternative
pmlj:InferenceSteps each of which can provide an
alternative justification for a conclusion. Figure 2 outlines a
PML node set capturing the processing step implemented by
holewdo:Tomo in Figure 1. The output of holewdo:Tomo
is a holewdo:Smoothed 3D Velocity Model and
this data is captured in the Conclusion element as an in-
stance of pmlp:Information, described below. Addition-
ally, the inputs consumed by holewdo:Tomo are captured
as Antecedents of the node set’s inference step. The term
pmlj:NodeSet is chosen because it captures the notion of
a set of nodes (with inference steps) from one or many proof
trees deriving the same conclusion. Every pmlj:NodeSet
has exactly one unique identifier that is web-addressable, i.e.,
a URI.

The foundational concept in PML-P is
pmlp:IdentifiedThing, which refers to an entity
in the real world. These entities have attributes that are
useful for provenance such as name, description, create
date-time, authors, and owner. For example, in Figure
2 the node set is adorned with PML-P instances that
effectively convey that this node set corresponds to an
execution of holewdo:Tomo. The PML-P inference engine
instance is named “Holes” to indicate that this captured
step is part of a bigger process known as Holes’s Code.
Furthermore, the PML-P inference rule instance describes
the specific step, (e.g., holewdo:Tomo) in terms of what
the step does and what organization is responsible for this
particular implementation of the algorithm. PML includes two
key subclasses of pmlp:IdentifiedThing motivated by
provenance representational concerns: pmlp:Information
and pmlp:Source. The concept pmlp:Information
supports references to information at various levels of
granularity and structure. The concept pmlp:Source refers
to an information container, and it is often used to refer to all
the information from the container. A pmlp:Source could
be a document, an agent, a web page, among others. PML-P
provides a simple but extensible taxonomy of sources.

IV. CAPTURING PROVENANCE

While the goal of SAWs is to document scientific pro-
cesses that are used to create scientific artifacts, the goal
of PML is to document provenance about the creation of
one scientific artifact. Consider Hole’s Code use case; while
the SAW in Figure 1 shows that the process to produce
holewdo:3D Velocity Model is a loop consisting of
five steps, provenance encoded in PML about the creation of
a specific holewdo:3D Velocity Model would indicate
the specific methods, as well as the number of iterations

file:///C|/Documents%20and%20Settings/leonardo/Desktop/nodeset-example.txt

<rdf:RDF>
 <NodeSet rdf:about="http://.../Tomo.owl#answer">
 <hasConclusion>
 <pmlp:Information>
 <pmlp:hasURL rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"
 >http://.../smoothed-3D-velocity-model.dat</pmlp:hasURL>
 <pmlp:hasFormat rdf:resource="http://.../registry/FMT/3D-model.owl#model"/>
 </pmlp:Information>
 </hasConclusion>
 <isConsequentOf>
 <InferenceStep>
 <hasInferenceEngine rdf:resource="http://.../pmlp/Holes.owl#holes"/>
 <hasInferenceRule rdf:resource="http://.../pmlp/Tomo.owl#Tomo"/>
 <hasAntecedentList>
 <NodeSetList>
 <ds:first rdf:resource="http://.../proof/slowness-perturb.owl#answer"/>
 <ds:next rdf:resource="http://.../proof/ray-coverage.owl#answer"/>
 <ds:last rdf:resource="http://.../proof/ray-perturb.owl#answer"/>
 </NodeSetList>
 </hasAntecedentList>
 </InferenceStep>
 </isConsequentOf>
 </NodeSet>
</rdf:RDF>

file:///C|/Documents%20and%20Settings/leonardo/Desktop/nodeset-example.txt [8/14/2009 11:26:44 AM]

Fig. 2. PML NodeSet representing an execution of the holewdo:Tomo
processing step

that were executed to create the end result. The following
subsections show how SAWs are leveraged to systematically
capture provenance about scientific artifacts.

A. Data Annotation

Once a SAW has been authored in WDO-It! it can be used
to drive the generation of “data annotators” that are modules
designed to capture provenance associated with workflow
activities. Executing a set of data annotators corresponding to a
single SAW is similar to executing a workflow in the sense that
some coordinating agent is needed for both the synchronized
invocation of each data annotator and for the message passing
facilities needed for communicating between them.

Data annotators are built for the sole purpose of logging
provenance rather than transforming data; therefore, data an-
notators use provenance as the exclusive language for commu-
nication (i.e., input and outputs of data annotators are prove-
nance elements). When using data annotators, provenance is
transformed by each annotator by always enhancing the input
provenance trace with more information. In our current efforts,
we have used PML to encode provenance; therefore, the inputs
and outputs of all data annotators are always NodeSets.

The logging capability provided by data annotators can be
decomposed into two phases:

• Data Capture: Provenance includes intermediate work-
flow results (i.e., workflow activity outputs); therefore,
data annotators are responsible for capturing the outputs
of the workflow activity it is tailored for.

• Composition: Once the output data has been captured or
intercepted, it is then composed with other provenance,
such as information about the workflow activity being
logged and encoded in PML.

The data capture phase must be implemented manually
because there is no knowledge in SAWs regarding the specifics

of where or how data will be generated. Therefore, data anno-
tators by default are not fully executable and serve as skeletons
that need to be enhanced by a user who has knowledge about
the concrete workflow. In terms of PML, this means that
data annotators are unable to capture all of the information
contained in a PML conclusion by default. Although the SAW
knows about the PML-P formats of the output information, it
does not know where or when this data will reside and, thus,
cannot automatically complete the “hasURL” element in the
conclusion. On the other hand, the generation of software that
implements the composition phase can be done automatically,
and driven entirely from information captured in a SAW. For
example, each SAW method knows about the format of the
corresponding input/outputs. This knowledge is used to ensure
that the data annotator correctly stores the output data in a
PML conclusion as a reference, as its native representation, or
as some XML friendly representation. For example, the node
set in Figure 2 captures the output “smoothed 3D model” as
a URL rather than stuffing the actual model into the XML.
This is because the data annotator knows about the format
“3D model”, which can become quite large, thus opting for
a pass-by-reference approach. It is important to note that
without knowledge from the SAW about data formats, this
automation would not be possible. Additionally, information
about the inputs and any PML-P instances associated with a
SAW method are also used for setting the NodeSet antecedents
and injecting source information respectively.

In any case, an annotator must capture provenance of
the workflow activity so that new PML NodeSets can be
composed, where the conclusion is set to the captured output
data and the antecedents reference the inputs that themselves
are PML NodeSets associated with the preceding methods.
Because each annotator propagates its antecedents (i.e., inputs)
to the next annotator, at any point in the execution of a
workflow, there is a full justification available.

1) In-Processing vs. Post-Processing Annotation: Certain
properties of a workflow will dictate when provenance should
be logged. For example, when intermediate artifacts are not
persisted during execution of the workflow, an in-processing
approach must be used to capture these intermediate artifacts
before they are expunged from the process. This implies, how-
ever, that the workflow be modified to invoke data annotators
at precise moments in execution, thus the coordinating agent
of the data annotators is also the coordinating agent of the
concrete workflow. Deciding where to add these calls to a
workflow requires that a user understand specifics of a concrete
workflow, such as what parts correspond to the coordination
of process (i.e., control flow) and which parts correspond to
the execution of workflow activities; for it is this knowledge
that is needed to instrument the workflow.

If a workflow does not delete intermediate results or if users
are unable to modify a workflow, then the non-invasive post-
processing annotation can be used. In this case, knowing about
workflow how/when/where workflow activities are invoked
is less important than knowing specific properties of data
output from the activities. This is because, a post-processing

annotators search for the existence of certain types of data with
certain properties, which signifies that a particular workflow
activity was executed. For example, if an annotator was config-
ured to capture provenance associated with the Hole’s activity
“generate velocity model” it would search the file system for
the existence of a “3D model”, which would provide evidence
that the “generate velocity model” was executed.

2) Centralized vs. Distributed Provenance: The provenance
captured by data annotators is encoded in PML, which is
distributed; thus, data annotators can too be distributed along
with any remote services that are invoked by a workflow. This
is possible because the inputs to data annotators, which are
PML nodesets associated with executions of the dependent
workflow activities, are referenced by URIs. This is conve-
nient because often times complex scientific processes are
modularized and controlled by a master script that in turn
makes calls to services which may or may not be located
remotely, as is the case with Hole’s code. In these cases, the
agent coordinating the data annotators does not need to know
about provenance as a whole, but only encounters the URIs
of intermediate provenance elements.

B. PML-P Harvesting and Generation

Instances of PML-P concepts such as the inference rule
Tomo.owl#Tomo in Figure 2 mentioned are often annotated
by other instances of PMP-P concepts. For example, the PML-
P of the inference rule above may identify the creators of the
rule by having a reference to an instance of pmlp:Person
as the value for its hasAuthor property. As we can observe
from the example above, instances of PML-P concepts are
used to annotate both other instances of PML-P concepts and
instances of PML-J concepts. Moreover, in an ideal situation,
PML-P concepts are intended to be reused.

In the context of data provenance annotators, PML-
P instances should first be harvested to prevent the cre-
ation of multiple PML-P instances about a single real-
life object. In the context of scientific workflows, tools
like WDO-It! should be able to harvest instances of PML-
P concepts that map into SAW concepts. For example, a
wdo:Method instance can be used to describe a tool func-
tionality and it is known that the wdo:Method concept maps
into the pmlp:InferenceRule concept. Thus, once a
wdo:Method is instantiated during the creation of a SAW,
WDO-It! may harvest PML-P concepts by allowing users to
search and select instances of pml-p:InferenceRule to
describe the new instance of a wdo:Method.

V. OBSERVATIONS FROM ONGOING EFFORTS

In addition to the use case presented above, our approach to
document and capture provenance about scientific processes
is currently being used in several projects from the Cy-
berShARE Center of Excellence (www.cybershare.utep.edu),
and the National Center for Atmospheric Research (NCAR)
(www.ncar.ucar.edu). CyberShARE alone encompasses the
geoscience and environmental science domains providing a
diverse set of use cases from which to evaluate our provenance

logging techniques. Specifically, one of the environmental
science projects is based on the execution of a workflow
that has some activities which require human intervention.
Reflectance data is captured in the Arctic by sensors attached
to a cart that travels down a 300 meter tram. Upon completion
of a run, the recorded data sets are transferred to a computer,
by a human, from which processing of the data can resume.
Additionally, there are steps in the workflow that require the
use of software that again requires human interaction leaving
the concrete workflow fragmented in terms of execution. Based
on the characteristics of the workflow, a post-processing data
annotation approach was used to piece together the PML-J
from data dumped from the workflow activities, which proved
to be a success in terms of capturing all the steps the scientists
were interested in. However, at the time of this work, there
does not exist mechanisms for generating the associated PML-
P artifacts and required that the scientists manually encode
this information. The PML-P ontology is loaded with many
concepts and these concepts were defined in the context of
theorem proving; therefore, it was difficult for environmental
scientists to annotate the captured PML-J with the correct
instances of PML-P. This was one of the main motivations
for harvesting PML-P instances at the level of SAWs. This
allows that the data annotators to come already configured to
adorn the output node sets with the PML-P instances identified
in the SAW whether or not the provenance is captured via pre
or post processing.

The geological processes associated with Hole’s Code and
2 1/2 Dimension Crustal Structure of the Earth are more
ongoing efforts. SAWs have been authored that capture the
process at a level that communicates well to experts in a
wide area of domains and provenance has been generated for
some datasets. Numerous iterations of specifying the processes
with SAWs included colleagues from other disciplines such
as seismology, computer science, and computational math to
identify the adequate concept names that would promote un-
derstanding of the process being documented across a variety
of disciplines.

With regards to NCAR, our techniques were also used
to capture provenance associated with their Quicklook pro-
cess [10]. The Quicklook workflow is a fully automated
workflow that runs from start to completion without any
human interactions. This workflow is actually a sub-workflow
in a much larger and complicated workflow known as the
CHIP pipeline that processes radio images of the sun. The
smaller Quicklook process does not produce scientific quality
images but is used to get a “quick look” of solar images that
are not at a resolution high enough to be considered scientific.
Many of the intermediate results in the Quicklook process
are persisted after execution. Additionally, at the time of this
work, we were unable to get a hold of the working script that
coordinates this process; thus, we opted for a post-processing
annotation of the data that worked well for both computer
scientists and domain scientists. However, the larger process
encompassing Quicklook has many workflow steps in which
the intermediate results are expunged leaving this larger CHIP

process as a perfect candidate to employ an in-processing
capturing of provenance. As a whole, the capturing of CHIP
provenance requires a hybrid approach in which some of the
provenance is captured in-process while the portions of the
process associated with Quicklook are captured post-runtime;
a scenario that we had not considered before this work.

VI. RELATED WORK

Kepler builds on workflow abstractions with a “provenance
recorder” [11], a mechanism for collecting provenance within
a workflow. Adding a provenance recorder to a workflow
allows for the collection of workflow building steps and
workflow evolution, a method of capturing important instances
or versions of a workflow as it is being modified. The Kepler
provenance framework is coupled with the Kepler workflow
environment resulting in a autonomous system that can both
execute workflows and record associated provenance by at-
taching provenance listeners to the underlying engine. The
logging capabilities are not distributed in the sense that if
a workflow method makes a call to a subworkflow, Kepler
would not be aware of this and would not record it in its
provenance trace. Additionally, the provenance captured by
Kepler is not distributed in the sense that the provenance is
managed centrally by the Kepler engine.

MyGrid, from the e-science initiative, tracks data and
process provenance of workflow executions [12]. The type
of provenance recorded by MyGrid for cyber-infrastructure
applications is analogous to the kind of information that a
scientist records in a notebook describing where, how and
why experimental results were generated. From these record-
ings, scientists are able to operate in three basic modes: (i)
debug, (ii) check validity, and (iii) update mode, which refer
to situations when, a result is of low quality and the source
of error must be identied, when a result is novel and must be
veried for correctness, or when a workow has been updated
and its previous versions are requested.

One of the main features that separates our provenance
solution from others is the ability to record truly distributed
provenance. This is possible because our data annotators are
loosely coupled with the workflow engine. The workflow
engine need only make calls to the data annotators and
pass them the URI string output from the previously called
annotator without any concern about what or how the data
annotator is doing.

VII. CONCLUSION

This paper describes how abstract workflows are used to
guide the generation of code capable of capturing scientific
workflow provenance encoded in PML. The provenance cap-
turing approach demonstrates two interesting properties: (i) it
relies on the flexibility of abstract workflows for comprehen-
sively describing scientific processes that may not be possible
to be described with the use of concrete (or executable)
workflows; (ii) it relies on existing code, e.g., scripts and
workflow specifications, to identify how process steps are
connected instead of imposing the encoding of control flow in

abstract workflows; and (iii) the approach is flexible to accom-
modate the complexities a multitude of scenarios for executing
scientific processes including both centralized and distributed
environments. As a proof of concept, actual scientific process
provenance in multiple domains were captured and encoded
in PML using the provenance capturing approach.

ACKNOWLEDGMENT

This work was supported in part by NSF grants HRD-
0734825 and EAR-0225670.

REFERENCES

[1] P. Pinheiro da Silva, D. L. McGuinness, and R. Fikes, “A Proof Markup
Language for Semantic Web Services,” Information Systems, vol. 31, no.
4-5, pp. 381–395, 2006.

[2] B. Ludas̈cher and et al., “Scientific Workflow Management and the
Kepler System,” Concurrency and Computation: Practice & Experience,
2005, special Issue on Scientific Workflows.

[3] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R. Pocock, P. Li,
and T. Oinn, “Taverna: a Tool for Building and Running Workflows of
Services,” Nucleic Acids Research, vol. 34, no. Web Server issue, pp.
W729–W732, 2006, doi:10.1093/nar/gkl320.

[4] A. Q. Gates, P. Pinheiro da Silva, L. Salayandia, O. Ochoa, A. Gandara,
and N. D. Rio, “Use of abstraction to support geoscientistsúnderstanding
and production of scientific artifacts,” in Geoinformatics: Cyberinfras-
tructure for the Solid Earth Sciences, G. Keller and C. Baru, Eds.
Cambridge University Press, To appear.

[5] N. Guarino, “Semantic Matching: Formal Ontological Distinctions for
Information Organization, Extraction, and Integration,” in Proceedings
of SCIE, 1997, pp. 139–170.

[6] J. Hole, “Nonlinear High-Resolution Three-Dimensional Seismic Travel
Time Tomography,” Journal of Geophysical Research, vol. 97(B5), 1992.

[7] J. Vidale, “Finite-Difference Calculation of Travel Times in Three
Dimensions,” Geophysics, vol. 55(5), 1990.

[8] L. Salayandia, P. Pinheiro da Silva, A. Q. Gates, and F. Salcedo,
“Workflow-Driven Ontologies: An Earth Sciences Case Study,” in Pro-
ceedings of the 2nd IEEE International Conference on e-Science and
Grid Computing, Amsterdam, Netherlands, December 2006.

[9] D. McGuinness, L. Ding, P. Pinheiro da Silva, and C. Chang, “PML2:
A Modular Explanation Interlingua,” in Proceedings of the AAAI
2007 Workshop on Explanation-aware Computing, Vancouver, British
Columbia, Canada, July 22-23 2007.

[10] D. L. McGuinness, P. Fox, P. Pinheiro da Silva, S. Zednik, N. D. Rio,
L. Ding, P. West, and C. Chang, “Annotating and embedding provenance
in science data repositories to enable next generation science applica-
tions,” in American Geophysical Union, Fall Meeting (AGU2008), Eos
Trans. AGU, 89(53), Fall Meet. Suppl., Abstract IN11C-1052, 2008.

[11] I. Altintas, O. Barney, and E. Jaeger-Frank, “Provenance collection
support in the Kepler scientific workflow system,” in Provenance and
Annotation of Data, 2006, pp. 118 – 132.

[12] J. Zhao, C. Wroe, C. Goble, R. S. andq D. Quan, and M. Green-
weed, “Using Semantic Web Technologies for Representing E-science
Provenance,” in Proceedings of the 3rd International Semantic Web
Conference, November 2004, pp. 92–106.

