
DIAGONALIZATION IS ALSO
PRACTICALLY USEFUL:

A GEOMETRIC IDEA
Martine Ceberio and Vladik Kreinovich

Department of Computer Science
University of Texas, El Paso, TX 79968, USA

mceberio@utep.edu, vladik@utep.edu

Cantor’s diagonalization idea: reminder. Most mathemati-
cians are familiar with diagonalization from Cantor’s proof
that the set of all real numbers is not countable. In-
deed, if it was countable, i.e., if we could enumerate all
(decimal) real numbers d1d2 . . . di.f1 . . . fj . . . into a sequence
d

(k)
1 d

(k)
2 . . . d

(k)
i .f

(k)
1 . . . f

(k)
j . . ., k = 1, 2, . . ., then we would be able

to design a new real number which is not in this sequence, by:

• first forming a diagonal fraction 0.f
(1)
1 f

(2)
2 . . . f

(k)
k . . . and then

• changing each digit to a different one: e.g., by adding 1 to
every digit (with the understanding that 9 + 1 turns into 0).

This procedure is called diagonalization, because if we form an (in-
finite) matrix by placing all the digits of the k-th number in the k-th
row, the new number depends only on what is in the diagonal of this
matrix:

0 . 0 0 0 . . .
0 . 3 3 3 . . .
3 . 1 4 4 . . .

. . .
0 . 0 3 4 . . .
0 . 1 4 5 . . .

The resulting new number is different from all the numbers from
the original sequence: for each k, it is different from the k-th num-
ber because of the difference in the k-th digit. This contradicts to



our assumption that the original sequence covers all possible real
numbers.

Diagonalization is normally used only in proofs. Diagonalization
is actively used in mathematics and in theoretical computer science.
For example, the original proof of the halting problem (that it is not
possible to algorithmically decide whether a given Turing machine
halts) is based on diagonalization; see, e.g., (Papadimitriou 1994).

In all known applications, diagonalization is used for a purely
theoretical purpose: to prove results. In this paper, we show that,
contrary to a common perception, diagonalization is also (implicitly)
used in practical algorithms. Specifically, diagonalization implicitly
appear in the interval-based constraint approach to solving system
of equations; see, e.g., (Jaulin et al. 2001).

Interval-based constraint approach to solving system of equa-
tions: a reminder. Suppose that we have a system of equations
with n unknowns. In this approach, first, use a standard compiler
algorithm to parse each equation into elementary constraints.

For example, to parse an equation x − x2 = 0.5 for x ∈ [0, 1]
(with, by the way, has no solutions), we take into account that in
order to compute x − x2, the computer will first compute r = x2,
and then compute the difference x− r (which is equal to 0.5). Thus,
we get two elementary constraints: r = x2 and 0.5 = x− r.

Each elementary constraint enables us to describe the value of
each of the unknowns in terms of the values of the others.

In the above example, from the constraint r = x2, we extract two
rules: (1) x → r = x2 and (2) r → x =

√
r; from the constraint

0.5 = x − r, we extract two more rules: (3) x → r = x − 0.5 and
(4) r → x = r + 0.5.

We start with the original ranges xi = [xi, xi] for the un-
knowns xi. In the above example, we start with x = [0, 1] and
r = (−∞,∞). Then, we cycle through all the rules, and use the
ranges for the other unknowns to contract the range of the variable
described by this rule.

Rule (1), with x ∈ [0, 1], leads to r ∈ r = [0, 1]2 = [0, 1]. We
already know that r ∈ (−∞,∞), so we conclude that r belongs



to the intersection rnew = (−∞,∞) ∩ [0, 1] = [0, 1]. Then, this
procedure leads to the following results:

(2) xnew =
√

[0, 1] ∩ [0, 1] = [0, 1] – no change.

(3) rnew = ([0, 1]− 0.5) ∩ [0, 1] = [−0.5, 0.5] ∩ [0, 1] = [0, 0.5].

(4) xnew = ([0, 0.5] + 0.5) ∩ [0, 1] = [0.5, 1] ∩ [0, 1] = [0.5, 1].

(1) rnew = [0.5, 1]2 ∩ [0, 0.5] = [0.25, 0.5].

(2) xnew =
√

[0.25, 0.5] ∩ [0.5, 1] = [0.5, 0.71];
(we round a down ↓ and a up ↑, to guarantee enclosure);

(3) rnew = ([0.5, 0.71] − 0.5) ∩ [0.25, .5] = [0.0.21] ∩ [0.25, .5],
i.e., rnew = ∅.

Our conclusion is that the original equation has no solutions.
For the equation x−x2 = 0, x ∈ [0, 1], a similar procedure leads

to the interval x = [0, 1] which contains both solutions x = 0 and
x = 1. If we bisect x = [0, 1] into [0, 0.5] and [0.5, 1], then for each
subinterval, we get the corresponding solution.

Constraint approach: a limitation. Our objective is to find the set
S of all possible tuples x = (x1, . . . , xn) that satisfy all the con-
straints.

Sometimes, the above constraint technique leads us exactly to
this set S. However, in general, in the constraint approach, we only
restrict each of the unknowns xi by an appropriate set Xi. In the
ideal case, each of these restrictions is “exact” in the sense that each
set Xi coincides with the set of all possible values xi when x ∈ S:

Xi = {xi : (x1, . . . , xi−1, xi, xi+1, . . . , xn) ∈ S},
i.e., with the i-th projection of the set S: Xi = πi(S).

After applying this approach, the only thing we know about the
resulting tuples x is that x1 ∈ X1, . . . , xn ∈ Xn. In other words,
instead of the original set S, we only know that the every solution
tuple x belongs to the (larger) set

X1 × . . .×Xn = π1(S)× . . .× πn(S). (C)



For example, if the set S is closed and connected, then each pro-
jection πi(S) is an interval, so the resulting set is the “interval hull”
of the set S: the smallest “box” [x1, x1]× . . .× [xn, xn] containing S:

&%

'$

Relation to diagonalization. We will show that the above formula
(C) is directly related to diagonalization. Indeed, diagonalization
can be formally defined as follows: we start with n tuples x(k) =

(x
(k)
1 , . . . , x

(k)
n ), 1 ≤ k ≤ n, and we produce a new tuple

diag(x(1), . . . , x(n))
def
= (x

(1)
1 , . . . , x

(i)
i , . . . , x(n)

n ).

For each set S, we can define the range diag(S, . . . , S) of this oper-
ation in the usual way:

diag(S, . . . , S)
def
= {diag(x(1), . . . , x(n)) : x(1) ∈ S, . . . , x(n) ∈ S}.

One can easily check that

diag(S, . . . , S) = π1(S)× . . .× πn(S),

i.e., that the hull computed by the constraints techniques is exactly
the diagonalization result.

Open questions and future work. In some problems, it is bene-
ficial, instead of simply limiting the range of each unknown xi, to
also limit the range of pairs (xi, xj); see, e.g., (Ceberio, Ferson, et
al. 2007) and (Ceberio, Kreinovich, et al. 2007). In this case, in-
stead of n sets Xi, we also get sets Xij = πij(S) of all possible
values of the pairs (xi, xj). Then, instead of the original set S, we
have a set

{(x1, . . . , xn) : (xi, xi) ∈ Xij for all i, j}.
This set is smaller than the diagonalization result. If this set is still
too large, we can consider triples, etc.



It would be great to analyze both the geometric meaning of this
new set and its possible relation to diagonalization-type construc-
tions.

Another open question is related to the possibility of an alge-
braic reformulation of diagonalization. For tuples of length two,
the diagonalization operation ∗ satisfies the properties a ∗ a = a
and a ∗ (b ∗ c) = (a ∗ b) ∗ c = a ∗ c. One can show that in some
reasonable sense, these properties uniquely determine a diagonaliza-
tion process. Indeed, if we have an operation ∗ on a set X satisfying
these properties, then we can pick an element x0 ∈ X and define
π1(a)

def
= a ∗ x0 and π1(b)

def
= x0 ∗ b. Then, for ever a and b, we have

a ∗ b = (a ∗ x0) ∗ (x0 ∗ b) = π1(a) ∗ π2(b);

so, the value a∗b is uniquely determined by the first projection π1(a)
of a and by the second projection π2(b) of b.

It is possible to have a similar algebraic representation for a di-
agonalization operation for triples. For example, for triples, we have
the rules

∗(a, a, a) = a, ∗(∗(a, b, c), d, e) = ∗(a, d, e),

∗(a, (b, c, d), e) = ∗(a, c, e), ∗(a, b, ∗(c, d, e)) = ∗(a, b, e).

One can check that these rules imply that

∗(a, b, c) = ∗(π1(a), π2(b), π3(c)),

where

π1(a)
def
= ∗(a, x0, x0), π2(b)

def
= ∗(x0, b, x0), and

π3(c)
def
= ∗(x0, x0, c).

It is desirable to study the algebraic properties of such operations,
as well as their relation to the recombination (crossover) procedure
in genetic algorithms, where we, e.g., combine the first part of a
gene sequence x(1) with the remaining part borrowed from another



gene sequence x(2) – just like it happens when the biological genes
recombine in a child; see, e.g., (Affenzeller et al. 2009).

Acknowledgment. This work was supported in part by the Na-
tional Science Foundation grant HRD-0734825, by Grant 1 T36
GM078000-01 from the National Institutes of Health, and by Grant
5015 from the Science and Technology Centre in Ukraine (STCU),
funded by European Union.

References

M. Affenzeller, S. Winkler, S. Wanger, and A. Beham, Genetic
Algorithms and Genetic Programming: Modern Concepts and Prac-
tical Applications, CRC Press, Boca Raton, 2009.

M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang,
A. Murguia, and J. Santillan, “How To Take Into Account De-
pendence Between the Inputs: From Interval Computations to
Constraint-Related Set Computations, with Potential Applications
to Nuclear Safety, Bio- and Geosciences”, Journal of Uncertain Sys-
tems, 2007, Vol. 1, No. 1, pp. 11–34.

M. Ceberio, V. Kreinovich, A. Pownuk, and B. Bede, “From
Interval Computations to Constraint-Related Set Computations:
Towards Faster Estimation of Statistics and ODEs under Inter-
val, p-Box, and Fuzzy Uncertainty”, In: P. Melin, O. Castillo,
L. T. Aguilar, J. Kacprzyk, and W. Pedrycz (eds.), Founda-
tions of Fuzzy Logic and Soft Computing, Proceedings of the
World Congress of the International Fuzzy Systems Association
IFSA’2007, Cancun, Mexico, June 18–21, 2007, Springer Lecture
Notes on Artificial Intelligence, 2007, Vol. 4529, pp. 33–42.

L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval
Analysis, with Examples in Parameter and State Estimation, Robust
Control and Robotics, Springer-Verlag, London, 2001.

C. H. Papadimitriou, Computational Complexity, Addison Wes-
ley, Reading, Massachusetts, 1994.


