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Abstract—In many practical situations, we need to optimize
several objectives under the positivity constraints. For example,
in meteorological and environmental studies, it is important to
collect various types of data, such as temperature and wind
speed and direction, from weather stations. For maintenance
purposes, it is convenient to place instruments that collect
different weather data on the same weather station. Thus,
we need to find the “best” location for a weather station.
The “best” means, for example, that the external influences,
such as flux of cars passing on nearby road, have a minimal
impact on the measurement results. There are several such
criteria, so we face a multi-objective optimization problem. In
this paper, we show that traditional approaches for solving
such problems – such as the weighted sum approach – are
not fully adequate for solving our problem. We show that
fuzzy heuristics lead to a more adequate approach — of
using a generalized form of Nash bargaining solution. We then
prove that under reasonable assumptions of scale-invariance,
the generalized Nash bargaining solution is the only adequate
solution for the general problem of multi-objective optimization
under positivity constraints – and, in particular, for the problem
of selecting an optimal location for a weather station.

I. FORMULATION OF THE PROBLEM

General problem. In many practical situations, we need to
optimize several objectives under the positivity constraints.
Let us illustrate this need on a meteorological example.

Meteorological example. In meteorological and environ-
mental studies, it is important to get additional data from
remote locations; see, e.g., [6].

One way of collecting this additional data is to place
several different sensors on a single tower. It is therefore
important to select the best location of a sophisticated multi-
sensor meteorological tower.

In this selection, we have several criteria to satisfy [4].
• For example, the station should not be located too close

to a road, so that the gas flux generated by the cars does
not influence our measurements of atmospheric fluxes;
in other words, the distance x1 to the road should be
larger than a certain threshold t1: x1 > t1, or y1

def
=

x1 − t1 > 0.
• Also, the inclination x2 at the station’s location should

be smaller than a corresponding threshold t2, because
otherwise, the flux will be mostly determined by this
inclination and will not be reflective of the atmospheric
processes: x2 < t2, or y2

def
= t2 − x2 > 0.
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General case. In general, we have several such differences
y1, . . . , yn all of which have to be non-negative. For each of
the differences yi, the larger its value, the better.

II. WEIGHTED AVERAGE: A NATURAL IDEA AND ITS
LIMITATIONS

Problem: reminder. We want to select the best location
based on the values of the differences y1, . . . , yn. For each
of the differences yi, the larger its value, the better.

Multi-criteria optimization. Our problem is a typical setting
for multi-criteria optimization; see, e.g., [2], [12], [13].

Weighted average. A most widely used approach to multi-
criteria optimization is weighted average, where we assign
weights w1, . . . , wn > 0 to different criteria yi and select an
alternative for which the weighted average

w1 · y1 + . . .+ wn · yn

attains the largest possible value.
This approach has been used in many practical problems

ranging from selecting the lunar landing sites for the Apollo
missions [1] to selecting landfill sites [3].

Additional requirement. In our problem, we have an addi-
tional requirement – that all the values yi must be positive.
Thus, we must only compare solutions with yi > 0 when
selecting an alternative with the largest possible value of the
weighted average.

Limitations of the weighted average approach. In general,
the weighted average approach often leads to reasonable
solutions of the multi-criteria optimization problem. How-
ever, as we will show, in the presence of the additional
positivity requirement, the weighted average approach is not
fully satisfactory.

A practical multi-criteria optimization must take into
account that measurements are not absolutely accurate.
Indeed, the values yi come from measurements, and mea-
surements are never absolutely accurate. The results ỹi of
the measurements are close to the actual (unknown) values
yi of the measured quantities, but they are not exactly equal
to these values. If

• we measure the values yi with higher and higher accu-
racy and,

• based on the resulting measurement results ỹi, we
conclude that the alternative y = (y1, . . . , yn) is better
than some other alternative y′ = (y′1, . . . , y

′
n),



then we expect that the actual alternative y is indeed either
better than y′ or at least of the same quality as y′. Other-
wise, if we do not make this assumption, we will not be
able to make any meaningful conclusions based on real-life
(approximate) measurements.

The above natural requirement is not always satisfied
for weighted average. Let us show that for the weighted
average, this “continuity” requirement is not satisfied even in
the simplest case when we have only two criteria y1 and y2.
Indeed, let w1 > 0 and w2 > 0 be the weights corresponding
to these two criteria. Then, the resulting strict preference
relation ≻ has the following properties:

• if y1 > 0, y2 > 0, y′1 > 0, and y′2 > 0, and

w1 · y′1 + w2 · y′2 > w1 · y1 + w2 · y2,

then
y′ = (y′1, y

′
2) ≻ y = (y1, y2); (1)

• if y1 > 0, y2 > 0, and at least one of the values y′1 and
y′2 is non-positive, then

y = (y1, y2) ≻ y′ = (y′1, y
′
2). (2)

Let us consider, for every ε > 0, the tuple y′(ε)
def
=(

ε, 1 +
w1

w2

)
, with y′1(ε) = ε and y′2(ε) = 1 +

w1

w2
, and

also the comparison tuple y = (1, 1). In this case, for every
ε > 0, we have

w1 · y′1(ε) + w2 · y′2(ε) =

w1 · ε+ w2 + w2 ·
w1

w2
= w1 · (1 + ε) + w2 (3)

and
w1 · y1 + w2 · y2 = w1 + w2, (4)

hence y′(ε) ≻ y. However, in the limit ε → 0, we have

y′(0) =

(
0, 1 +

w1

w2

)
, with y′1(0) = 0 and thus, y′(0) ≺ y.

III. HEURISTIC IDEA MOTIVATED BY FUZZY LOGIC

Reformulation of the problem. We want to make sure that
the first criterion is satisfied and that the second criterion is
satisfied, . . . , and that the n-th criterion is satisfied. From
this viewpoint, some locations are better, and some other
locations are worse. We would like to find a location for
which the “degree” d to which all n criteria are satisfied
is the largest possible. The question is how to describe the
dependence of this degree d on the values x1, . . . , xn (or,
equivalently, y1, . . . , yn) that characterize the corresponding
location.

Fuzzy logic can help. Fuzzy logic (see, e.g., [5], [9])
provides a natural way to estimate this degree.

• First, we estimate the degrees d1, . . . , dn to which each
of the constraints is satisfied.

• Then, we use a t-norm (fuzzy analogue of “and”) to
combine these degrees into a single degree d.

Determining the degree of satisfaction for each criterion.
For each criterion, the degree of satisfaction is 0 when the
corresponding variable xi attains its threshold threshold value
xi = ti – i.e., when the difference yi attains the value
0. The larger the difference yi, the larger our degree of
satisfaction with the i-th criterion. Thus, the degree di is
an increasing function of yi, with di(0) = 0. Let us try
the simplest possible function of this type: a linear function
di(yi) = ki · yi, with ki > 0.

Comment. When yi < 0, the degree of satisfaction is 0. Thus,
strictly speaking, we have di(yi) = max(0, ki · yi).

Selecting a t-norm. To combine the degrees di = ki · yi
corresponding to different criteria into a single degree, we
can use an arbitrary t-norm t: d = t(d1, . . . , dn).

Here, we would also like to select a t-norm that leads to
the simplest possible computations. At this stage, the choice
of the t-norm affects the computations in two different ways:

• first, we need to compute the combined degree d;
• second, we need to optimize the resulting functional

d(y1, . . . , yn) = t(d1(y1), . . . , dn(yn)).

Which functions are easier to optimize? Function opti-
mization is a well-known practical problem. One of the
motivations for Newton’s and Leibniz’s invention of calculus
was to help in solving this problem. Since the invention
of calculus, a standard way of optimizing a function is
based on equating its derivative to 0. It is known that non-
smooth functions, for which differentiation is not possible,
are much more difficult to optimize. It is therefore reasonable
to require that the result t(d1(y1), . . . , dn(yn)) be smooth.
Since the functions di(yi) are linear hence differentiable, it
is therefore sufficient to require that the t-norm itself also be
differentiable.

Among all differentiable t-norms, let us select the simplest
one. This is clearly the product t-norm t(a, b) = a · b since
its computation requires a single computer operation. There
is one other t-norm with the same property, the minimum
t-norm t(a, b) = min(a, b), but the minimum t-norm is not
everywhere differentiable: it is not differentiable when a = b.
Thus, we should select the product t-norm.

Resulting expression. As a result, we arrive at the following
expression for the optimized degree d:

d = (k1 · y1) · . . . · (kn · yn).

This expression is equal to K ·
n∏

i=1

yi, where K
def
=

n∏
i=1

ki.

Thus, the problem of maximizing d is equivalent to the

problem of maximizing the product
n∏

i=1

yi of the values yi.

This approach is indeed better than weighted average.
One can show that the optimization of the product satisfies
the above reasonable assumption: that if y′(ε) ≻ y and
y′(ε) → y′(0), then y′(0) ≽ y. We will see, in the following
text, that this approach has other useful properties – e.g., it is



scale-invariant, i.e., does not depend on the choice of units
for measuring different quantities xi.

A minor modification of the above criterion: using
hedges. We have come up with a product as the simplest
possible way of combining different criteria. What if this
simple approach does not work well? What is the natural
next approximation?

One reason why the above approach may not always
work perfectly well is that, when deriving this approach, we
implicitly assumed that all n criteria are equally important.
In real life, this is rarely the case. Usually, some criteria
are very important, some criteria are slightly important, etc.
It is therefore reasonable, in general, to combine not just
the degrees of satisfaction di = ki · yi of different criteria,
but the degree to which the corresponding criteria are “very”
satisfied or “somewhat” satisfied, etc. In other words, instead
of combining the values di themselves, it is reasonable to
combine the results hi(di) of applying the corresponding
hedges hi(z) to these degrees di.

Selecting an appropriate hedge. Which hedges should we
choose? Since we want to combine the results of applying
these hedges by using the simple product “and”-operation, it
is reasonable to select hedges h(z) which are consistent with
this operation, i.e., for which, e.g., “very (a& b)” means the
same as “very a and very b”.

In mathematical terms, this means that we select hedges
(monotonic functions) for which h(a · b) = h(a) · h(b). All
solutions of this functional equation are known. They can be
obtained, e.g., by turning to log scale for both a and h, then
for logarithms H

def
= ln(h), A def

= ln(a), and B
def
= ln(b), we

get
H(A+B) = H(A) +H(B)

hence H(A) = α ·A = α · ln(a), and

h(a) = exp(ln(h(a)) = exp(H(a)) = exp(α · ln(a)) = aα.

Resulting expression. Thus, in general, we get the expres-

sion d =
n∏

i=1

yαi
i .

What we do in this paper. We show that not only this
fuzzy-motivated expression has several reasonable properties:
the fuzzy-motivated expression is actually the only possible
expression that satisfies several reasonable properties.

To formulate and prove this result, let us go back to the
analysis of the original problem.

IV. TOWARDS A MORE ADEQUATE APPROACH TO
MULTI-CRITERION OPTIMIZATION

What we want: a precise description. We want to be able
to compare different alternatives.

Each alternative is characterized by a tuple of n values
y = (y1, . . . , yn), and only alternatives for which all the val-
ues yi are positive are allowed. Thus, from the mathematical

viewpoint, the set of all alternatives is the set (R+)n of all
the tuples of positive numbers.

For each two alternatives y and y′, we want to tell whether
y is better than y′ (we will denote it by y ≻ y′ or y′ ≺ y),
or y′ is better than y (y′ ≻ y), or y and y′ are equally
good (y′ ∼ y). These relations must satisfy natural properties.
For example, if y is better than y′ and y′ is better than y′′,
then y is better than y′′. In other words, the relation ≻ must
be transitive. Similarly, the relation ∼ must be transitive,
symmetric, and reflexive (y ∼ y), i.e., in mathematical terms,
an equivalence relation.

So, we want to define a pair of relations ≻ and ∼ such that
≻ is transitive, ∼ is transitive, ∼ is an equivalence relation,
and for every y and y′, one and only one of the following
relations hold: y ≻ y′, y′ ≻ y, or y ∼ y′.

It is also reasonable to require that if each criterion is
better, then the alternative is better as well, i.e., that if yi > y′i
for all i, then y ≻ y′.

Comment. Pairs of relations of the above type can be alter-
natively characterized by a pre-ordering relation

y′ ≽ y ⇔ (y′ ≻ y ∨ y′ ∼ y). (5)

This relation must be transitive and – in our case – total (i.e.,
for every y and y′, we have y ≽ y′ ∨ y′ ≽ y. Once we know
the pre-ordering relation ≽, we can reconstruct ≻ and ∼ as
follows:

y′ ≻ y ⇔ (y′ ≽ y& y ̸≽ y′); (6)

y′ ∼ y ⇔ (y′ ≽ y& y ≽ y′). (7)

Scale invariance: motivation. The quantities yi describe
completely different physical notions, measured in com-
pletely different units. In our meteorological case, some of
these values are wind velocities measured in meters per
second, or in kilometers per hour, or miles per hour. Other
values are elevations described in meters, kilometers, or
feet, etc. Each of these quantities can be described in many
different units. A priori, we do not know which units match
each other, so it is reasonable to assume that the units
used for measuring different quantities may not be exactly
matched.

It is therefore reasonable to require that the relations ≻ and
∼ between the two alternatives y = (y1, . . . , yn) and y′ =
(y′1, . . . , y

′
n) do not change if we simply change the units in

which we measure each of the corresponding n quantities.

Comment. The importance of such invariance is well known
in measurements theory, starting with the pioneering work
on S. S. Stevens in [14]; see also the classical books [10]
and [7] (especially Chapter 22), where this invariance is also
called meaningfulness.

Scale invariance: towards a precise description. When we
replace a unit in which we measure a certain quantity q by a
new measuring unit which is λ > 0 times smaller, then the
numerical values of this quantity increase by a factor of λ:



q → λ · q. For example, 1 cm is λ = 100 times smaller than
1 m, so the length q = 2 m, when measured in cm, becomes
λ · q = 2 · 100 = 200 cm.

Let λi denote the ratio of the old to the new units
corresponding to the i-th quantity. Then, the quantity that had
the value yi in the old units will be described by a numerical
value λi · yi in the new units. Therefore, scale-invariance
means that for all y, y′ ∈ (R+)n and for all λi > 0, we have

y′ = (y′1, . . . , y
′
n) ≻ y = (y1, . . . , yn) ⇒

(λ1 · y′1, . . . , λn · y′n) ≻ (λ1 · y1, . . . , λn · yn) (8)

and
y′ = (y′1, . . . , y

′
n) ∼ y = (y1, . . . , yn) ⇒

(λ1 · y′1, . . . , λn · y′n) ∼ (λ1 · y1, . . . , λn · yn). (9)

Comment. In general, in measurements, in addition to chang-
ing the unit, we can also change the starting point. However,
for the differences yi, the starting point is fixed by the fact
that 0 corresponds to the threshold value. So, in our case,
only changing a measuring unit (= scaling) makes sense.

Continuity. As we have mentioned in the previous section,
we also want to require that the relations ≻ and ∼ are
continuous in the following sense: if y′(ε) ≽ y(ε) for every
ε, then in the limit, when y′(ε) → y′(0) and y(ε) → y(0)
(in the sense of normal convergence in Rn), we should have
y′(0) ≽ y(0).

Let us now describe our requirements in precise terms.

Definition 1. By a total pre-ordering relation on a set Y , we
mean a pair of a transitive relation ≻ and an equivalence
relation ∼ for which, for every y, y′ ∈ Y , one and only one
of the following relations hold: y ≻ y′, y′ ≻ y, or y ∼ y′.

Comment. We will denote y ≽ y′
def
= (y ≻ y′ ∨ y ∼ y′).

Definition 2. We say that a total pre-ordering is non-trivial
if there exist y and y′ for which y′ ≻ y.

Comment. This definition excludes the trivial pre-ordering in
which every two tuples are equivalent to each other.

Definition 3. We say that a total pre-ordering relation on the
set (R+)n is:

• monotonic if y′i > yi for all i implies y′ ≻ y;
• scale-invariant if for all λi > 0:

• (y′1, . . . , y
′
n) ≻ y = (y1, . . . , yn) implies

(λ1 · y′1, . . . , λn · y′n) ≻ (λ1 · y1, . . . , λn · yn),

and
• (y′1, . . . , y

′
n) ∼ y = (y1, . . . , yn) implies

(λ1 · y′1, . . . , λn · y′n) ∼ (λ1 · y1, . . . , λn · yn).

• continuous if whenever we have a sequence y(k) of
tuples for which y(k) ≽ y′ for some tuple y′, and the
sequence y(k) tends to a limit y, then y ≽ y′.

Theorem 1. Every non-trivial monotonic scale-invariant
continuous total pre-ordering relation on (R+)n has the
following form:

y′ = (y′1, . . . , y
′
n) ≻ y = (y1, . . . , yn) ⇔

n∏
i=1

(y′i)
αi >

n∏
i=1

yαi
i ;

y′ = (y′1, . . . , y
′
n) ∼ y = (y1, . . . , yn) ⇔

n∏
i=1

(y′i)
αi =

n∏
i=1

yαi
i ,

for some constants αi > 0.

Comment. In other words, for every non-trivial mono-
tonic scale-invariant continuous total pre-ordering relation on
(R+)n, there exist values α1 > 0, . . . , αn > 0 for which the
above equivalence holds. Vice versa, for each set of values
α1 > 0, . . . , αn > 0, the above formulas define a monotonic
scale-invariant continuous pre-ordering relation on (R+)n.

It is worth mentioning that the resulting relation coincides
with the asymmetric version [11] of the bargaining solution
proposed by the Nobelist John Nash in 1953 [8].

Proof.

1◦. Due to scale-invariance, for every y1, . . . , yn, y′1, . . . , y′n,

we can take λi =
1

yi
and conclude that

(y′1, . . . , y
′
n) ∼ (y1, . . . , yn) ⇔(

y′1
y1

, . . . ,
y′n
yn

)
∼ (1, . . . , 1). (10)

Thus, to describe the equivalence relation ∼, it is sufficient
to describe the set of all the vectors z = (z1, . . . , zn) for
which z ∼ (1, . . . , 1). Similarly,

(y′1, . . . , y
′
n) ≻ (y1, . . . , yn) ⇔(

y′1
y1

, . . . ,
y′n
yn

)
≻ (1, . . . , 1). (11)

Thus, to describe the ordering relation ≻, it is sufficient to
describe the set of all the vectors z = (z1, . . . , zn) for which
z ≻ (1, . . . , 1).

Alternatively, we can take λi =
1

y′i
and conclude that

(y′1, . . . , y
′
n) ≻ (y1, . . . , yn) ⇔

(1, . . . , 1) ≻
(
y1
y′1

, . . . ,
yn
y′n

)
. (12)

Thus, it is also sufficient to describe the set of all the vectors
z = (z1, . . . , zn) for which (1, . . . , 1) ≻ z.

2◦. The above equivalence involves division. To simplify the
description, we can take into account that in the logarithmic

space, division becomes a simple difference: ln

(
y′i
yi

)
=

ln(y′i) − ln(yi). To use this simplification, let us consider



the logarithms Yi
def
= ln(yi) of different values. In terms of

these logarithms, the original values can be reconstructed as
yi = exp(Yi). In terms of these logarithms, we thus need to
consider:

• the set S∼ of all the tuples Z = (Z1, . . . , Zn) for which
z = (exp(Z1), . . . , exp(Zn)) ∼ (1, . . . , 1), and

• the set S≻ of all the tuples Z = (Z1, . . . , Zn) for which
z = (exp(Z1), . . . , exp(Zn)) ≻ (1, . . . , 1).

We will also consider the set S≺ of all the tuples Z =
(Z1, . . . , Zn) for which

(1, . . . , 1) ≻ z = (exp(Z1), . . . , exp(Zn)). (13)

Since the pre-ordering relation is total, for every tuple z,
either z ∼ (1, . . . , 1), or z ≻ (1, . . . , 1), or (1, . . . , 1) ≻ z.
In particular, this is true for z = (exp(Z1), . . . , exp(Zn)).
Thus, for every tuple Z, either Z ∈ S∼ or Z ∈ S≻ or
Z ∈ S≺.

3◦. Let us prove that the set S∼ is closed under addition, i.e.,
that if the tuples Z = (Z1, . . . , Zn) and Z ′ = (Z ′

1, . . . , Z
′
n)

belong to the set S∼, then their component-wise sum

Z + Z ′ = (Z1 + Z ′
1, . . . , Zn + Z ′

n) (14)

also belongs to the set S∼.

Indeed, by definition of the set S∼, the condition Z ∈ S∼
means that

(exp(Z1), . . . , exp(Zn)) ∼ (1, . . . , 1). (15)

Using scale-invariance with λi = exp(Z ′
i), we conclude that

(exp(Z1) · exp(Z ′
1), . . . , exp(Zn) · exp(Z ′

n)) ∼

(exp(Z ′
1), . . . , exp(Z

′
n)). (16)

On the other hand, the condition Z ′ ∈ S∼ means that

(exp(Z ′
1), . . . , exp(Z

′
n)) ∼ (1, . . . , 1). (17)

Thus, due to transitivity of the equivalence relation ∼, we
conclude that

(exp(Z1) · exp(Z ′
1), . . . , exp(Zn) · exp(Z ′

n)) ∼

(1, . . . , 1). (18)

Since for every i, we have exp(Zi)·exp(Z ′
i) = exp(Zi+Z ′

i),
we thus conclude that

(exp(Z1 + Z ′
1), . . . , exp(Zn + Z ′

n)) ∼ (1, . . . , 1). (19)

By definition of the set S∼, this means that the tuple Z+Z ′

belongs to the set S∼.

4◦. Similarly, we can prove that the set S≻ is closed under
addition, i.e., that if the tuples Z = (Z1, . . . , Zn) and Z ′ =
(Z ′

1, . . . , Z
′
n) belong to the set S≻, then their component-

wise sum

Z + Z ′ = (Z1 + Z ′
1, . . . , Zn + Z ′

n) (20)

also belongs to the set S≻.

Indeed, by definition of the set S≻, the condition Z ∈ S≻
means that

(exp(Z1), . . . , exp(Zn)) ≻ (1, . . . , 1). (21)

Using scale-invariance with λi = exp(Z ′
i), we conclude that

(exp(Z1) · exp(Z ′
1), . . . , exp(Zn) · exp(Z ′

n)) ≻

(exp(Z ′
1), . . . , exp(Z

′
n)). (22)

On the other hand, the condition Z ′ ∈ S≻ means that

(exp(Z ′
1), . . . , exp(Z

′
n)) ≻ (1, . . . , 1). (23)

Thus, due to transitivity of the strict preference relation ≻,
we conclude that

(exp(Z1) · exp(Z ′
1), . . . , exp(Zn) · exp(Z ′

n)) ≻

(1, . . . , 1). (24)

Since for every i, we have exp(Zi)·exp(Z ′
i) = exp(Zi+Z ′

i),
we thus conclude that

(exp(Z1 + Z ′
1), . . . , exp(Zn + Z ′

n)) ≻ (1, . . . , 1). (25)

By definition of the set S≻, this means that the tuple Z+Z ′

belongs to the set S≻.

5◦. A similar argument shows that the set S≺ is closed under
addition, i.e., that if the tuples Z = (Z1, . . . , Zn) and Z ′ =
(Z ′

1, . . . , Z
′
n) belong to the set S≺, then their component-

wise sum

Z + Z ′ = (Z1 + Z ′
1, . . . , Zn + Z ′

n) (26)

also belongs to the set S≺.

6◦. Let us now prove that the set S∼ is closed under the
“unary minus” operation, i.e., that if Z = (Z1, . . . , Zn) ∈
S∼, then −Z

def
= (−Z1, . . . ,−Zn) also belongs to S∼.

Indeed, Z ∈ S∼ means that

(exp(Z1), . . . , exp(Zn)) ∼ (1, . . . , 1). (27)

Using scale-invariance with λi = exp(−Zi) =
1

exp(Zi)
, we

conclude that

(1, . . . , 1) ∼ (exp(−Z1), . . . , exp(−Zn)), (28)

i.e., that −Z ∈ S∼.

7◦. Let us prove that if Z = (Z1, . . . , Zn) ∈ S≻, then −Z
def
=

(−Z1, . . . ,−Zn) belongs to S≺.

Indeed, Z ∈ S≻ means that

(exp(Z1), . . . , exp(Zn)) ≻ (1, . . . , 1). (29)

Using scale-invariance with λi = exp(−Zi) =
1

exp(Zi)
, we

conclude that

(1, . . . , 1) ≻ (exp(−Z1), . . . , exp(−Zn)), (30)

i.e., that −Z ∈ S≺.
Similarly, we can show that if Z ∈ S≺, then −Z ∈ S≻.



8◦. From Part 3 of this proof, it now follows that if Z =
(Z1, . . . , Zn) ∈ S∼, then Z + Z ∈ S∼, that Z + (Z + Z) ∈
S∼, etc., i.e., that for every positive integer p, the tuple

p · Z = (p · Z1, . . . , p · Zn) (31)

also belongs to the set S∼.
By using Part 6, we can also conclude that this is true for

negative integers p as well. Finally, by taking into account
that the zero tuple 0

def
= (0, . . . , 0) can be represented as

Z + (−Z), we conclude that 0 · Z = 0 also belongs to the
set S∼.

Thus, if a tuple Z belongs to the set S∼, then for every
integer p, the tuple p · Z also belongs to the set S∼.

9◦. Similarly, from Parts 4 and 5 of this proof, it follows that
• if Z = (Z1, . . . , Zn) ∈ S≻, then for every positive

integer p, the tuple p ·Z also belongs to the set S≻, and
• if Z = (Z1, . . . , Zn) ∈ S≺, then for every positive

integer p, the tuple p · Z also belongs to the set S≺.

10◦. Let us prove that for every rational number r =
p

q
,

where p is an integer and q is a positive integer, if a tuple
Z belongs to the set S∼, then the tuple r ·Z also belongs to
the set S∼.

Indeed, according to Part 8, Z ∈ S∼ implies that

p · Z ∈ S∼.

According to Part 2, for the tuple r · Z, we have either
r · Z ∈ S∼, or r · Z ∈ S≻, or r · Z ∈ S≺.

• If r · Z ∈ S≻, then, by Part 9, we would get

p · Z = q · (r · Z) ∈ S≻,

which contradicts our result that p · Z ∈ S∼.
• Similarly, if r · Z ∈ S≺, then, by Part 9, we would get

p · Z = q · (r · Z) ∈ S≺, which contradicts our result
that p · Z ∈ S∼.

Thus, the only remaining option is r ·Z ∈ S∼. The statement
is proven.

11◦. Let us now use continuity to prove that for every real
number x, if a tuple Z belongs to the set S∼, then the tuple
x · Z also belongs to the set S∼.

Indeed, a real number x can be represented as a limit of
rational numbers: r(k) → x. According to Part 10, for every
k, we have r(k) · Z ∈ S∼, i.e., the tuple

Z(k) def
= (exp(r(k) · Z1), . . . , exp(r

(k) · Zn)) ∼

(1, . . . , 1). (32)

In particular, this means that Z(k) ≽ (1, . . . , 1). In the limit,

Z(k) → (exp(x · Z1), . . . , exp(x · Zn)) ≽ (1, . . . , 1). (33)

By definition of the sets S∼ and S≻, this means that x ·Z ∈
S∼ or x · Z ∈ S≻.

Similarly, for −(x · Z) = (−x) · Z, we conclude that
−x ·Z ∈ S∼ or (−x) ·Z ∈ S≻. If we had x ·Z ∈ S≻, then

by Part 7 we would get (−x)·Z ∈ S≺, a contradiction. Thus,
the case x ·Z ∈ S≻ is impossible, and we have x ·Z ∈ S∼.
The statement is proven.

12◦. According to Parts 3 and 11, the set S∼ is closed under
addition and under multiplication by an arbitrary real number.
Thus, if tuples Z, . . . , Z ′ belong to the set S∼, their arbitrary
linear combination x ·Z+ . . .+x′ ·Z ′ also belongs to the set
S∼. So, the set S∼ is a linear subspace of the n-dimensional
space of all the tuples.

13◦. The subspace S∼ cannot coincide with the entire n-
dimensional space, because then the pre-ordering relation
would be trivial. Thus, the dimension of this subspace must
be less than or equal to n−1. Let us show that the dimension
of this subspace is n− 1.

Indeed, let us assume that the dimension is smaller than
n−1. Since the pre-ordering is non-trivial, there exist tuples
y = (y1, . . . , yn) and y′ = (y′1, . . . , y

′
n) for which y ≻ y′

and thus, Z = (Z1, . . . , Zn) ∈ S≻, where Zi = ln

(
yi
y′i

)
.

From Z ∈ S≻, we conclude that −Z ∈ S≺.
Since the linear space S∼ is a less than (n−1)-dimensional

subspace of an n-dimensional linear space, there is a path
connecting Z ∈ S≻ and −Z ∈ S≺ which avoids S∼. In
mathematical terms, this path is a continuous mapping γ :
[0, 1] → Rn for which γ(0) = Z and γ(1) = −Z. Since this
path avoids S∼, every point γ(t) on this path belongs either
to S≻ or to S≺.

Let t denote the supremum (least upper bound) of the set
of all the values t for which γ(t) ∈ S≻. By definition of
the supremum, there exists a sequence t(k) → t for which
γ(t(k)) ∈ S≻. Similarly to Part 11, we can use continuity to
prove that in the limit, γ(t) ∈ S≻ or γ(t) ∈ S∼. Since the
path avoids the set S∼, we thus get γ(t) ∈ S≻.

Similarly, since γ(1) ̸∈ S≻, there exists a sequence t(k) ↓ t
for which γ(t(k)) ∈ S≺. We can therefore conclude that in
the limit, γ(t) ∈ S≻ or γ(t) ∈ S∼ – a contradiction with our
previous conclusion that γ(t) ∈ S≻.

This contradiction shows that the linear space S∼ cannot
have dimension < n − 1 and thus, that this space have
dimension n− 1.

14◦. Every (n − 1)-dimensional linear subspace of an n-
dimensional superspace separates the superspace into two
half-spaces. Let us show that one of these half-spaces is S≻
and the other is S≺.

Indeed, if one of the subspaces contains two tuples Z and
Z ′ for which Z ∈ S≻ and Z ′ ∈ S≺, then the line segment
γ(t) = t · Z + (1 − t) · Z ′ containing these two points also
belongs to the same subspace, i.e., avoids the set S∼. Thus,
similarly to Part 13, we would get a contradiction.

So, if one point from a half-space belongs to S≻, all
other points from this subspace also belong to the set S≻.
Similarly, if one point from a half-space belongs to S≺, all
other points from this subspace also belong to the set S≺.

15◦. Every (n − 1)-dimensional linear subspace of an n-
dimensional space has the form α1 ·Z1 + . . .+ αn ·Zn = 0



for some real values αi, and the corresponding half-spaces
have the form

α1 · Z1 + . . .+ αn · Zn > 0

or
α1 · Z1 + . . .+ αn · Zn < 0.

The set S≻ coincides with one of these subspaces. If it
coincides with the set of all tuples Z for which

α1 · Z1 + . . .+ αn · Zn < 0,

then we can rewrite it as

(−α1) · Z1 + . . .+ (−αn) · Zn > 0,

i.e., as
α′
1 · Z1 + . . .+ α′

n · Zn > 0

for α′
i = −αi.

Thus, without losing generality, we can conclude that the
set S≻ coincides with the set of all the tuples Z for which
α1 · Z1 + . . .+ αn · Zn > 0. We have mentioned that

y′ = (y′1, . . . , y
′
n) ≻ y = (y1, . . . , yn) ⇔

(Z1, . . . , Zn) ∈ S≻, (34)

where Zi = ln

(
y′i
yi

)
. Thus,

y′ ≻ y ⇔ α1 · Z1 + . . .+ αn · Zn =

α1 · ln
(
y′1
y1

)
+ . . .+ αn · ln

(
y′n
yn

)
> 0. (35)

Since ln

(
y′i
yi

)
= ln(y′i) − ln(yi), the last inequality is

equivalent to

α1 · ln(y′1) + . . .+ αn · ln(y′n) >

α1 · ln(y1) + . . .+ αn · ln(yn). (36)

Let us take exp of both sides; then, due to the monotonicity
of the exponential function, we get an equivalent inequality

exp(α1 · ln(y′1) + . . .+ αn · ln(y′n)) >

exp(α1 · ln(y1) + . . .+ αn · ln(yn)). (37)

Here,
exp(α1 · ln(y′1) + . . .+ αn · ln(y′n)) =

exp(α1 · ln(y′1)) · . . . · exp(αn · ln(y′n)), (38)

where for every i, eαi·zi = (ezi)
αi , with zi

def
= ln(y′i), implies

that

exp(αi · ln(y′i)) = (exp(ln(y′i)))
αi = (y′i)

αi , (39)

so

exp(α1·ln(y′1)+. . .+αn·ln(y′n)) = (y′1)
α1 ·. . .·(y′n)αn (40)

and similarly,

exp(α1 · ln(y1) + . . .+ αn · ln(yn)) = yα1
1 · . . . · yαn

n . (41)

Thus, the condition y′ ≻ y is equivalent
n∏

i=1

yαi
i >

n∏
i=1

(y′i)
αi . (42)

Similarly, we prove that

y = (y1, . . . , yn) ∼ y′ = (y′1, . . . , y
′
n) ⇔

n∏
i=1

yαi
i =

n∏
i=1

(y′i)
αi . (43)

The condition αi > 0 follows from our assumption that the
pre-ordering is monotonic.

The theorem is proven.
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