
Chapter 1

Symmetries: A General Approach to
Integrated Uncertainty Management

Vladik Kreinovich, Hung T. Nguyen, and Songsak Sriboonchitta

Abstract We propose to use symmetries as a general approach to maintain-
ing different types of uncertainty, and we show how the symmetry approach
can help, especially in economics-related applications.

1.1 Why Symmetries

Formulation of the problem. Our knowledge is rarely complete, we rarely
have absolutely certainty. Uncertainty is present in different areas of knowl-
edge. As a result, in many different areas of knowledge, different techniques
and approaches have been developed to describe and process uncertainty.
For example, in logical-type descriptions of knowledge typical for expert sys-
tems and Artificial Intelligence, formalisms like probabilistic logic and fuzzy
logic have been developed to process uncertainty. In engineering-oriented
probability-type descriptions, probability-related approaches have been de-
veloped such as the Dempster-Shafer approach, imprecise probabilities ap-
proach, etc.

To solve complex real-life problems, we must takes into account knowledge
form different areas. Since these different pieces of knowledge come with
uncertainty, we must therefore jointly manage different types of uncertainty.
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We therefore need a general approach that would take care of different types
of uncertainty.

Symmetry: a fundamental property of the physical world. The reason
why we are gaining and processing knowledge is that we want to predict the
processes of the physical world, predict the results of different possible actions
– and thus, select the action whose results are most beneficial.

On the fundamental level, the very possibility to predict the processes and
the results of different actions comes from the fact that we have observed
similar situations, we remember the outcomes of these similar situations, and
we expect that the outcomes will be similar.

For example, if in the past, we dropped a ball several times and every time,
it fell down, then in a new situation we expect the ball to fall down as well.
In the past, we may have been at different locations, at different moments of
time, oriented differently, but the results were the same. Thus, we conclude
that the outcome of this simple drop-the-ball experiment will be the same.

In mathematical terms, the similarity between different situations corre-
sponds to symmetry, and the fact that the result is the same for similar
situations is usually described as invariance.

In these terms, we can say, e.g., that the results of the “drop-the-ball” grav-
itational experiment are invariant relative to shifting the location, rotating
(= changing orientation), and shifting in time.

The notion of symmetry is not only methodologically fundamental: sym-
metries are one of the main tools of modern physics; see, e.g., [4].

Because of the fundamental nature of symmetries in describing the physical
world, it is reasonable to try to use symmetries for describing uncertainty as
well.

What is known. The idea of symmetry can indeed explain the basic for-
mulas of different uncertainty formalisms; see, e.g., [8]. For example, natural
symmetries explain the most widely used t-norms and t-conorms in fuzzy
logic, most widely used non-linear activation functions in neural networks,
etc.

What we do in this paper. In this paper, we show that not only the
basic formulas, but many other aspects of uncertainty can be explained in
terms of symmetries: heuristic and semi-heuristic approaches can be justified
by appropriate natural symmetries, and symmetries can help in designing
optimal algorithms.

1.2 Symmetries Help in Explaining Existing Algorithms

Practical need for uncertainty propagation. In many practical situ-
ations, we are interested in the value of a quantity y which is difficult or
even impossible to measure directly. To estimate this difficult-to-measure
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quantity y, we measure or estimate related easier-to-measure quantities
x1, . . . , xn which are related to the desired quantity y by a known relation
y = f(x1, . . . , xn). Then, we apply the relation f to the estimates x̃1, . . . , x̃n

for xi and produce an estimate ỹ = f(x̃1, . . . , x̃n) for the desired quantity y.
In the simplest cases, the relation f(x1, . . . , xn) may be an explicit ex-

pression: e.g., if we know the current x1 and the resistance x2, then we can
measure the voltage y by using Ohm’s law y = x1 · x2. In many practi-
cal situations, the relation between xi and y is much more complicated: the
corresponding algorithm f(x1, . . . , xn) is not an explicit expression, but a
complex algorithm for solving an appropriate non-linear equation (or system
of equations).

Estimates are never absolutely accurate:

• measurements are never absolutely precise, and
• expert estimates can only provide approximate values of the directly mea-

sured quantities x1, . . . , xn.

In both cases, the resulting estimates x̃i are, in general, different from the
actual (unknown) values xi. Due to these estimation errors ∆xi

def= x̃i − xi,
even if the relation f(x1, . . . , xn) is exact, the estimate ỹ = f(x̃1, . . . , x̃n) is
different from the actual value y = f(x1, . . . , xn): ∆y

def= ỹ − y 6= 0.
(In many situations, when the relation f(x1, . . . , xn) is only known ap-

proximately, there is an additional source of the approximation error in y
caused by the uncertainty in knowing this relation.)

It is therefore desirable to find out how the uncertainty ∆xi in estimating
xi affects the uncertainty ∆y in the desired quantity, i.e., how the uncertain-
ties ∆xi propagate via the algorithm f(x1, . . . , xn).

Propagation of probabilistic uncertainty. Often, we know the probabil-
ities of different values of ∆xi. For example, in many cases, we know that
the approximation errors ∆xi are independent normally distributed with zero
mean and known standard deviations σi; see, e.g., [10].

In this case, we can use known statistical techniques to estimate the re-
sulting uncertainty ∆y in y. For example, since we know the probability
distributions, we can simulate them in the computer, i.e., use the Monte-
Carlo simulation techniques to get a sample population ∆y(1), . . . ,∆y(N) of
the corresponding errors ∆y. Based on this sample, we can then estimate the
desired statistical characteristics of the desired approximation error ∆y.

Propagation of interval uncertainty. In many other practical situations,
we do not know these probabilities, we only know the upper bounds ∆i on the
(absolute values of) the corresponding measurement errors ∆xi: |∆xi| ≤ ∆.

In this case, based on the known approximation x̃i, we can conclude that
the actual (unknown) value of i-th auxiliary quantity xi can take any value
from the interval

xi = [x̃i −∆i, x̃i + ∆i]. (1.1)
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To find the resulting uncertainty in y, we must therefore find the range y =
[y, y] of possible values of y when xi ∈ xi:

y = f(x1, . . . ,xn) def= {f(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.

Computations of this range under interval uncertainty is called interval com-
putations; see, e.g., [5].

Comment. It is well known that processing fuzzy uncertainty can be re-
duced to processing interval uncertainty: namely, the α-cut y(α) for y =
f(x1, . . . , xn) is equal to the range f(x1(α), . . . ,xn(α)); see, e.g., [9].

Linearization. In many practical situations, the approximation errors ∆xi =
x̃i − xi are small. In such situations, we can expand the expression for
∆y = ỹ − y in Taylor series in ∆xi and keep only the linear terms in
this expansion. In this case, we get ∆y = c1 · ∆x1 + . . . + cn · ∆xn, where

ci
def=

∂f

∂xi
(x̃1, . . . , x̃n). So if |∆xi| ≤ ∆, then |∆y| ≤ ∆, where

∆ = |c1| ·∆1 + . . . + |cn| ·∆n. (1.2)

For complex f , we can find ci by numerical differentiation. To estimate n
partial derivatives, we need n calls to f . For large n and complex f , this is
too time-consuming.

Cauchy deviate method. For large n, we can further reduce the number
of calls to f if we use a special technique of Cauchy-based Monte-Carlo sim-
ulations, which enables us to use a fixed number of calls to f (≈ 200) for all
possible values n; see, e.g., [6]. This method uses Cauchy distribution – i.e.,

probability distributions with the probability density ρ(z) =
∆

π · (z2 + ∆2)
;

the value ∆ is called the (scale) parameter of this distribution.
Cauchy distribution has the following property that we will use: if z1, . . . , zn

are independent random variables, and each of zi is distributed according to
the Cauchy law with parameter ∆i, then their linear combination

z = c1 · z1 + . . . + cn · zn (1.3)

is also distributed according to a Cauchy law, with a scale parameter ∆ =
|c1| ·∆1 + . . . + |cn| ·∆n.

Therefore, if we take random variables δi which are Cauchy distributed
with parameters ∆i, then the value

δ
def= f(x̃1, . . . , x̃n)− f(x̃1 − δ1, . . . , x̃n − δn) =

c1 · δ1 + . . . + cn · δn (1.4)

is Cauchy distributed with the desired parameter ∆ =
n∑

i=1

|ci| ·∆i.
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Need for intuitive explanation. The Cauchy deviate method is one of
the most efficient techniques for processing interval and fuzzy data. However,
this method has a serious drawback: while the corresponding technique is
mathematically valid, it is somewhat counterintuitive – we want to analyze
errors which are located instead a given interval [−∆,∆], but this analysis use
Cauchy simulated errors which are located, with a high probability, outside
this interval.

It is therefore desirable to come up with an intuitive explanation for this
technique.

Our main idea: use neurons. Our explanation comes from the idea pro-
moted by Paul Werbos, the author of the backpropagation algorithm for
training neural networks. Traditionally, neural networks are used to simulate
a deterministic dependence; Paul Werbos suggested that the same neural net-
works can be used to describe stochastic dependencies as well – if as one of
the inputs, we take a standard random number r uniformly distributed on
the interval [0, 1]; see, e.g., [?] and references therein.

In view of this idea, as a natural probability distribution, we can take the
result of applying a neural network to this random number. The simplest
case is when we have a single neuron. In this case, we apply the activation
(input-output) function f(y) corresponding to this neuron to the random
number r.

In [8], we described all activation functions s(x) which are optimal with
respect to reasonable symmetry-based criteria. It turns out that all such
functions have the form a + b · s0(K · y + l), where s0(y) is either a linear
function, or a fractional-linear function, or s0(y) = exp(y), or the logistic
(sigmoid) function s0(y) = 1/(1 + exp(−y)), or s0(y) = tan(y). The logistic
function is indeed the most popular activation function for actual neural
networks, but others are also used. For our purpose, we will use the tangent
function: its application of the tangent function to the standard random
number r indeed leads to the desired Cauchy distribution.

1.3 Symmetries Help in Designing Optimal Algorithms

Symmetries not only help to find the appropriate representations of uncer-
tainty and appropriate formulas for processing uncertainty: symmetries also
help to select the optimal algorithms for implementing the corresponding
mathematical formulas.

Fixed points: a practical problem. In many real-life situations, we have
dynamical situations which eventually reach an equilibrium.

For example, in economics, when a situation changes, prices start chang-
ing (often fluctuating) until they reach an equilibrium between supply and
demand.
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In transportation, when a new road is built, some traffic moves to this
road to avoid congestion on the other roads; this causes congestion on the
new road, which, in its turn, leads drivers to go back to their previous routes,
etc. [11].

To describe the problem of finding the equilibrium state(s), we must first be
able to describe all possible states. In this paper, we assume that we already
have such a description, i.e., that we know the set X of all possible states.

We must also be able to describe the fact that many states x ∈ X are not
equilibrium states. For example, if the price of some commodity (like oil) is
set up too high, it will become profitable to explore difficult-to-extract oil
fields; as a new result, the supply of oil will increase, and the prices will drop.

Similarly, as we have mentioned in the main text, if too many cars move
to a new road, this road may become even more congested than the old roads
initially were, and so the traffic situation will actually decrease – prompting
people to abandon this new road.

To describe this instability, we must be able to describe how, due to this
instability, the original state x gets transformed in the next moment of time.
In other words, we assume that for every state x ∈ X, we know the corre-
sponding state f(x) at the next moment of time.

For non-equilibrium states x, the change is inevitable, so we have f(x) 6= x.
The equilibrium state x is the state which does not change, i.e., for which
f(x) = x. Thus, we arrive at the following problem: We are given a set X
and a function f : X → X; we need to find an element x for which f(x) = x.

In mathematical terms, an element x for which f(x) = x is called a fixed
point of the mapping f . So, there is a practical need to find fixed points.

The problem of computing fixed points. Since there is a practical need
to compute the fixed points, let us give a brief description of the existing
algorithms for computing these fixed points; see, e.g., [1].

Straightforward algorithm: Picard iterations. At first glance, the situ-
ation seems very simple and straightforward. We know that if we start with
a state x at some moment of time, then in the next moment of time, we will
get a state f(x). We also know that eventually, we will get an equilibrium.
So, a natural thing to do is to simulate how the actual equilibrium will be
reached.

In other words, we start with an arbitrary (reasonable) state x0. After we
know the state xk at the moment k, we predict the state xk+1 at the next
moment of time as xk+1 = f(xk). This algorithm is called Picard iterations
after a mathematician who started efficiently using it in the 19 century.

If the equilibrium is eventually achieved, i.e., if in real life the process
converges to an equilibrium point x, then Picard’s iterations are guaranteed
to converge. Their convergence may be somewhat slow – since they simu-
late all the fluctuations of the actual convergence – but eventually, we get
convergence.



1 Symmetries and Uncertainty Management 7

Situations when Picard’s iterations do not converge: economics. In
some important practical situations, Picard iterations do not converge.

The main reason is that in practice, we can have panicky fluctuations which
prevent convergence. Of course, one expects fluctuations. For example, if the
price of oil is high, then it will become profitable for companies to explore and
exploit new oil fields. As a result, the supply of oil will drastically increase,
and the price of oil will go down. Since this is all done in a unplanned way,
with different companies making very rough predictions, it is highly probable
that the resulting oil supply will exceed the demand. As a result, prices will go
down, oil production in difficult-to-produce oil areas will become unprofitable,
supply will go down, etc.

Such fluctuations have happened in economics in the past, and sometimes,
not only they did not lead to an equilibrium, they actually led to deep eco-
nomic crises.

How can we handle these situation: a natural practical solution. If
the natural Picard iterations do not converge, this means that in practice,
there is too much of a fluctuation. When at some moment k, the state xk

is not an equilibrium, then at the next moment of time, we have a state
xk+1 = f(xk) 6= xk. However, this new state xk+1 is an not necessarily closer
to the equilibrium: it “over-compensates” by going too far to the other side
of the desired equilibrium.

For example, we started with a price xk which was too high. At the next
moment of time, instead of having a price which is closer to the equilibrium,
we may get a new price xk+1 which is too low – and may even be further
away from the equilibrium than the previous price.

In practical situations, such things do happen. In this case, to avoid such
weird fluctuations and to guarantee that we eventually converge to the equi-
librium point, a natural thing is to “dampen” these fluctuations: we know
that a transition from xk to xk+1 has gone too far, so we should only go
“halfway” (or even smaller piece of the way) towards xk+1.

How can we describe it in natural terms? In many practical situations,
there is a reasonable linear structure on the set X on all the states, i.e., X
is a linear space. In this case, going from xk to f(xk) means adding, to the
original state xk, a displacement f(xk)−xk. Going halfway would then mean
that we are only adding a half of this displacement, i.e., that we go from xk

to xk+1 = xk +
1
2
· (f(xk)− xk), i.e., to

xk+1 =
1
2
· xk +

1
2
· f(xk). (1.5)

The corresponding iteration process is called Krasnoselskii iterations. In gen-
eral, we can use a different portions α 6= 1/2, and we can also use different
portions αk on different moments of time. In general, we thus go from xk to
xk+1 = xk + αk · (f(xk)− xk), i.e., to
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xk+1 = (1− αk) · xk + αk · f(xk). (1.6)

These iterations are called Krasnoselski-Mann iterations.

Practical problem: the rate of convergence drastically depends on
αi. The above convergence results show that under certain conditions on the
parameters αi, there is a convergence. From the viewpoint of guaranteeing
this convergence, we can select any sequence αi which satisfies these condi-
tions. However, in practice, different choice of αi often result in drastically
different rate of convergence.

To illustrate this difference, let us consider the simplest situation when
already Picard iterations xn+1 = f(xn) converge, and converge monotoni-
cally. Then, in principle, we can have the same convergence if instead we use
Krasnoselski-Mann iterations with αn = 0.01. Crudely speaking, this means
that we replace each original step xn → xn+1 = f(xn), which bring xn di-
rectly into xn+1, by a hundred new smaller steps. Thus, while we still have
convergence, we will need 100 times more iterations than before – and thus,
we require a hundred times more computation time.

Since different values αi lead to different rates of convergence, ranging
from reasonably efficient to very inefficient, it is important to make sure that
we select optimal values of the parameters αi, values which guarantee the
fastest convergence.

Idea: from the discrete iterations to the continuous dynamical sys-
tem. In this section, we will describe the values αi which are optimal in some
reasonable sense. To describe this sense, let us go back to our description of
the dynamical situation. In the above text, we considered observations made
at discrete moments of time; this is why we talked about current moment of
time, next moment of time, etc. In precise terms, we considered moments t0,
t1 = t0 + ∆t, t2 = t0 + 2∆t, etc.

In principle, the selection of ∆t is rather arbitrary. For example, in terms
of prices, we can consider weekly prices (for which ∆t is one week), monthly
prices, yearly prices, etc. Similarly, for transportation, we can consider daily,
hourly, etc. descriptions. The above discrete-time description is, in effect, a
discrete approximation to an actual continuous-time system.

Similarly, Krasnoselski-Mann iterations xk+1−xk = αk ·(f(xk)−xk) can be
viewed as a discrete-time approximations to a continuous dynamical system
which leads to the desired equilibrium. Specifically, the difference xk+1−xk is

a natural discrete analogue of the derivative
dx

dt
, the values αk can be viewed

as discretized values of an unknown function α(t), and so the corresponding
continuous system takes the form

dx

dt
= α(t) · (f(x)− x). (1.7)
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A discrete-time system is usually a good approximation to the corresponding
continuous-time system. Thus, we can assume that, vice versa, the above
continuous system is a good approximation for Krasnoselski-Mann iterations.

In view of this fact, in the following text, we will look for an appropriate
(optimal) continuous-time system (1.7).

Scale invariance: natural requirement on a continuous-time system.
In deriving the continuous system (1.7) from the formula for Krasnoselski-
Mann iterations, we assumed that the original time interval ∆t between the
two consecutive iterations is 1. This means, in effect, that to measure time,
we use a scale in which this interval ∆t is a unit interval.

As we have mentioned earlier, the choice of the time interval ∆t is rather
arbitrary. If we make a different choice of this discretization time interval
∆t′ 6= ∆t, then we would get a similar dynamical system, but described in a
different time scale, with a different time interval ∆t′ taken as a measuring
unit. As a result of “de-discretizing” this new system, we would get a different
continuous system of type (1.7) – a system which differs from the original
one by a change in scale.

In the original scale, we identified the time interval ∆t with 1. Thus, the
time t in the original scale means physical time T = t ·∆t. In the new scale,
this same physical time corresponds to the time

t′ =
T

∆t′
= t · ∆t

∆t′
. (1.8)

If we denote by λ =
∆t′

∆t
the ratio of the corresponding units, then we

conclude that the time t in the original scale corresponds to the time t′ = t/λ
in the new scale. Let us describe the system (1.7) in terms of this new time
coordinate t′. From the above formula, we conclude that t = λ·t′; substituting
t = λ · t′ and dt = λ · dt′ into the formula (1.7), we conclude that

1
λ
· dx

dt′
= α(λ · t′) · (f(x)− x), (1.9)

i.e., that
dx

dt′
= (λ · α(λ · t′)) · (f(x)− x). (1.10)

It is reasonable to require that the optimal system of type (1.7) should
not depend on what exactly time interval ∆t we used for discretization.

Conclusion: optimal Krasnoselski-Mann iterations correspond to αk = c/k.
Since a change of the time interval corresponds to re-scaling, this means the
system (1.7) must be scale-invariant, i.e., to be more precise, the system (1.10)
must have exactly the same form as the system (1.7) but with t′ instead of
t, i.e., the form

dx

dt′
= α(t′) · (f(x)− x). (1.11)
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By comparing the systems (1.10) and (1.11), we conclude that we must have
λ · α(λ · t′) = a(t′) for all t′ and λ. In particular, if we take λ = 1/t′, then we

get α(t′) =
α(1)
t′

, i.e., α(t′) = c/t′ for some constant c (= α(1)).
With respect to the corresponding discretized system, this means that we

take αk = α(k) = c/k.

This selection works well. Our experiments on transportation problems
confirmed that this procedure converges [2, 3].

The choice ak = 1/k have been successfully used in other applications as
well; see, e.g., [12] and references therein.
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