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Abstract

Traditional decision theory describes human behavior and human pref-
erences in terms of utility functions. In the last decades, it was shown
that in many economic situations, a reasonable description of the actual
decisions can be found if we use a different approach — of spectral risk
measures. In each of these approaches, we first need to empirically find
the corresponding function: utility function in the traditional approach
and the weighting function for spectral risk measures. Since both ap-
proaches provide a reasonable description of the same actual behavior
(in particular, of the same actual economic behavior), it is desirable to be
able, given utility function, to find an appropriate weighting function (and
vice versa). Some empirical rules for such transition have been proposed;
these rules are purely heuristic and approximate, they are not theoreti-
cally justified. In the present paper, we recall how both the utility and the
risk measure approaches can be reformulated in statistical terms, and use
these reformulations to provide a statistically justified transition between
utility and weighting functions.



1 Formulation of the Problem

Decision theory: main objectives. One of the main objectives of decision
theory is to formally describe how people make decisions, what is preferable
and what is not, so as to be able to help decision makers by prompting them
decisions which should be beneficial for them.

There exist several approaches to describing such a decision.

Traditional decision theory approach: a brief reminder. Traditional
decision theory describes human behavior and human preferences in terms of
utility functions [7, 8, 10, 11, 13]. In the utility theory approach, we first select
a utility function that assigns, to each alternative x, a “utility” value u(x)
describing how valuable this outcomes is for the decision maker. For example,
in the economic applications, we assign the utility value u(z) to each possible
monetary outcome.

The quality of each action — that leads to different outcomes with different
probabilities — is characterized by the expected values of the corresponding
utility. We therefore select an action which leads to the largest value of expected
utility.

Spectral risk measures approach: a brief reminder. In the last decades,
it was shown that in many economic situations, a reasonable description of the
actual decisions can be found if we use a different approach — of spectral risk
measures [1, 2, 4, 5, 6, 12, 14].

In this approach, we select a “weighting” function ¢(p) which assigns a
weight to all possible probability values p € [0, 1], and we then characterize the
quality of an action by the value

/O ¢(p) - F~'(p)dp,

where F~1(p) denotes a function which is an inverse to the cumulative distri-
bution function F(x) — the probability that the action’s outcome will be < z.

Relation between utility and spectral risk measures: an open prob-
lem. We have described two reasonable approaches to describing human de-
cisions: utility theory and spectral risk measures. In each of these approaches
we first need to empirically find the corresponding function:

e utility function in the traditional approach and
e the weighting function for spectral risk measures.

Since both approaches provide a reasonable description of the same actual
behavior (in particular, of the same actual economic behavior), it is desirable
to be able, given utility function, to find an appropriate weighting function and
vice versa.



Some empirical rules for such transition have been proposed; see, e.g., [6].
For example, they suggest to associate:

—k-x

e to the exponential utility function u(z) = 1 —e , the exponential

(k- (1= D))

weighting function ¢(p) = T

e to the power utility function u(x) = x!=7, the power weighting function
plp) =7 - 1-p) "

However, as the authors of these papers themselves observe, these rules are
purely heuristic, approximate, and not theoretically justified. A detailed analy-
sis performed in [6] shows that the proposed match is not perfect: e.g., for power
utility functions, the related power weighting function exhibits a bizarre behav-
ior under which decisions are drastically different from the decisions related to
the original utility functions.

It is therefore desirable to provide a theoretically justified relation. Such a
relation is provided in the present paper.

2 Decision Approaches Reformulated in Statis-
tical Terms

Our idea. To solve the problem of comparing different approaches to decision
making, we do the following:

e First, we recall how both the utility and the risk measure approaches can
be reformulated in statistical terms.

e Then, we use these reformulations to provide a statistically justified tran-
sition between utility and weighting functions.

Let us start by recalling how both approaches can be naturally reformulated
in statistical terms.

Utility theory — presented from the statistical viewpoint. The tradi-
tional decision theory (see, e.g., [7, 8, 10, 11, 13]) is based on the notion of
utility. The traditional utility can be described in simple probabilistic terms.
Namely, let us select two alternatives: a very unfavorable alternative Ay and a
very favorable alternative A;. With this choice, most real-life alternatives lie
in between Ag and A;. A natural scale for such alternatives emerges when we
consider, for all possible values p from the interval “lotteries” A(p) in which we
get Ay with probability p and Ag with the remaining probability 1 — p.

When p = 0, the corresponding lottery A(0) is simply equivalent to the
unfavorable outcomes Ay. When p increases, the probability of a favorable
outcome increases and thus, the lottery itself becomes more favorable. When
the probability p reaches its largest possible value p = 1 , the corresponding
lottery A(1) is equivalent to the very favorable outcome Aj.



Let A be an arbitrary alternative between Ay and Aj, i.e., an alternative
which is better than Ag (Ap < A) and worse than A; (A < A;). When p goes
from 0 to 1, the lottery A(p) continuously changes from the very unfavorable
alternative Ay to the very favorable alternative A;. Thus, it is reasonable to
expect that there exists a value p for which the alternative A is equivalent (of
the same quality) as the lottery A(p). This probability p is called the utility of
the alternative A.

Expected utility. As we have mentioned, one of the main objectives of the
utility theory is to help a user select the best action. It is rarely possible to
predict the exact results of each action. At best, we can predict the probabilities
of different consequences of each action.

Suppose that we have an action with possible consequences C,...,C,,, we
know the utility u; = u(C;) of each of these consequences, and we know the
probabilities pq,...,p, of these consequences, p; + ...+ p, = 1. How can we
then describe the benefit of this action?

The action means that we get each C; with probability p;. By definition of
utility, each alternative C; is equivalent to a lottery in which we get A; with
probability u;. Thus, the action is equivalent to a “compound” lottery in which,
with probability u;, we select a new lottery in which the very favorable outcome
A occurs with probability p;. The total probability of A; in such a compound
lottery can be then determined by the formula of complete probability: it is
equal to

ﬂ(iéfpl'u1+"‘+pn'un~ (1)

Thus, the original action is equivalent to the lottery in which we get A; with
probability « (and Ay with the remaining probability 1 — ). By definition of
utility, this means that the utility of the action is equal to the expression (1).

From the statistical viewpoint, the expression (1) is simply the expected
value of the utility u. Thus, the utility of the action is equal to the expected
value of the utilities of its consequences.

Re-scaling utility. The above definition of utility depends on the selection
of two alternatives Ay and A;. What will happen if we select two different
alternatives, e.g., alternatives Ay and A; for which 4y < Ag and A; < A7
How is the utility u(A) based on the new selection related to the utility u(A)
based on the original selection? B B

In this case, since both Ay and A; are in between Ay and A, for some
probabilities pg and p1,

e the alternative Ay is equivalent to a lottery A(fy) in which we get A; with
probability pg and Ay with the remaining probability 1 — pg, and

e the alternative A; is equivalent to a lottery A(f1) in which we get A; with
probability p; and A; with the remaining probability 1 — p;.



Each alternative A is equivalent to a lottery A(u(A)) in which we get A; with
probability u(A) and Ay with the remaining probability 1 — u(A). Replacing
each of the alternatives Ay and A; with the corresponding lottery A(pg) or

A(p1), we thus get a new composite lottery in which:

e with probability u(A), we launch a lottery in which we get Zl with prob-
ability p1, and

e with probability 1 — u(A), we launch a lottery in which we get A, with
probability pg.

The total probability of getting gl in this compound lottery is equal to
~ def ~ ~
u = p1-u(A) +po- (1 —u(A)). (2)

Thus, the alternative A is equivalent to a lottery g(ﬂ) in which we get the new
favorable alternative A; with probability u and the new unfavorable alternative
with probability 1 — 4. By definition of utility, this means that in the new scale,
the utility u(A) of the alternative A is equal to u. Formula (2) can be rewritten
as a linear transformation:

w(A) =a-u(A) + b,

where a % p1 — po and b = pp. Thus, in general, the change in a scale corre-
sponds to a linear re-scaling of utility.

In other words, the numerical values of utility are determined modulo an
arbitrary linear transformation.

Spectral risk measures — presented from the statistical viewpoint.
Spectral risk theory provides an alternative description of human preferences.
This description is based on the idea of risk aversion; see, e.g., [1, 2, 4, 5, 6, 12,
14].

Let us start with an extreme idealized case. For example, what does it mean
that a person is fully intolerable to risk? Intuitively, this means that if you
propose this person some favorable alternative with a certain probability p, this
person would never prefer it. In other words, to this person, the quality of
an action is determined by what we can guarantee, i.e., by the worst possible
consequence — because more favorable alternatives come with risk and thus, do
not count.

Of course, in reality, such an idealized behavior does not occur. Every person
has a certain tolerance for risk, i.e., a probability p of failure which this person
can still tolerate. In this case, we can dismiss the worst alternatives as long as
their total probability does not exceed p. In mathematical terms, this means
that as a numerical criterion of an action, we take the value F~!(p) for which
the probability of benefits being smaller than F~!(p) is equal to p. This value —
inverse to the cumulative distribution function F'(z) — is called the p-th quantile
of the corresponding probability distribution.



The quantiles describe decisions of individual person. However, important
decisions are rarely made by individuals taking only their preferences into ac-
count. Most important decisions take into account preferences of several per-
sons. Each of these persons may have their own risk tolerance value p. For
each of them, the benefit of each action is proportional to the corresponding
quantile — i.e., in simplified terms, each of these persons is willing to buy his or
her participation of this action for the amount F~!(p). If we denote by o(p)
the proportion of persons with risk tolerance p, then the total amount that all
the participants are willing to pay to participate in this action can be described
as the average value

/ o(p) - F~'(p) dp. (3)

This expression (3) is called a spectral risk measure, and the corresponding
function ¢(p) is called a weighting function.

3 Towards Comparing the Two Approaches: Let
Us Reformulate Both Approaches for the Prac-
tical Case of a Sample

From the general idea (arbitrary distribution) to a practical imple-
mentation (sample). As a result of each action, we have different monetary
amounts with different probabilities.

Both the utility and the spectral risk measure approaches allow arbitrary
probability distributions. In practice, we usually do not know corresponding
probability distribution, we usually only have a sample x1,...,x, of the corre-
sponding monetary amounts.

It is natural to build a histogram based on these values, i.e., equivalently,
to build an “empirical” distribution in which we have each of the n values with
equal probability 1/n. It is well known that when the sample size increases, this
empirical distribution converges to the actual one.

How will both approaches look like for this empirical distribution?

Utility approach on the example of a sample. For a utility function u(x),
the utility of each alternative z; is equal to u(z;), and the probability of each
alternative is equal to 1/n. Thus, the expected value of the utility is equal to

_ 1 1
u—ﬁ-u(xl)—l—...—kﬁ-u(xn).

Utility approach reformulated in terms of an equivalent monetary
value. It is difficult to directly compare the utility value with the value pro-
vided by the spectral risk measures. Indeed:

e the utility approach provides an equivalent wutility value, while



e the risk measures approach provides an equivalent monetary value.

To make this comparison possible, let us reformulate the utility approach in
such a way that it will also lead to a monetary value.

In other words, instead of describing value of an action to a person as the
utility value, we want to describe the value of an action as the amount of money
x that this person is willing to pay to participate in this action.

Once a person paid the amount of money x, in each alternative ¢, the person
gains the value x; — x. The expected utility is this equal to

1 1
- cu(ry —x)+ ...+ - cu(xz, — ).
Under the appropriate value z, this expected utility is equal to the utility of
gaining nothing, i.e., to u(0):
1 1
. cu(zy —x)+ ...+ - cu(xy, — ) = u(0).

We have mentioned that a utility function is defined modulo an arbitrary
linear transformation. Thus, we can always “normalize” the utility function to
get u(0) = 0. After this normalization, the above formula takes a simplified
form

1 1
ﬁ~u(x1f:r)Jr...JrEMu(xnfx)fO,
i.e., multiplying both sides by n, the form

u(xy —x)+ ...+ ulx, —z)=0. (4)

Spectral risk measure on the example of a sample. For a sample distri-
bution, once we order the sample values 1, ..., z, into an increasing sequence

1) Sz < .. < T,

the value x(y) is the (1/n)-th quantile, the value x (o) is the (2/n)-th quantile,
..., Z(; is the (i/n)-th quantile, etc.
Thus, the formula (3) becomes proportional to

— l l _|_l z + _|_l L_l _;'_l (1) —

Resulting reformulation of the problem. In these sample terms, the orig-
inal problem about the relation between the utility function and the weighting
function takes the following form:

e given a function u(z), find the function ¢(p) for which the estimates (5)
are close to estimates obtained from the equation (4), and

e given a function ¢(p), find the function u(x) for which the estimates ob-
tained from the equation (4) are close to estimates (5).



4 A Similar Problem Is Already Solved In Ro-
bust Statistics

Robust statistics: reminder. In this section, we will recall that a similar
mathematical problem is already solved in robust statistics — an area of statistics
in which we need to make statistical estimates under partial information about
the probability distribution.

In robust statistics (see, e.g., [9]), there are several different types of tech-
niques for estimating a shift-type parameter a based on a sample z1, ..., z,.

M-methods: reminder. The most widely used methods are M-methods,
methods which are similar to the maximum likelihood approach from the tradi-
tional (non-robust) statistics. In the maximum likelihood approach, if we know
that the probability density function has the form fy(z; — a) for some unknown
value a, and that the values z1,...,z, are independent, then the likelihood to
get the sample x4, ..., z, is equal to the product

Hfo(l‘i —a).

In the Maximum Likelihood approach, we select the value a = ay; for which
this likelihood is the largest possible:

n

Hfo(ﬂﬁi —a) — max.
a

i=1

It is well known that for standard distributions like normal, the problem be-
comes computationally easier if we replace the original problem of maximizing
the product with the equivalent problem of maximizing the logarithm of this

product:
In (H folzi — a)) — max,
i=1

and take into account that the logarithm of the product is equal to the sum of
the logarithms:

Zln(fo(xi —a)) — max.
i=1

To find this maximum, we can differentiate the objective function by a and
equate the resulting derivative to 0. For each ¢, due to the chain rule, the
derivative of the logarithm has the form

d o = oz —a)
%(ln(fo(xz ) Folzi—a)’

where f{j(z) denotes the derivative of fo(z). In other words, we get the following
equation for determining the Maximum Likelihood estimate ap;:

Ui —apm)+...+U(zy —an) =0, (6)



where we denoted ,
_ fo(@)
Jo(x)

U(z) = —(In(f0))" = : (7)

Comment. This formula is, in effect, identical to our formula (4).

M-methods: robust case. In the Maximum Likelihood approach, we know
the probability density function fo(x). In the robust approach, we apply a
similar method with some function U(x).

Each of these robust M-methods coincides with the Maximum Likelihood
method for an appropriate probability density function. Once we know the
function U(z), we can find this probability density function as follow. First, we
can find — In(fo(x)) as the integral of U(z):

~ (o)) = [ Ut

for an appropriate lower bound ¢, hence

fo(z) = exp (— /: U(t) dt) .

L-estimates. Another important class of robust estimates are L-estimates,
i.e., estimates of the type

aLZi'im(i)'w(m (8)

=1

for some function m(zx) for which fol m(t)dt = 1.
Comment. This formula is, in effect, identical to our formula (5).

A problem which is solved in robust statistics. The question solved in
robust statistics is: what is the natural correspondence between M-estimates
and L-estimates?

Correspondence between M- and L-estimates: case of traditional
statistics. To explain the meaning of this correspondence, let us first con-
sider the case when we know the exact shape fo(z) of the probability density
function, and we know that the actual probability density function has the form
fo(z — a) for some (unknown) parameter a. In this case,

e for each function U(x), we can use the solution of the corresponding equa-
tion (6) as an M-method estimate aps(U) for the parameter a;

e for each function m(p), we can use the estimate (8) as an L-method esti-
mate ar,(m) for the parameter a.



The quality of each estimate can be estimated as the mean square of the differ-
ence between the estimate and the actual value a, i.e.,

o for M-estimates, as qu(U) = E[(an(U) — a)?]; and
o for L-estimates, as qr(m) = E[(ar(m) — a)?].
For a given probability density function fo(z):

e we can find the optimal function U(z), i.e., the function U(x) for which
the value qar(U) = E[(ap(U) — a)?] is the smallest possible, and

e we can find the optimal function m(p), i.e., the function m(p) for which
the value gr,(m) = E[(ar(p) — a)?] is the smallest possible.

Specifically, when we know the exact shape fo(z) of the probability distri-
bution functions, then the optimal M-estimate has the form (7), i.e., U(z) =

—(In(fo))".

The optimal L-estimate can be found as follows (see, e.g., [3, 9]):

e first, we compute the cumulative distribution function Fy(z) as
x
Fo() = / folt) d;
— 00

e then, we find the auxiliary function M(p) as
M (Fo(x)) = —(In(fo(=))";
e after that, we normalize the auxiliary function M (p) to get

() = M@
) Jo M(q) dg

These formulas can be further simplified. For example, since —(In(fp))’ = U(x),
we have —(In(fo(x))” = U’(z). So, the formula for M (Fy(x)) can be rewritten
as M(Fy(z)) =U'(x).

The correspondence between the functions U(z) and m(p) can now be de-
scribed as follows.

Let us first assume that we know the function U(x), then, to find the corre-
sponding function m(p), we do the following:

e first, we find a probability density function fo(z) for which U(z) leads to
the optimal M-estimate;

e then, we use this probability density function fy(x) to find the function
m(p) which leads to the optimal L-estimate for this fo(z).

Similarly, if we know the function m(p), then, to find the corresponding function
U(z), we do the following:

10



e first, we find a probability density function fo(x) for which m(p) leads to
the optimal L-estimate;

e then, we use this probability density function fy(x) to find the function
U(x) which leads to the optimal M-estimate for this fy(z).

Correspondence between M- and L-estimates: explicit description.
Once we know U(z), we can find the corresponding function m(p) as follows:

o first, we compute the function fo(z) = exp (— [ U(t)dt) ;
e then, we compute Fy(z) = [“_ fo(t) dt;

e after that, we find the function M (p) from the formula M (Fy(x)) = U’ (x),
ie., as M(p) = U'(F;*(p)), where F; '(p) denotes an inverse function
(i-e., a function for which Fy '(p) = = if and only if fy(z) = p);

e M
e finally, we compute I def fol M (q) dg, and take m(p) = ﬂ

1

Comment. It turns out that for the resulting functions U(z) and m(p), the
quality values gy (U) = E[(ay(U) — a)?] and qr,(m) = E[(ar(p) — a)?] are
asymptotically equal when the sample size n tends to infinity:

U El(apm(U) — a)?
w(®) _ Ellan@) =y

qL(m)  El(aL(p) —a)?]

Correspondence between M- and L-estimates: robust case. In the
robust case, when we do not know the exact shape of a probability density
function, we only know the class F; of possible shapes, and we know that the
actual probability density function has the form fo(z — a), where fo(x) is one
of the shapes from the class Fp, and a is an (unknown) parameter. In this case
too, we can consider M-estimates aps(U) (described by the formula (6)) and
L-estimates ar(m) (described by the formula (8)).

In the robust case, since the distribution is not known exactly, for different
distributions fo(z) from the class Fy, we get different accuracies

Ey,[(arr(U) — a)’] and Epy[(ar(m) — a)?].

As a natural measure of quality of a given estimate, we can take the worst-case
accuracy

am(U) = sup Ey,[(an(U) —a)?]; qr(m) = sup Eg,[(ar(m) — a)?].
fo€F fo€F

As shown in [9], for many reasonable classes F of distributions,
e we can find the optimal (minimaz) function U(z), i.e., the function U (z)

for which the value ¢p;(U) is the smallest possible, and

11



e we can find the optimal (minimaz) function m(p), i.e., the function m(p)
for which the value ¢r,(m) is the smallest possible.

These optimal M-estimates and L-estimates can be obtained as follows [3, 9]:

e first, in the class Fy, we find the probability distribution fo(z) for which
the Fisher information

1= [ (D) ey

is the smallest possible;

e then, we find M-estimate and L-estimate which are optimal for this dis-
tribution fo(z).

The correspondence between the functions U(x) and m(p) can then be de-
scribed as follows.

Let us first assume that we know the function U(x), then, to find the corre-
sponding function m(p), we do the following:

e first, we find a class F of probability density functions for which U(x)
leads to the optimal M-estimate;

e then, we use this class Fy to find the function m(p) which leads to the
optimal L-estimate for this class Fj.

Similarly, if we know the function m(p), then, to find the corresponding function
U(zx), we do the following:

e first, we find a class Fy of probability density functions for which m(p)
leads to the optimal L-estimate;

e then, we use this class Fy to find the function U(z) which leads to the
optimal M-estimate for this class Fjp.

It turns out that for the resulting functions U(x) and m(p), the quality values
gum (U) and gr(m) are also asymptotically equal when the sample size n tends
to infinity:

qu(U)

— 1 asn — +oo.
qr(m)

Correspondence between M- and L-estimates: explicit description.
We have mentioned that the robust M- and L-estimates coincide with M- and
L-estimates for an appropriate probability density function fy(z). Thus, the
robust-case correspondence between M- and L-estimates can be described by
exactly the same formulas as for the traditional statistical case.

12



Examples. Several examples are given in [3] and [9].
For example, when U(x) = x, this procedure leads to m(t) = 1, i.e., to an
average of all possible values z ;). Indeed, in this case,

/ U(t)dt:%-x{

1
so fo(x) = exp (2 . 1:2) is proportional to the probability density of the nor-

mal distribution. Hence, Fy(z) = [ fo(t)dt is the cumulative distribution

function of a normal distribution. Here, U’(z) = x, so M(p) = U'(Fy*(p)) = 1.
The integral of M (p) = 1 over the interval [0,1] is 1, so m(p) = M(p) = 1.
Another example: when U(z) = max[—cg, min(cg, x)], i.e., when

e U(x) = —c¢p for all z < —¢p,
e U(x) =z for all z € [—¢p, ¢g], and

o U(z) = ¢y for all z > co,

1
then, for an appropriate value ap, we have m(p) = T3 for all p from the
— 2ay
interval [ag, 1 — ap].

5 Relation Between Utility and Spectral Risk
Measures: Our Main Idea
Let us apply the solution from robust statistics to the economic sit-
uation. We have seen that, mathematically,
e Me-estimates correspond to utility estimates, and
e L-estimates correspond to spectral risk estimates.

We can therefore use the solution provided by robust statistics to find the desired
correspondence between the utility function and the spectral risk measures.

Resulting solution. Specifically, once we know the utility function u(z) for
which «(0) = 0, we can find the corresponding weighting function ¢(p) as fol-
lows:

e first, we compute an auxiliary function fo(z) = exp (— [ u(t) dt);
e then, we compute the second auxiliary function Fy(z) = ffoo fo(t) dt;

e after that, we find the third auxiliary function M (p) from the formula
M (Fy(x)) = u'(z), i.e., as M(p) = ' (F; *(p)), where F; *(p) denotes an
inverse function;

def

M
e finally, we compute I = ﬁ

fol M (q) dgq, and take p(p) = 7

13



Comment. The above procedure describes how, knowing the utility function
U(x), we can find the corresponding weighting function ¢(p). What if we
know the weighting function ¢(p) and we want to find the corresponding util-
ity function U(x)? To find U(x), we can use the above formula M (Fy(z)) =

~(In(fo(x)))", where fo(x) = Ff/(x), and M(p) =1 -m(p) for I = [; M(q) dg.
Thus, given U(z), we can find m(p) as follows:

e first, we find the auxiliary function Fy(z) and the auxiliary value I by
solving the equation

I-m(Fy(x)) = —(In(Fy()))";

fo(x)

e then, we find fo(x) = Fj(z) and U(z) = @)

Economic interpretation. The above examples from robust statistics, when
interpreted in economic terms, show the following:

e if the utility is simply proportional to the monetary value, i.e., if the
decision maker is completely risk-neutral, then in the corresponding all
possible values p are equally probable;

e if the utility is bounded by some value c, i.e., if very strong gains and very
severe losses are ignored by the decision maker, then very small (p < «g)
and very high (p > 1 — ag) values of « can also be ignored — because they
only affect a decision when combined with very large gains or losses.

These examples show that — at least in the simplest cases when the above
procedure leads to an explicit formula — the above mathematical procedure
makes economic sense.

Comment. For the exponential utility function u(x) = 1 — e~*% and for the
power utility function u(z) = x'~7, the above algorithm does not lead to the

simple weighting functions proposed in [6].
For example, for u(x) = 2177, we get

fo(z) = exp (—/ t= dt> = A exp (—const - z*77).

Thus,
Fy(x) = / folx)=A / exp (—const - z277),

and the equation for M (p) takes the form

M (A : /z exp (—const - x2_7)> =(1-9) a7

14



Similar, for the exponential utility function, we get complex implicit expressions
for the weighting functions — expressions which, because of their complexity, are
not easy to analyze. We hope that that these complex expressions will lead to
a more reasonable economic behavior, behavior which is closer to the behavior
corresponding to the original utility functions.
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