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Abstract. One of the most important studies of the earth sciences is that of the Earth’s interior
structure. There are many sources of data for Earth tomography models: first-arrival passive seismic
data (from the actual earthquakes), first-arrival active seismic data (from the seismic experiments),
gravity data, and surface waves. Currently, each of these datasets is processed separately, resulting
in several different Earth models that have specific coverage areas, different spatial resolutions and
varying degrees of accuracy. These models often provide complimentary geophysical information on
earth structure (P and S wave velocity structure).

Combining the information derived from each requires a joint inversion approach. Designing
such joint inversion techniques presents an important theoretical and practical challenge. While
such joint inversion methods are being developed, as a first step, we propose a practical solution: to
fuse the Earth models coming from different datasets. Since these Earth models have different areas
of coverage, model fusion is especially important because some of the resulting models provide better
accuracy and/or spatial resolution in some spatial areas and in some depths while other models
provide a better accuracy and/or spatial resolution in other areas or depths.

The models used in this paper contain measurements that have not only different accuracy and
coverage, but also different spatial resolution. We describe how to fuse such models under interval
and probabilistic uncertainty.

The resulting techniques can be used in other situations when we need to merge models of
different accuracy and spatial resolution.

Keywords: uncertainty, interval uncertainty, data fusion, model fusion

1. Need to Combine Data from Different Sources

In many areas of science and engineering, we have different sources of data.
For example, in geophysics, there are many sources of data for Earth models:

− first-arrival passive seismic data (from the actual earthquakes); see, e.g., (Lees and Crosson,
1989);

− first-arrival active seismic data (from the seismic experiments); see, e.g., (Averill, 2007; Hole,
1992);
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− gravity data; and

− surface waves; see, e.g., (Maceira et al., 2005).

Datasets coming from different sources provide complimentary information. For example, differ-
ent geophysical datasets contain different information on earth structure. In general:

− some of the datasets provide better accuracy and/or spatial resolution in some spatial areas
and in some depths, while

− other datasets provide a better accuracy and/or spatial resolution in other areas or depths.

For example:

− each gravity data points describes the result of measuring the gravity field at some spatial
location; this field is generated by the joint effects of many locations; as a result, gravity
measures the average density over a reasonably large spatial region, so estimates based on
gravity measurements have (relatively) low spatial resolution;

− in contrast, each seismic data point comes from a narrow trajectory of a seismic signal, so the
spatial resolution corresponding to this data is much higher.

Usually, there are several different datasets. At present, each of these datasets is often processed
separately, resulting in several different models reflecting different aspects of the studied phenomena.
It is therefore desirable to combine data from different datasets.

Comment. In most applications to geosciences, the corresponding quantities change very slowly
with time. In these applications, we are interested in the values (such as density) at different depth
and at different spatial locations; we know that these values do not change from one measurement
to another. In such applications, since usually we cannot directly measure the value at a single
spatial location, we measure, in effect, the average over a spatial area. The smaller the size of this
area, the higher the spatial resolution.

In other applications areas, the values of the corresponding quantities change not only when we
move from one location to another, but they also change with time. In such application areas, due
to natural inertia of measuring instruments, the measured values do not correspond not only to the
average over a spatial area, but also to the average over a certain time interval. In such situations,
in addition to spatial resolution, we also have temporal resolution: the smaller the corresponding
time interval, the higher the temporal resolution. So, in general, we have spatio-temporal resolution.

In the following text, for simplicity, we will talk about spatial resolution, but all our discussions
and formulas are applicable to the more general situation of spatio-temporal resolution as well.
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2. Joint Inversion: An Ideal Future Approach

The ideal approach would be to use all the datasets to produce a single model. At present, however,
in many research areas – including geophysics – there are no efficient algorithms for simultaneously
processing all the different datasets.

Designing such joint inversion techniques presents an important theoretical and practical chal-
lenge.

3. Data Fusion: Brief Reminder

Our main idea. While such joint inversion methods are being developed, as a first step, we propose
a practical solution: to fuse all the models coming from different datasets.

Comment. Some of our results have been announced in (Ochoa, 2009; Ochoa et al., 2008; Servin
et al., 2008).

Simplest case: data fusion. In many real-life situations, we have several measurements and/or
expert estimates x̃(1), . . . , x̃(n) of the same quantity x.

− These values may come from the actual (direct) measurements of the quantity x.

− Alternatively, these values may come from indirect measurements of x, i.e., from different
models, in which, based on the corresponding measurement results, the i-th model leads to an
estimate x̃(i) for x.

In such situations, it is desirable to fuse these estimates into a single more accurate estimate for x;
see, e.g., (Rabinovich, 2005).

Data fusion: case of probabilistic uncertainty (reminder). Let us start with the case when each
estimate x̃(i) is known with the (traditionally described) probabilistic uncertainty, e.g., when

− each estimation error ∆x(i) def= x̃(i)−x is normally distributed with 0 mean and known standard
deviation σ(i)i, and

− estimation errors ∆x(i) corresponding to different models are independent.

Comment. In practice, the estimation errors are indeed often normally distributed. This empirical
fact can be justified by the Central Limit Theorem, according to which, under certain reasonable
conditions, the joint effect of many relatively small errors is (approximately) normally distributed;
see, e.g., (Sheskin, 2007). For each model based on measurements of a certain type (e.g., gravity or
seismic), not only the resulting error of each measurement comes from many different error sources,
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but also each estimate comes from several different measurements – thus further increasing the
number of different error components contributing to the estimation error.

In this case, the probability density for each estimation error ∆x(i) has the form

1√
2 · π · σ(i)

· exp

(
− (∆x(i))2

2 · (σ(i))2

)
=

1√
2 · π · σ(i)

· exp

(
−(x̃(i) − x)2

2 · (σ(i))2

)
,

and the probability density ρ(x) corresponding to all n estimates is (due to independence) the
product of these densities:

ρ(x) =
n∏

i=1

1√
2 · π · σ(i)

· exp

(
−(x̃(i) − x)2

2 · (σ(i))2

)
=

(
n∏

i=1

1√
2 · π · σ(i)

)
· exp

(
−

n∑

i=1

(x̃(i) − x)2

2 · (σ(i))2

)
.

As a single estimate x for the desired quantity, it is reasonable to select the value for which this
probability (density) ρ(x) is the largest (i.e., to use the Maximum Likelihood method). Since exp(z)
is an increasing function, maximizing a function A · exp(−B(x)) is equivalent to minimizing B(x),

so we arrive at the following Least Squares approach: find x for which the sum
n∑

i=1

(x̃(i) − x)2

2 · (σ(i))2
is the

smallest possible.
Differentiating this expression with respect to x and equating the derivative to 0, we conclude

that x =

n∑
i=1

x̃(i) · (σ(i))−2

n∑
i=1

(σ(i))−2
. The accuracy of this fused estimate can be described by the standard

deviation σ for which σ−2 =
n∑

i=1
(σ(i))−2.

Data fusion: case of interval uncertainty. In some practical situations, the value x is known with
interval uncertainty, i.e., we know the interval x(i) = [x̃(i) −∆(i), x̃(i) + ∆(i)] containing the actual
(unknown) value of x. This happens, e.g., when we only know the upper bound ∆(i) on each
estimation error ∆x(i): |∆x(i)| ≤ ∆(i). In this case, from the fact that the estimate is x̃(i), we can
conclude that |x− x̃(i)| ≤ ∆(i), i.e., that x̃(i) −∆(i) ≤ x ≤ x̃(i) + ∆(i).

For interval uncertainty, it is easy to fuse several estimates. Based on each estimate x̃(i), we know
that the actual value x belongs to the interval x(i). Thus, we know that the (unknown) actual value

x belongs to the intersection x def=
n⋂

i=1
x(i) = [max(x̃(i) −∆(i)),min(x̃(i) + ∆(i))] of these intervals.

4. Proposed Solution – Model Fusion: Main Idea

Additional problem: we also have different spatial resolution. In many practical situations, esti-
mates coming from different models have not only different accuracy, but also different spatial
resolution.
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Example. For example, in the geosciences,

− seismic data leads to estimates of the density at different locations and depths which have
higher spatial resolution, while

− gravity data leads to estimates of the same densities which have lower spatial resolution.

Towards precise formulation of the problem. Estimates with higher spatial (spatio-temporal) res-
olution mean that we estimate the values corresponding to small spatial (spatio-temporal) cells. An
estimate with a lower spatial resolution means that its results are affected by several neighboring
spatial cells, i.e., that we are estimating, in effect, a weighted average of the values in several
neighboring cells.

What is given. In precise terms:

− we have resolution estimates x̃1, . . . , x̃n of the values x1, . . . , xn within several small spatial
cells; these estimates correspond to models with a higher spatial resolution

− we also have estimates X̃j for the weighted averages Xj =
n∑

i=1
wj,i·xi; these estimates correspond

to models with a lower spatial resolution.

Comment. In this paper, we assume that we know the values of the weights wj,i. This assumption
makes perfect sense for geophysical problems, because in these problems, these weights are indeed
known. For example:

− We know how exactly the gravity at a given point depends on the densities at different spatial
locations.

− We know how exactly the travel time of a seismic signal depends on the density distribution.

In some applications, however, the corresponding weights are only approximately known. In such
situations, when fusing the models, we must also take into account the uncertainty with which we
know these weights. For these applications, it is desirable to extend our techniques – to accommodate
such more complex situations.

What our objective is. We are interested in the values xi. So, based on the estimates x̃i and x̃, we
must provide more accurate estimates for xi.

Example. In the geophysical example, we are interested in the values of the densities xi.

What we do in this paper. In this paper, we describe how to fuse estimates with different accuracy
and spatial resolution:
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− In the case of probabilistic uncertainty, we use the Least Squares Method to derive explicit
formulas for combining the estimates x̃i and X̃j .

− In the case of interval uncertainty, we provide an efficient algorithm for estimating the ranges
of xi.

5. Model Fusion: Case of Probabilistic Uncertainty

5.1. General Case

Main idea. Our solution to the model fusion problem is to take into account several different types
of approximate equalities:

− Each estimate x̃i from a model with a high spatial resolution is approximately equal to the
actual value xi in the corresponding (smaller size) cell i, with the known accuracy σh,i:

x̃i ≈ xi.

− Each estimate X̃j from (one of the) models with a lower spatial resolution is approximately
equal to the weighted average of values of all the smaller cells xi(1,j), . . . , xi(kj ,j) within the
corresponding larger size cell, with a known accuracy σl,j :

X̃j ≈
∑

i

wj,i · xi,

for known weights wj,i ≥ 0 for which
n∑

i=1
wj,i = 1. In the simple case when these weights are

equal, we get

X̃j ≈
xi(1,j) + . . . + xi(kj ,j)

kj
.

− We usually have a prior knowledge of the values xi. It is reasonable to assume that this
knowledge can also be described by a normal distribution, with the mean xpr,i and the standard
deviation σpr,i:

xi ≈ xpr,i.

(The case when for some i, we have no prior information at all is equivalent to setting σpr,i =
∞.)

− Finally, each estimate X̃j from a model with a lower spatial resolution is approximately equal to
the value within each of the constituent smaller size cells xi(l,j), with the accuracy corresponding
to the (empirical) standard deviation σe,j of the smaller-cell values within the larger cell:

X̃j ≈ xi(l,j),
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where σ2
e,j

def=
1
kj
·

kj∑

l=1

(
x̃i(l,j) −Ej

)2
, and Ej

def=
1
kj
·

kj∑

l=1

x̃i(l,j).

We then use the Least Squares technique to combine these approximate equalities, and find the
desired combined values xi by minimizing the resulting sum of weighted squared differences.

Relation between different standard deviations. As we have mentioned earlier, there is usually a
trade-off between accuracy and spatial resolution:

− if we want to estimate the value of the desired quantity with a higher spatial resolution, i.e.,
the value corresponding to a small spatial location, then we get lower accuracy, i.e., higher
values of the standard deviation σh,i;

− on the other hand, if we are satisfied with a lower spatial resolution, i.e., with the fact that
the estimated value corresponds to a larger spatial area, then we can get higher accuracy, i.e.,
lower values of the standard deviation σl,j ¿ σh,i.

From the mathematical viewpoint, this trade-off makes sense. In principle, as an estimate for a
model with a low spatial resolution, we can take the average of the values corresponding to high
spatial resolution, and averaging usually decreases the approximation error: σl,j ¿ σh,i ¿ σe,j .

Comment. It should be mentioned that while usually, higher spatial resolution estimates have
lower accuracy, sometimes, a higher-resolution model has more accuracy in some places. For exam-
ple, in the geosciences,

− the measurements from a borehole provide the most accurate estimates of the corresponding
quantities,

− and for these measurements, the spatial location is also known with a very high accuracy.

Resulting formulas: general case. According to the Least Squares approach, in the general case,
we minimize the following expression:

n∑

i=1

(xi − x̃i)2

σ2
h,i

+
m∑

j=1

1
σ2

l,j

·
(

X̃j −
n∑

i=1

wj,i · xi

)2

+
n∑

i=1

(xi − xpr,i)2

σ2
pr,i

+
m∑

j=1

kj∑

l=1

(X̃j − xi(l,j))2

σ2
e,j

.

In this general case, differentiation with respect to xi leads to the following system of linear
equations:

1
σ2

h,i

· (xi− x̃i) +
∑

j:j3i

1
σ2

l,j

·wj,i ·
(

n∑

i′=1

wj,i′ · xi′ − X̃j

)
+

1
σ2

pr,i

· (xi− xpr,i) +
∑

j:j3i

1
σ2

e,j

· (xi− X̃j) = 0,

where j 3 i means that the j-th estimate corresponding to a model with a low spatial resolution
covers the i-th cell.
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Towards simplification: fusing prior estimates with estimates from a model with a high spatial
resolution. For each cell i for which we have both a prior estimate xpr,i and an estimate x̃i from a
model with a higher spatial resolution, we can fuse these two estimates by using the above-described
standard data fusion technique. As a result, instead of the two terms σ−2

h,i ·(xi−x̃i)+σ−2
pr,i ·(xi−xpr,i),

we have a single term σ−2
f,i · (xi − xf,i), where xf,i

def=
x̃i · σ−2

h,i + xpr,i · σ−2
pr,i

σ−2
h,i + σ−2

pr,i

and

σ−2
f,i

def= σ−2
h,i + σ−2

pr,i.

We can use the same formula if we only have a high spatial resolution estimate or if we only have
a prior estimate:

− If we only have a high spatial resolution estimate but no prior estimate, then we should take
σ−2

pr,i = 0 (i.e., σpr,i = ∞).

− If we only have a prior estimate but no high spatial resolution estimate, then we should take
σ−2

h,i = 0 (i.e., σh,i = ∞).

As a result of this fusion, we get the following simplified formulas.

Resulting formulas: simplified equations.

σ−2
f,i · (xi − xf,i) +

∑

j:j3i

1
σ2

l,j

· wj,i ·
(

n∑

i′=1

wj,i′ · xi′ − X̃j

)
+

∑

j:j3i

1
σ2

e,j

· (xi − X̃j) = 0.

How to solve this system of linear equations. We can use known algorithms for solving this system
of linear equations.

It is worth mentioning that usually, these algorithms require that we represent the system in
the standard form Ax = b. To represent our system of equations in this form, we need to move all
the terms that do not contain unknowns to the right-hand side.

5.2. Case of a Single Estimate with Low Spatial Resolution

Description. Let us now consider the simplest case, when when we have exactly one estimate
X̃1 from a model with a low spatial resolution. In general, we only have prior estimates and the
estimates with high spatial resolution for some of the cells.

This situation is typical in geosciences: e.g.,

− we have an estimate originated from the gravity measurements (with a lower spatial resolution)
which covers a huge area in depth, and

− we have estimates originated from seismic measurements (corresponding to higher spatial
resolution) which only cover depths above the Moho surface.
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For convenience, let us number the cells in such a way that the cells for which we have either
prior estimates or estimates from a high spatial resolution model come first. Let h denote the total
number of such cells.

This means that as the result of combining prior estimates and estimates corresponding to high
spatial resolution model(s), we have h values xf,1, xf,2, . . . , xf,h.

Derivation. In this case, the above system of linear equations takes the following form: for i =
1, . . . , h, we have

σ−2
f,i · (xi − xf,i) +

1
σ2

l,1

· w1,i ·
(∑

i′
w1,i′ · xi′ − X̃1

)
+

1
σ2

e,1

(xi − X̃1) = 0;

and for i > h, we have

1
σ2

l,1

· w1,i ·
(∑

i′
w1,i′ · xi′ − X̃1

)
+

1
σ2

e,1

(xi − X̃1) = 0.

For i ≤ h, multiplying both sides by σ2
f,i, we conclude that

xi − xf,i +
σ2

f,i

σ2
l,1

· w1,i ·
(∑

i′
w1,i′ · xi′ − X̃1

)
+

σ2
f,i

σ2
e,1

· (xi − X̃1) = 0.

If we introduce an auxiliary variable µ
def=

1
σ2

l,1

·
(∑

i′
w1,i′ · xi′ − X̃1

)
, we get the equation

xi − xf,i + w1,i · σ2
f,i · µ +

σ2
f,i

σ2
e,1

· (xi − X̃1) = 0.

By keeping terms proportional to xi in the left-hand side and by moving all the other terms to the

right-hand side, we get

(
1 +

σ2
f,i

σ2
e,1

)
· xi = xf,i − w1,i · σ2

f,i · µ +
σ2

f,i

σ2
e,1

· X̃1, hence

xi =
xf,i

1 +
σ2

f,i

σ2
e,1

− w1,i · σ2
f,i

1 +
σ2

f,i

σ2
e,1

· µ + X̃1 ·

σ2
f,i

σ2
e,1

1 +
σ2

f,i

σ2
e,1

.

For i > h, we similarly get xi − X̃1 + w1,i · σ2
e,1 · µ = 0, hence xi = X̃1 − w1,i · σ2

e,1 · µ.
To make this expression practically useful, we must describe µ in terms of the given values x̃i

and X̃1. Since µ is defined in terms of the weighted average of the values xi, let us compute the
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weighted average of the above expressions for xi:
n∑

i=1
w1,i · xi =

h∑
i=1

w1,i · xi +
n∑

i=h+1
w1,i · xi, where

h∑

i=1

w1,i · xi =
h∑

i=1

w1,i · xf,i

1 +
σ2

f,i

σ2
e,1

− µ ·
h∑

i=1

w2
1,i · σ2

f,i

1 +
σ2

f,i

σ2
e,1

+ X̃1 ·
h∑

i=1

w1,i ·
σ2

f,i

σ2
e,1

1 +
σ2

f,i

σ2
e,1

.

Similarly,
n∑

i=h+1

w1,i · xi =




n∑

i=h+1

w1,i


 · X̃1 −




n∑

i=h+1

w2
1,i


 · σ2

e,1

σ2
l,1

· µ.

By adding these two sums and subtracting X̃1, we conclude that

σ2
l,1 · µ =

n∑

i=1

w1,i · xi − X̃1 =
h∑

i=1

w1,i · xi +
n∑

i=h+1

w1,i · xi − X̃1 =

h∑

i=1

w1,i · xf,i

1 +
σ2

f,i

σ2
e,1

− µ ·
h∑

i=1

w2
1,i · σ2

f,i

1 +
σ2

f,i

σ2
e,1

+ X̃1 ·
h∑

i=1

w1,i ·
σ2

f,i

σ2
e,1

1 +
σ2

f,i

σ2
e,1

+




n∑

i=h+1

w1,i


 · X̃1 −




n∑

i=h+1

w2
1,i


 · σ2

e,1 · µ− X̃1.

Since
n∑

i=1
w1,i =

h∑
i=1

w1,i+
n∑

i=h+1
w1,i = 1, we conclude that

(
n∑

i=h+1
w1,i

)
·X̃1−X̃1 = −

(
h∑

i=1
w1,i

)
·X̃1

thus,

X̃1 ·
h∑

i=1

w1,i ·
σ2

f,i

σ2
e,1

1 +
σ2

f,i

σ2
e,1

+




n∑

i=h+1

w1,i


 · X̃1 − X̃1 =

X̃1 ·
h∑

i=1

w1,i ·
σ2

f,i

σ2
e,1

1 +
σ2

f,i

σ2
e,1

−
(

h∑

i=1

w1,i

)
· X̃1 = −X̃1 ·

h∑

i=1

w1,i

1 +
σ2

f,i

σ2
e,1

.

So, the equation for µ takes the following simplified form:

σ2
l,1 · µ =

h∑

i=1

w1,i · xf,i

1 +
σ2

f,i

σ2
e,1

− µ ·
h∑

i=1

w2
1,i · σ2

f,i

1 +
σ2

f,i

σ2
e,1

− X̃1 ·
h∑

i=1

w1,i

1 +
σ2

f,i

σ2
e,1

−



n∑

i=h+1

w2
1,i


 · σ2

e,1 · µ.
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By moving all terms containing µ to the left-hand side and all other terms to the right-hand side,
we get

µ ·




σ2
l,1 +

h∑

i=1

w2
1,i · σ2

f,i

1 +
σ2

f,i

σ2
e,1

+




n∑

i=h+1

w2
1,i


 · σ2

e,1




=

h∑

i=1

w1,i · xf,i

1 +
σ2

f,i

σ2
e,1

− X̃1 ·
h∑

i=1

w1,i

1 +
σ2

f,i

σ2
e,1

=
h∑

i=1

w1,i · (xf,i − X̃1)

1 +
σ2

f,i

σ2
e,1

.

Thus, we can compute µ. So, we arrive at the following formulas.

Resulting formulas. First, we compute the auxiliary value µ as µ =
N

D
, where

N =
h∑

i=1

w1,i · (xf,i − X̃1)

1 +
σ2

f,i

σ2
e,1

and D = σ2
l,1 +

h∑

i=1

w2
1,i · σ2

f,i

1 +
σ2

f,i

σ2
e,1

+




n∑

i=h+1

w2
1,i


 · σ2

e,1.

Then, we compute the desired estimates for xi, i = 1, . . . , h, as

xi =
xf,i

1 +
σ2

f,i

σ2
e,1

− w1,i · σ2
f,i

1 +
σ2

f,i

σ2
e,1

· µ + X̃1 ·

σ2
f,i

σ2
e,1

1 +
σ2

f,i

σ2
e,1

,

and the estimates xi for i = h + 1, . . . , n as xi = X̃1 − w1,i · σ2
e,1 · µ.

5.3. Numerical Example

Simplified case: description. To illustrate the above formulas, let us consider the simplest possible
case, when we have exactly one estimate X̃1 from a lower spatial resolution model, and when:

− this estimate covers all n cells;

− all the weights are all equal w1,i = 1/n;

− for each of n cells, there is an estimate corresponding to this cell that comes from a high spatial
resolution model (i.e., h = n);

− all estimates coming from a high spatial resolution model have the same accuracy σh,i = σh;
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− the estimate corresponding to a low spatial resolution model is much more accurate than the
estimates corresponding to higher spatial resolution models σl,1 ¿ σh, so we can safely assume
that σl = 0; and

− there is no prior information, so σpr,i = ∞ and thus, xf,i = x̃i and σf,i = σh.

To cover the cells for which there are no estimates from a high spatial resolution model, we added
a heuristic rule that the estimate from a lower spatial resolution model is approximately equal
to the value within each of the constituent smaller size cells, with the accuracy corresponding to
the (empirical) standard deviation σe,j . In our simplified example, we have individual estimates
for each cell, so there is no need for this heuristic rule. The corresponding heuristic terms in the

general least squares approach are proportional to
1

σ2
e,1

, so ignoring these terms is equivalent to

taking σ2
e,1 = ∞. Thus, we have

σ2
f,i

σ2
e,1

= 0 and 1 +
σ2

f,i

σ2
e,1

= 1.

Because of this and because of the fact that w1,i =
1
n

and xf,i = x̃i, the formula for N takes the
form

N =
n∑

i=1

1
n
· (x̃i − X̃1).

Opening parentheses and taking into account that the sum of n terms equal to
1
n
· X̃1 is simply

X̃1, we get

N =
1
n
·

n∑

i=1

x̃i − X̃1.

Similarly, due to our simplifying assumptions σl,1 = 0, w1,i =
1
n

, σf,i = σh, σe,1 = 0, and h = n, we
have

D =
n∑

i=1

(
1
n

)2

· σ2
h =

1
n
· σ2

h.

Thus,

µ =
N

D
=

1
n
·

n∑

i=1

x̃i − X̃1

1
n
· σ2

h

.

The formula for xi now turns into

xi = x̃i − 1
n
· σ2

h · µ.

Substituting the above expression for µ, we conclude that

xi = x̃i − λ,
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x̃3 = 5.0

x̃1 = 2.0

x̃4 = 6.0

x̃2 = 3.0

X̃1 = 3.7

Figure 1. Higher and lower spatial resolution estimates

where

λ
def=

1
n
·

n∑

i=1

x̃i − X̃1.

Numerical example: simplified case. Let us assume that we have n = 4 cells, and that the high
spatial resolution estimates for these cells are x̃1 = 2.0, x̃2 = 3.0, x̃3 = 5.0 and x̃4 = 6.0. We also
assume that each of these estimates has the same accuracy σh = 0.5. Let us also assume that we
have an estimate X̃1 = 3.7 for the average X1 of these four values. We assume that this estimate
has a much higher accuracy σl ¿ σh so that we can, in effect, take σl ≈ 0.

Since we assume that the low spatial resolution estimates are accurate (σl ≈ 0), we therefore
assume that the estimated quantity, i.e., the arithmetic average of the four cell values, is practically
exactly equal to this estimate X̃1 = 3.7:

x1 + x2 + x3 + x4

4
≈ 3.7.

For the high spatial resolution estimates x̃i, the average is slightly different:

x̃1 + x̃2 + x̃3 + x̃4

4
=

2.0 + 3.0 + 5.0 + 6.0
4

= 4.0 6= 3.7.

This difference is caused by the fact that, in contrast to accurate low spatial resolution estimates,
higher spatial resolution measurements are much less accurate: the corresponding estimation error
has a standard deviation σh = 0.5. We can therefore, as we described above, use the information
from the low spatial resolution estimates to “correct” the high spatial resolution estimates.

In this particular example, since σl ≈ 0, the correcting term takes the form

λ =
x̃1 + . . . + x̃n

n
− X̃1 =

2.0 + 3.0 + 5.0 + 6.0
4

− 3.7 = 4.0− 3.7 = 0.3,

so the corrected (“fused”) values xi take the form:

x1 = x̃1 − λ = 2.0− 0.3 = 1.7; x2 = x̃2 − λ = 3.0− 0.3 = 2.7;
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x̃3 = 4.7

x̃1 = 1.7

x̃4 = 5.7

x̃2 = 2.7

Figure 2. The result of model fusion: simplified setting

x3 = x̃3 − λ = 5.0− 0.3 = 4.7; x4 = x̃4 − λ = 6.0− 0.3 = 5.7;

For these corrected values, the arithmetic average is equal to

x1 + x2 + x3 + x4

4
=

1.7 + 2.7 + 4.7 + 5.7
4

= 3.7,

i.e., exactly to the low spatial resolution estimate.

Taking σe,j into account. What if, in the above numerical example, we take into account the
requirement that the actual values in each cell are approximately equal to X̃1, with the accuracy
σe,1 equal to the empirical standard deviation?

In this case, the above formulas take the form

N =
1

1 +
σ2

h

σ2
e,1

·
(

x̃1 + . . . + x̃n

n
− X̃1

)

and
D =

1

1 +
σ2

h

σ2
e,1

· 1
n
· σ2

h,

so we get the exact same expression for µ:

µ =
N

D
=

1
n
·

n∑

i=1

x̃i − X̃1

1
n
· σ2

h

.

The formulas for the fused values xi are now somewhat more complex:

xi =
x̃i − λ

1 +
σ2

h

σ2
e,1

+ X̃1 ·

σ2
h

σ2
e,1

1 +
σ2

h

σ2
e,1

.
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Taking σe,j into account: numerical example. We want to take into account the requirement that
the actual values in each cell are approximately equal to X̃1, with the accuracy σe,j equal to the
empirical standard deviation. In our example, the lower spatial resolution estimate X̃1 covers all
four cells. In this example, the above condition takes the form xi ≈ X̃1, with the accuracy

σ2
e,1 =

1
4
·

4∑

i=1

(x̃i − E1)2,

where

E1 =
1
4
·

4∑

i=1

x̃i.

For our numerical example, as we have seen,

E1 =
1
4
·

4∑

i=1

x̃i =
x̃1 + x̃2 + x̃3 + x̃4

4
= 4.0

and thus,

σ2
e,1 =

(2.0− 4.0)2 + (3.0− 4.0)2 + (5.0− 4.0)2 + (6.0− 4.0)2

4
=

4 + 1 + 1 + 4
4

=
10
4

= 2.5,

hence σe,1 ≈ 1.58.
Now, we can use the formula

xi =
1

1 +
σ2

h

σ2
e,1

· (x̃i − λ) +

σ2
h

σ2
e,1

1 +
σ2

h

σ2
e,1

· X̃1

to find the corrected (“fused”) values xi. Here, σh = 0.5, σ2
e,1 = 2.5, so

σ2
h

σ2
e,1

=
0.25
2.5

= 0.1

and therefore, with two digit accuracy,

1

1 +
σ2

h

σ2
e,1

=
1

1.1
≈ 0.91

and
σ2

h

σ2
e,1

1 +
σ2

h

σ2
e,1

· X̃1 =
0.1
1.1

· 3.7 ≈ 0.34.
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x̃3 ≈ 4.62

x̃1 ≈ 1.89

x̃4 ≈ 5.53

x̃2 ≈ 2.79

Figure 3. The result of model fusion: general setting

Therefore, we get
x1 ≈ 0.91 · (2.0− 0.3) + 0.34 ≈ 1.89;

x2 ≈ 0.91 · (3.0− 0.3) + 0.34 ≈ 2.79;

x3 ≈ 0.91 · (5.0− 0.3) + 0.34 ≈ 4.62;

x4 ≈ 0.91 · (6.0− 0.3) + 0.34 ≈ 5.53.

The arithmetic average of these four values is equal to

x1 + x2 + x3 + x4

4
≈ 1.89 + 2.79 + 4.62 + 5.53

4
≈ 3.71,

i.e., within our computation accuracy (since we performed all the computations with two digits
after the decimal point) coincides with the lower spatial resolution estimate X̃1 = 3.7.

6. Model Fusion: Case of Interval Uncertainty

Main idea. Our solution to the model fusion problem is to take into account three different types
of approximate equalities:

− Each higher spatial resolution estimate x̃i is approximately equal to the actual value xi in the
corresponding (smaller size) cell i, with the approximation error xi− x̃i bounded by the known
value ∆h,i:

x̃i −∆h,i ≤ xi ≤ x̃i + ∆h,i.

− Each lower spatial resolution estimate X̃j is approximately equal to the average of values of all
the smaller cells xi(1,j), . . . , xi(kj ,j) within the corresponding larger size cell, with the estimation
error bounded by the known value ∆l,j :

X̃j −∆l,j ≤
∑

i

wj,i · xi ≤ X̃j + ∆l,j .

REC 2010 - O. Ochoa, A. A. Velasco, C. Servin, and V. Kreinovich



Model Fusion under Probabilistic and Interval Uncertainty

− Finally, we have prior bounds xpr,i and xpr,i on the values xi, i.e., bounds for which

xpr,i ≤ xi ≤ xpr,i.

Our objective is to find, for each k = 1, . . . , n, the range [xk, xk] of possible values of xk.
The estimates lead to a system of linear inequalities for the unknown values x1, . . . , xn. Thus, for

each k, finding the corresponding endpoints xk and xk means optimizing the values xk under linear
constraints. This is a particular case of a general linear programming problem; see, e.g., (Cormen
et al., 2009). So, we can use Linear Programming to find these bounds:

− the lower bound xk can be obtained if we minimize xk under the constraints

x̃i −∆h ≤ xi ≤ x̃i + ∆h, i = 1, . . . , n;

X̃j −∆l ≤
∑

i

wj,i · xi ≤ X̃j + ∆l; xpr,i ≤ xi ≤ xpr,i.

− the upper bound xk can be obtained if we maximize xk under the same constraints.

Mathematical comment. For each i, the two constraints x̃i −∆h ≤ xi ≤ x̃i + ∆h and xpr,i ≤ xi ≤
xpr,i can be combined into a single set of constraints:

x−i ≤ xi ≤ x+
i ,

where
x−i

def= max(x̃i −∆h, xpr,i); x+
i

def= min(x̃i + ∆h, xpr,i).

Simplest case: description. Let us consider the simplest case when we have a single lower spatial
resolution estimate X̃1. In this case, the linear constraints take the form x−i ≤ xi ≤ x+

i and

X̃1 −∆l ≤
n∑

i=1

w1,i · xi ≤ X̃1 + ∆l.

Comment. This general expression also includes the case when some cells are not covered by the
estimate X̃1: for the values corresponding to these cells, we simply have w1,i = 0.

Simplest case: derivation. Let us select a variable xk, k = 1, . . . , n, and let us check which values
of xk are possible.

If the k-th cell is not affected by the estimate X̃1, i.e., if w1,k = 0, then the only restrictions on
xk come from the prior bounds on xk and from the higher spatial resolution estimates. Thus, for
such a cell, the set of possible values is the interval [x−k , x+

k ].
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Let us now consider the case when the k-th cell is affected by the estimate X̃1, i.e., when w1,k > 0.
In this case, a possible value xk must be within the interval [x−k , x+

k ], and for the remaining variables
xi, i = 1, . . . , k − 1, k + 1, . . . , n, the resulting system of inequalities x−i ≤ xi ≤ x+

i and

X̃1 −∆l − w1,k · xk ≤
∑

i6=k

w1,i · xi ≤ X̃1 + ∆l − w1,k · xk

must be consistent.
All the weights w1,i are non-negative. Thus, when xi ∈ [x−i , x+

i ], the smallest possible value s of
the sum

s
def=

∑

i6=k

w1,i · xi

is attained when all xi attain their smallest possible values xi = x−i , and the largest possible value
s of the sum s is attained when all xi attain their largest possible values xi = x+

i :

s =
∑

i6=k

w1,i · x−i ; s =
∑

i6=k

w1,i · x+
i .

Thus, we have ∑

i6=k

w1,i · x−i ≤
∑

i6=k

w1,i ≤
∑

i6=k

w1,i · x+
i .

Now, we have two intervals

[X̃1 −∆l − w1,k · xk, X̃1 + ∆l − w1,k · xk]

and 
∑

i6=k

w1,i · x−i ,
∑

i6=k

w1,i · x+
i




that contain the same sum
∑
i6=k

w1,i. Thus, their intersection must be non-empty, i.e., the lower

endpoint of the first interval cannot exceed the upper endpoint of the second interval, and vice
versa (one can easily check that if these conditions are satisfied, then the above inequalities are
indeed consistent):

X̃1 −∆l − w1,k · xk ≤
∑

i6=k

w1,i · x+
i ;

∑

i6=k

w1,i · x−i ≤ X̃1 + ∆l − w1,k · xk.

By moving the term w1,k · xk to the other side of each of the inequalities and dividing both sides
of each resulting inequality by a positive number w1,k, we conclude that

1
w1,k

·

X̃1 −∆l −

∑

i6=k

w1,i · x+
i


 ≤ xk ≤ 1

w1,k
·

X̃1 + ∆l −

∑

i 6=k

w1,i · x−i


 .
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Simplest case: resulting formulas. For the cells k which are not affected by the estimate X̃1, the
resulting bounds on xk are [xk, xk] with xk = x−k and xk = x+

k .
For the cells k which are affected by the estimate X̃1 (i.e., for which w1,k > 0), the resulting

range [xk, xk] has the form

xk =
1

w1,k
·

X̃1 −∆l −

∑

i6=k

w1,i · x+
i


 ; xk =

1
w1,k

·

X̃1 + ∆l −

∑

i6=k

w1,i · x−i


 .

7. Conclusions and Future Work

We propose a new approach to combining data from different sources, an approach which is a fast
practical alternative to joint inversion of multiple datasets. Specifically, in this paper, we consider
models that not only have different accuracy and coverage, but also different spatial resolution. To
fuse such models, we must account for three different types of approximate equalities:

− each higher spatial resolution estimate is approximately equal to the actual value in the
corresponding (smaller size) cell;

− each lower spatial resolution estimate is approximately equal to the average of values of all the
smaller cells within the corresponding larger size cell;

− each lower spatial resolution estimate is also approximately equal to the value within each of
the constituent smaller size cells, with the accuracy corresponding to the (empirical) standard
deviation of the smaller-cell values within the larger cell.

Depending on whether we have probabilistic or interval uncertainty, the approach then uses the
least squares or interval technique to combine these approximate equalities. For example, in the
least squares approach, we find the desired combined values by minimizing the resulting sum of
weighted squared differences.

On the example of simulated (synthetic) geophysical data, we show that model fusion indeed
improves the accuracy and spatial resolution of individual models.

In the future, we plan to apply the model fusion techniques to more realistic simulated data and
to real geophysical data (and, if necessary, use the results of these applications to further adjust
the techniques).
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