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Abstract: One of the most important studies of the earth sciences
is that of the Earth’s interior structure. There are many sources of
data for the construction of tomographic models of earth structure.
These include: the time of the first arriving waves from earthquakes
and from man-made sources, measurements of the earth’s gravity
field, and measurements of the dispersion of surface waves generated
from earthquakes. Formally integrating the information derived from
multiple types of data sources is an important theoretical and practical
challenge. While such combination methods are being developed, as a
first step, we propose a practical solution: to fuse the Earth models
coming from different datasets.

The models used in this paper contain measurements that have
not only different accuracy and coverage, but also different spatial
resolution. We describe how to fuse such models under interval and
probabilistic uncertainty. The resulting techniques can be used in other
situations when we need to merge models of different accuracy and
spatial resolution.
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1 Need to Combine Data from Different Sources

In many areas of science and engineering, we have different sources of data.
For example, in geophysics, there are many sources of data for Earth models:

e first-arrival passive seismic data (from actual earthquakes); see, e.g., Lees
and Crosson (1989);

e first-arrival active seismic data (from seismic experiments using man-made
sources); see, e.g., Averill (2007); Hole (1992);

e gravity data; and
e surface waves; see, e.g., Maceira et al. (2005).

Datasets coming from different sources provide complimentary information.
For example, different geophysical datasets contain different information on earth
structure. In general:

e some of the datasets provide better accuracy and/or spatial resolution in
some spatial areas and in some depths, while

e other datasets provide a better accuracy and/or spatial resolution in other
areas or depths.

For example:
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e each measured gravity anomaly at a point is the result of the density
distribution over a relatively large region of the earth, so estimates based on
gravity measurements have (relatively) low spatial resolution;

e in contrast, each seismic data point (arrival time) comes from a narrow
trajectory (ray) a seismic wave travels within the earth, so the spatial
resolution corresponding to this data is much higher.

Usually, there are several different geophysical datasets available. At present,
each of these datasets is often processed separately, resulting in several different
models reflecting different aspects of the studied phenomena. It is therefore
desirable to combine data from different datasets.

Comment. In most applications in the geosciences, the corresponding quantities
change very slowly with time. In these applications, we are interested in the
values (such as density) at different depths and at different spatial locations; we
know that these values do not change from one measurement to another. In such
applications, since usually we cannot directly measure the value at a single spatial
location, we measure, in effect, the average over a spatial area. The smaller the
size of this area, the higher the spatial resolution.

In other applications areas, the values of the corresponding quantities change
not only when we move from one location to another, but they also change with
time. In such application areas, due to natural inertia of measuring instruments,
the measured values do not correspond not only to the average over a spatial
area, but also to the average over a certain time interval. In such situations, in
addition to spatial resolution, we also have temporal resolution: the smaller the
corresponding time interval, the higher the temporal resolution. So, in general, we
have spatio-temporal resolution.

In the following text, for simplicity, we will talk about spatial resolution, but
all our discussions and formulas are applicable to the more general situation of
spatio-temporal resolution as well.

2 Joint Inversion: An Ideal Future Approach

The ideal approach would be to use all the datasets to produce a single model.
At present, however, in many research areas — including geophysics — there are no
efficient algorithms for simultaneously processing all the different datasets.

Designing such joint inversion techniques presents an important theoretical and
practical challenge.

3 Data Fusion: Brief Reminder

Our main idea. While such joint inversion methods are being developed, as a first
step, we propose a practical solution: to fuse all the models coming from different
datasets.

Comment. Some of our results have been announced in Ochoa (2009); Ochoa et al.
(2008); Servin et al. (2008).
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Simplest case: data fusion. In many real-life situations, we have several
measurements and /or expert estimates Z(), ..., Z(™ of the same quantity z.

e These values may come from the actual (direct) measurements of the
quantity z.

e Alternatively, these values may come from indirect measurements of x, i.e.,
from different models, in which, based on the corresponding measurement
results, the i-th model leads to an estimate () for x.

In such situations, it is desirable to fuse these estimates into a single more accurate
estimate for x; see, e.g., Rabinovich (2005).

Data fusion: case of probabilistic uncertainty (reminder). Let us start
with the case when each estimate Z(*) is known with the (traditionally described)

probabilistic uncertainty, e.g., when each estimation error Az 30 2 s
normally distributed with 0 mean and known standard deviation ¢, and
estimation errors Az(® corresponding to different models are independent.

Comment. In practice, the estimation errors are indeed often normally distributed.
This empirical fact can be justified by the Central Limit Theorem, according to
which, under certain reasonable conditions, the joint effect of many relatively small
errors is (approximately) normally distributed; see, e.g., Sheskin (2007). For each
model based on measurements of a certain type (e.g., gravity or seismic), not only
the resulting error of each measurement comes from many different error sources,
but also each estimate comes from several different measurements — thus further
increasing the number of different error components contributing to the estimation
error.

In this case, the probability density for each estimation error Az(® has the form

1 (Az()? 1 (@0 — )2
—-exp | — - = —eXP | ———— 5
\/ﬂ-g(z) 2'(0'(7’))2 w/2-7'('-0'(2) 2-(0'(7’))2
and the probability density p(z) corresponding to all n estimates is (due to
independence) the product of these densities:

g FO — 2)?
p(r) = };[1 7\/ﬂ ) - exp (_2 (0®)2 )

n n (i 2
(Mgt ) o (X507 )
pale} V2. 7o ~ 2 (o)
As a single estimate x for the desired quantity, it is reasonable to select the value
for which this probability (density) p(x) is the largest (i.e., to use the Mazimum
Likelihood method). Since exp(z) is an increasing function, maximizing a function
A -exp(—B(z)) is equivalent to minimizing B(z), so we arrive at the following

n (20 — )2

Least Squares approach: find x for which the sum ) m is the smallest
i=1 2- (0"

possible.



Model Fusion under Probabilistic and Interval Uncertainty 5

Differentiating this expression with respect to z and equating the derivative to

30 . (o)
=1

0, we conclude that x = * . The accuracy of this fused estimate can

n

> (ol)=2

i=1
n .
be described by the standard deviation o for which 02 = 3 (¢(9)~2,
i=1
Data fusion: case of interval uncertainty. In some practical situations, the
value z is known with interval uncertainty, i.e., we know the interval

< = 7D — A® 70 4 A0

containing the actual (unknown) value of z. This happens, e.g., when we only know
the upper bound A® on each estimation error Az®: |Az(®| < A®)_ In this case,
from the fact that the estimate is (¥, we can conclude that |z — 2| < A® je.,
that 700 — A®) <z <70 4 AG),

For interval uncertainty, it is easy to fuse several estimates. Based on each
estimate Z(*), we know that the actual value x belongs to the interval x(*). Thus, we
know that the (unknown) actual value x belongs to the intersection x def N x® =

i=1
[max(z®) — A®) min(Z® + A®)] of these intervals.

4 Proposed Solution — Model Fusion: Main Idea

Additional problem: we also have different spatial resolution. In many
practical situations, estimates coming from different models have not only different
accuracy, but also different spatial resolution.

Example. For example, in the geosciences,

e seismic data leads to estimates of the density at different locations
and depths which have higher spatial resolution (based on an empirical
relationship between density and seismic velocity), while

e gravity data leads to estimates of the same densities which have lower spatial
resolution.

Towards precise formulation of the problem. Estimates with higher spatial
(spatio-temporal) resolution mean that we estimate the values corresponding to
small spatial (spatio-temporal) cells. An estimate with a lower spatial resolution
means that its results are affected by several neighboring spatial cells, i.e., that we
are estimating, in effect, a weighted average of the values in several neighboring
cells.

What is given. In precise terms:

e we have resolution estimates =1, ..., Z, of the values x1, ..., x, within several
small spatial cells; these estimates correspond to models with a higher spatial
resolution
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~ n
e we also have estimates X for the weighted averages X; = ) wj, - x;; these
i=1

estimates correspond to models with a lower spatial resolution.

Comment. In this paper, we assume that we know the values of the weights w; ;.
This assumption makes perfect sense for geophysical problems, because in these
problems, these weights are indeed known. For example:

e We know how exactly the gravity at a given point depends on the densities
at different spatial locations.

e We know how the travel time depends on the density distribution:
specifically, we know how exactly the travel time of a seismic signal depends
on the velocity distribution, and we know an empirical velocity-density
relationship.

In some applications, however, the corresponding weights are only approximately
known. In such situations, when fusing the models, we must also take into account
the uncertainty with which we know these weights. For these applications, it
is desirable to extend our techniques — to accommodate such more complex
situations.

What our objective is. We are interested in the values z;. So, based on the
estimates 7; and Z, we must provide more accurate estimates for x;.

Example. In the geophysical example, we are interested in the values of the
densities x;.

What we do in this paper. In this paper, we describe how to fuse estimates
with different accuracy and spatial resolution:

e In the case of probabilistic uncertainty, we use the Least Squares Method to
derive explicit formulas for combining the estimates z; and Xj;.

e In the case of interval uncertainty, we provide an efficient algorithm for
estimating the ranges of ;.

5 Model Fusion: Case of Probabilistic Uncertainty

5.1 General Case

Main idea. Our solution to the model fusion problem is to take into account
several different types of approximate equalities:

e Each estimate z; from a model with a high spatial resolution is
approximately equal to the actual value z; in the corresponding (smaller size)
cell 4, with the known accuracy oy, ;:

T; = T;.
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e Each estimate X ; from (one of the) models with a lower spatial resolution is
approximately equal to the weighted average of values of all the smaller cells
Ti(1,4),- - -+ Ti(k;,j) within the corresponding larger size cell, with a known

accuracy Ul,j:
Xjm ) wi- i,
i

n

for known weights w;; > 0 for which ) w;; = 1. In the simple case when
i=1

these weights are equal, we get

S Tiag) T T T )

e We usually have a prior knowledge of the values z;. It is reasonable to assume
that this knowledge can also be described by a normal distribution, with the
mean z,,; and the standard deviation oy, ;:

Ti = Tpri-

(The case when for some i, we have no prior information at all is equivalent
to setting oy, ; = 00.)

e Finally, each estimate )?j from a model with a lower spatial resolution is
approximately equal to the value within each of the constituent smaller size
cells x; ;), with the accuracy corresponding to the (empirical) standard
deviation o, ; of the smaller-cell values within the larger cell:

Xj = Tiag),

k] kj
def 1
where 0‘ = —

2
c S mz(m ,and E; =
J

) Tig)-
=1 k;
We then use the Least Squares technique to combine these approximate
equalities, and find the desired combined values x; by minimizing the resulting
sum of weighted squared differences.

Relation between different standard deviations. As we have mentioned
earlier, there is usually a trade-off between accuracy and spatial resolution:

e if we want to estimate the value of the desired quantity with a higher spatial
resolution, i.e., the value corresponding to a small spatial location, then we
get lower accuracy, i.e., higher values of the standard deviation oy, ;;

e on the other hand, if we are satisfied with a lower spatial resolution, i.e.,
with the fact that the estimated value corresponds to a larger spatial area,
then we can get higher accuracy, i.e., lower values of the standard deviation
01,5 K Ohi-
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From the mathematical viewpoint, this trade-off makes sense. In principle, as an
estimate for a model with a low spatial resolution, we can take the average of the
values corresponding to high spatial resolution, and averaging usually decreases
the approximation error: 0} ; < op; <K 0c ;.

Comment. It should be mentioned that while usually, higher spatial resolution
estimates have lower accuracy, sometimes, a higher-resolution model has more
accuracy in some places. For example, in the geosciences,

e the measurements from a borehole provide the most accurate estimates of
the corresponding quantities,

e and for these measurements, the spatial location is also known with a very

high accuracy.

Resulting formulas: general case. According to the Least Squares approach, in
the general case, we minimize the following expression:

2
ZM+Z(7ZQ (Xj_zwj’i.xi> +
° - . :

(Ti — Tpri)? G (X — xi(l’j))2
S = gl | 558 (K~ )

i=1 pryi j=11=1 Oe,j

In this general case, differentiation with respect to x; leads to the following system
of linear equations:

Lpri ri — Xj _
2 + 2 - O’
g

~ n
Ty — Ty Wy i > Xr; —
D | D w e we = Xy |+
g g,

Th,i jigvi b i'=1 Pryi FBEL eJ

where j 3 ¢ means that the j-th estimate corresponding to a model with a low
spatial resolution covers the i-th cell.

Towards simplification: fusing prior estimates with estimates from a
model with a high spatial resolution. For each cell i for which we have
both a prior estimate x,.; and an estimate z; from a model with a higher
spatial resolution, we can fuse these two estimates by using the above-described
standard data fusion technique. As a result, instead of the two terms 0}7?-
(i —Z;) + O';TQ,Z» - (; — xpr,i), we have a single term a;f (x; —x5,), where x5, def
~ -2 -2
Li-Op + Tpry - Opr,i _9 def _
— — and o =0y
Uh,i + Upr,z’

only have a high spatial resolution estimate or if we only have a prior estimate:

3 + Jp_fi. We can use the same formula if we
,

)

e If we only have a high spatial resolution estimate but no prior estimate, then
we should take O'p_r?i =0 (i.e., opr; = 00).

e If we only have a prior estimate but no high spatial resolution estimate, then
we should take o}, 2 = 0 (i.e., op,; = 00).



Model Fusion under Probabilistic and Interval Uncertainty 9
As a result of this fusion, we get the following simplified formulas.

Resulting formulas: simplified equations.

Ti—Tfy W, 4 - X4
W.FZ‘U%’%.(ZU%Z.,.%, >+Z i _

)t Jigoi  bJ =1 YEX J

How to solve this system of linear equations. We can use known algorithms
for solving this system of linear equations.

It is worth mentioning that usually, these algorithms require that we represent
the system in the standard form Az = b. To represent our system of equations in
this form, we need to move all the terms that do not contain unknowns to the
right-hand side.

5.2 Case of a Single Estimate with Low Spatial Resolution

Description. Let us now consider the simplest case, when when we have exactly
one estimate X; from a model with a low spatial resolution. In general, we only
have prior estimates and the estimates with high spatial resolution for some of the
cells.

This situation is typical in geosciences: e.g.,

e we have an estimate originated from the gravity measurements (with a lower
spatial resolution) which covers a huge area in depth, and

e we have estimates originated from seismic measurements (corresponding to
higher spatial resolution) which only cover depths above the Moho surface
(the base of the earth’s crust).

For convenience, let us number the cells in such a way that the cells for which we
have either prior estimates or estimates from a high spatial resolution model come
first. Let h denote the total number of such cells.

This means that as the result of combining prior estimates and estimates
corresponding to high spatial resolution model(s), we have h values zs1, zy2, ..,
Tf h-

Derivation. In this case, the above system of linear equations takes the following
form: for i =1,...,h, we have

1 -
Uf,2 (xi—xfyi)—i— SW1 (Zwll .%‘ll—X1> +E(%_X1)ZO;
and for ¢ > h, we have

1 1 ~
5w Zw“’ v = X1 | + (2 — X1) = 0.
71 Oca

s )

For i < h, multiplying both sides by U%i, we conclude that

0'2» ~ (72~ ~
.Ti—l'fﬂ'—f- UJ;Z c Wit Z/wl’i/ '-ri’_Xl “!‘O_g’z (I'Z—Xl):()
i

e,l

s

)
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If we introduce an auxiliary variable ,u = J— (Z wii Ty — X 1) , we get the
1
equation
2
Iz_xf,i‘i‘wl,i'o'%i' 0_571 '(1’1‘,—X1) =0.
e,l

By keeping terms proportional to x; in the left-hand side and by moving all the

2
o4 .
other terms to the right-hand side, we get (1 + £1> Ty =T — Wi O'J%i Cp
Ue,l ’ ’
2
(o ~
5,1 - X1, hence
Ue,l
2
T
2 2
Tfi Wiy 0%, > I,
14 4 14 22
06,1 Ue,l Ue,l

For i > h, we similarly get x; — Xl +wi 0271 - =0, hence z; = )?1 — Wi - 0311 .
-

To make this expression practically useful, we must describe y in terms of the
given values Z; and X;. Since p is defined in terms of the weighted average of the
values x;, let us compute the weighted average of the above expressions for x;:

n
Zwu-xz—Zwu T; + Z wh,; - Ty, where
i=1 =1

i=h+1
2
9fi
h h w " h w1,z"02
1,2 ° f, e,l
E Wi,i = Ti = E K E +X1 g =
i=1 111+ 211+ i=1 14 S0
2
Ue,l Uel Ue,l

Similarly,

n n n 2
o > 2 06,1
E Wi, Ty = g wyg | - X1 — g Wi | =3 M
911

i=h+1 i=h+1 i=h+1

By adding these two sums and subtracting )~(1, we conclude that

n
1'M=E Wi, - T — X1 = E Wi, - Ty + E Wi, - Tj — X, =
i=1

i1=h+1
2
we . Db
h h 2 2 h Li® "5
Wi, Tt Wi Of; O¢1
I T D TPV
i=1 1_|_ gaz =1 1_|_ 1= fri

Ue,l e 1 Ue,l
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n n
i=h+1 i=h+1

h
Since Z wy,; = Z wy,; + Z wi,; = 1, we conclude that

i=1 i=1 i=h+1
n _ ~ h _
( > wl,i) Xy - Xy = <Zwlz> - X1
i=h+1 i=1
thus,
2
o
h wlz f,l
Ry (Zw) R
=1 1+ f, i=h+1
Je,l
2
o
ho Wit - h
v W14
= — X, - R L
Byl () fe o St
i=1 =114 2
2 2
Ue,l Oe,l
So, the equation for u takes the following simplified form:
‘752,1 CH=
h ho 2 2 h
Wi, Tfi wi,; 0% w,
R R DL TR (Z wu) o
111+ 211+fv 111+2 i=h+1
e 1 Ue,l Ue,l

By moving all terms containing p to the left-hand side and all other terms to the
right-hand side, we get an explicit equation for p. So, we arrive at the following
formulas.

Resulting formulas. First, we compute the auxiliary value p as p = o where

N—iwl’i.(xf’i_)?l) and D = o} +Z wis (Zw >~0
- 0'2. — Y1 1,2 el

a
i=1 fri i=1 i=h+1
1+ o2 1+ 02
e,l e,l
Then, we compute the desired estimates for x;, i = 1 h, as
2
9t
2 2
Xrg Wi, 0%, = Oc1
Ti = fﬂz - zﬁZ pt+ Xy < 3 s
0 0% 0%
I+—5= 1+ 5= 1+
06,1 Ue,l Ue,l

and the estimates x; for i =h+1,...,n as x; = )?1 — Wi Uz’l - L.
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5.8 Numerical Example

Simplified case: description. To illustrate the above formulas, let us consider
the simplest possible case, when we have exactly one estimate X; from a lower
spatial resolution model, and when:

e this estimate covers all n cells;
e all the weights are all equal wy,; = 1/n;

e for each of n cells, there is an estimate corresponding to this cell that comes
from a high spatial resolution model (i.e., h = n);

e all estimates coming from a high spatial resolution model have the same
accuracy oy, = Oh;

e the estimate corresponding to a low spatial resolution model is much
more accurate than the estimates corresponding to higher spatial resolution
models 077 < oy, so we can safely assume that o; = 0; and

e there is no prior information, so op,; = oo and thus, zy; = z; and o5, = op.

To cover the cells for which there are no estimates from a high spatial resolution
model, we added a heuristic rule that the estimate from a lower spatial resolution
model is approximately equal to the value within each of the constituent smaller
size cells, with the accuracy corresponding to the (empirical) standard deviation
Oe,j- In our simplified example, we have individual estimates for each cell, so
there is no need for this heuristic rule. The corresponding heuristic terms in the

general least squares approach are proportional to , so ignoring these terms is

2

O—e,l
2 2
; o o2 9 It
equivalent to taking o7 ; = co. Thus, we have —~ =0 and 1+ 5~ = 1.
' ae,l Ue,l

1 ~
Because of this and because of the fact that wy ; = — and zy; = 7;, the formula
n
for N takes the form

n

Opening parentheses and taking into account that the sum of n terms equal to

— ~)Z'1 is simply X’l, we get
n
1 & ~
N:E. Elfi—Xl.
i=

Similarly, due to our simplifying assumptions 0;7 =0, w1,; = —, 0f; = Op, Oc1 =
n ;

0, and h = n, we have
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71 =20 | Z2=3.0

X, =37

53 =5.0 T4 = 6.0

Figure 1 Higher and lower spatial resolution estimates

Thus,
1 & =
*'Z%‘*Xl
HZE: =t
D 1.0’2
o Oh
The formula for x; now turns into
1 5
T =Tij— — -0 -
i i % 1%

Substituting the above expression for u, we conclude that
xXr; = fz — )\7

where

def 1 >
SEDEEES
P

Numerical example: simplified case. Let us assume that we have n = 4 cells,
and that the high spatial resolution estimates for these cells are x; = 2.0, o = 3.0,
73 = 5.0 and 74 = 6.0. We also assume that each of these estimates has the same
accuracy op = 0.5. Let us also assume that we have an estimate X; = 3.7 for the
average X, of these four values. We assume that this estimate has a much higher
accuracy o; < oy so that we can, in effect, take o; ~ 0.

Since we assume that the low spatial resolution estimates are accurate (o; =~ 0),
we therefore assume that the estimated quantity, i.e., the arithmetic average of the
four cell values, is practically exactly equal to this estimate X; = 3.7:

ZL’1+LL’Q+IL’3+’I’4
4

~ 3.7.

For the high spatial resolution estimates x;, the average is slightly different:

T1+ To+ T3+ T4 . 204+3.0+5.0+6.0
4 N 4

=4.0#3.7.

This difference is caused by the fact that, in contrast to accurate low spatial
resolution estimates, higher spatial resolution measurements are much less
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T1 =17 |z =27

53 =47 T4 = 5.7

Figure 2 The result of model fusion: simplified setting

accurate: the corresponding estimation error has a standard deviation o, = 0.5.
We can therefore, as we described above, use the information from the low spatial
resolution estimates to “correct” the high spatial resolution estimates.
In this particular example, since o; = 0, the correcting term takes the form
T+ ...+T, =

A= T X o
n

20+3.0+5.0+6.0
4
so the corrected (“fused”) values z; take the form:

-3.7=4.0-37=0.3,

21 =21—A=20-03=1.7, 29=22—A=3.0-03=2.7;
$3:f3—)\=5.0—0.3:4.7; 1‘4:.%4—)\26.0—0.3:5.7;
For these corrected values, the arithmetic average is equal to

1+ To +x3+ 24 1.7+2.7—|—4.7+5.7_

3.7,

4 4

i.e., exactly to the low spatial resolution estimate.

Taking 0. ; into account. What if, in the above numerical example, we take
into account the requirement that the actual values in each cell are approximately
equal to X, with the accuracy o.,; equal to the empirical standard deviation?

In this case, the above formulas take the form

1 Ti4+...+T, =
N— i .<x1+ +z _X1>
Uh n
1+ —
Ue,l
and 1 1
D=——g oy,
O'h n
T+ ==

Je,l
so we get the exact same expression for pu:
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The formulas for the fused values x; are now somewhat more complex:

Th
~ 2
Ti— A i Oc.1
1+& 1_;’_&
0'2 0'2
e,l e,l

Taking o, ; into account: numerical example. We want to take into account
the requirement that the actual values in each cell are approximately equal to X 1
with the accuracy o, ; equal to the empirical standard deviation. In our example,
the lower spatial resolution estimate X 1 covers all four cells. In this example, the
above condition takes the form x; ~ X7, with the accuracy

(T: — Er)?,
1

W~ =

4
2 _
Ue,l -

%

where
14
El = E.i_élxi.

For our numerical example, as we have seen,

4 ~ ~ ~ ~
1 - 1+ 2o +x3+ 24
Elzz-i_éll'i: =4.0

4
and thus,
b2 (2.0 —4.0)* + (3.0 — 4.0)> 4+ (5.0 — 4.0)* + (6.0 — 4.0)*
e,l — 4 -
44+1+1+4 10
——— =— =25
4 4 ’
hence 0.1 ~ 1.58.
Now, we can use the formula
i
1 _ o? <
= (T - N+ X
1+ b 14 2k
03,1 Ug,l

Oon 925
o2, 25 ’
and therefore, with two digit accuracy,
1 1
—— = —~091
o, 1.1
14+ —=

Ue,l
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1 ~ 1.89 To &~ 2.79

T3~ 4.62 | T4~ 553

Figure 3 The result of model fusion: general setting

and
o
o1 - 01
— X1 = — 3.7~ 0.34.
o}, 1.1
1+ ==
Je,l
Therefore, we get
1~ 0.91- (2.0 —0.3) + 0.34 ~ 1.89;

- ( )
29 ~ 0.91 - (3.0 — 0.3) + 0.34 ~ 2.79;
23~ 0.91- (5.0 — 0.3) + 0.34 ~ 4.62;
- ( )

x4 ~0.91-(6.0—-0.3) +0.34 = 5.53.
The arithmetic average of these four values is equal to

1+ T2 +x3+ 24 N 1.89 4+ 2.79 +4.62 + 5.53
4 - 4

~ 3.71,

i.e., within our computation accuracy (since we performed all the computations
with two digits after the decimal point) coincides with the lower spatial resolution
estimate X; = 3.7.

6 Model Fusion: Case of Interval Uncertainty
Main idea. Our solution to the model fusion problem is to take into account three
different types of approximate equalities:

e Each higher spatial resolution estimate z; is approximately equal to
the actual value z; in the corresponding (smaller size) cell i, with the
approximation error x; — Z; bounded by the known value Ay, ;:

Ty —Api <z <2+ Ap e
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e Each lower spatial resolution estimate )N(j is approximately equal to the
average of values of all the smaller cells z;( j,..., %, ;) within the
corresponding larger size cell, with the estimation error bounded by the
known value A ;:

Xj — AlJ‘ < ij’i c Xy < Xj +Al,j.
%

e Finally, we have prior bounds z,,.
for which

; and Tp,; on the values z;, i.e., bounds

x

Lpr,i S Zq S Lpr,i-

Our objective is to find, for each k = 1,...,n, the range [z, Tk] of possible values
of xy.

The estimates lead to a system of linear inequalities for the unknown values
Z1,...,%,. Thus, for each k, finding the corresponding endpoints z, and Z) means
optimizing the values x; under linear constraints. This is a particular case of a
general linear programming problem; see, e.g., Cormen et al. (2009). So, we can
use Linear Programming to find these bounds:

e the lower bound z; can be obtained if we minimize z; under the constraints
Ty —Ap <z KT+ A, i=1,...,m

X;—4A < ijl xp <X+ Az ST < T
i

e the upper bound T, can be obtained if we maximize x; under the same
constraints.

Mathematical comment. For each i, the two constraints z; — Ap < x; < T; + Ay
and LTy i < T < Tpry can be combined into a single set of constraints:

- +
xi S Ty S xi )
where
_ def ~ + def . g~ _
;= max(T; — Ap,xp,,); ¥ = min(@; + Ay, Tpr ).

Simplest case: description. Let us consider the simplest case when we have a
single lower spatial resolution estimate X;. In this case, the linear constraints take
the form z; <z; < mj and

X - A Szwu'xi <X, + A

i=1

Comment. This general expression also includes the case when some cells are not
covered by the estimate X7: for the values corresponding to these cells, we simply
have w; ; = 0.
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Simplest case: derivation. Let us select a variable zx, £k =1,...,n, and let us
check which values of zj, are possible. B

If the k-th cell is not affected by the estimate X1, i.e., if wy = 0, then the only
restrictions on x; come from the prior bounds on x; and from the higher spatial
resolution estimates. Thus, for such a cell, the set of possible values is the interval
[ i)
_ Let us now consider the case when the k-th cell is affected by the estimate
X1, ie., when w;; > 0. In this case, a possible value x; must be within the
interval [x,:,z;], and for the remaining variables z;, i =1,...,k—1,k+1,...,n,
the resulting system of inequalities z; < z; < x;" and

X1 —Aj—wi -z < Zw“xl <Xi+ A —wp gz
itk

must be consistent.
All the weights w;; are non-negative. Thus, when x; € [z7, 2], the smallest
possible value s of the sum
s > wii-a

i#k

is attained when all z; attain their smallest possible values z; = x; , and the largest
possible value s of the sum s is attained when all z; attain their largest possible

values z; = x;”
_ e T — ot
5= Wi T;; 5= Wy T

i#k i#k
Thus, we have
Zwm cx; < Zwl,i < Zwm czf
i£k i£k i£k

Now, we have two interval [)Z'l — A —wi g -xk,)?l + A —wyy-xk] and

Swi;-ax;, Y, wi; x| that contain the same sum > wi;. Thus, their
i£k i itk
intersection must be non-empty, i.e., the lower endpoint of the first interval cannot
exceed the upper endpoint of the second interval, and vice versa (one can easily
check that if these conditions are satisfied, then the above inequalities are indeed
consistent):

X1 —A—wip -z, < E wi ;T E wi; -, < X1+ A —wig - Tk
ik ik

By moving the term wy j -z to the other side of each of the inequalities and
dividing both sides of each resulting inequality by a positive number w; j, we
conclude that

1

1 - - B
— Xl_Al_E wy-x) | <ap < — - X1+Al_2 (G
W1,k ° W1,k °

i#k i#k
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Simplest case: resulting formulas. For the cells £ which are not affected by the
estimate X1, the resulting bounds on zy, are [z;,Tx] with z;, = z;, and 7), = z;.
For the cells k£ which are affected by the estimate X; (i.e., for which wq ; > 0),

the resulting range [z, )] has the form

1 ~ 1 > _
Ty = — - Xl*Al*Zwl,i'xj ; fk:m' X1+Al*2w1,i'$i
; i£k

How to combine models with different types of uncertainty: an
important challenge. In the previous sections, we have described how to
combine (fuse) models with probabilistic uncertainty. In this section, we have
described how to combine models with interval uncertainty. But what if we need to
combine models with different types of uncertainty — i.e., models with probabilistic
uncertainty and models with interval uncertainty?

We may have several models with probabilistic uncertainty, and several models
with interval uncertainty. In this case, we should first fuse all the models with
probabilistic uncertainty into a single fused model, and fuse all the models with
interval uncertainty into a single fused model. After this procedure, the original
task is reduced to the task of merging two models: the first is a (combined) model
with probabilistic uncertainty and the second is a (combined) model with interval
uncertainty.

In general, probabilistic models provide a more detailed description of
uncertainty than the interval model. Indeed, in the case of probabilistic
uncertainty, we assume that we know the mean u (equal to 0) and the standard
deviation o of the approximation error. In this case, for each certainty level py, we
can conclude that the actual (unknown) value of the approximation error belongs
to the interval [ — k(po) - o, + k(po) - o]. For example, for py = 90%, we can take
k(po) = 2; for po = 99.9%, we can take k(pg) = 3, etc.

In case of interval uncertainty, we only know the interval [—A; A] of possible
values of approximation error. In this case, we do not know the exact values of
1 and o, we can only conclude that the actual (unknown) values of p and o
satisfy the conditions —A <y — k(pp) -0 and p+ k(po) - 0 < A. In other words,
the second (interval) uncertainty model corresponds to the whole class of possible
probabilistic uncertainty models. So, a natural way to combine the probabilistic
and the interval models is to consider the combinations of the first probabilistic
model with all possible probabilistic models corresponding to the second (interval)
model.

For example, as we have mentioned earlier, if we fuse n values Z(¥ whose
measurement errors are random with mean 0 and known standard deviations o(®),

> 30 L (o)) -2
i=1

K2

then, as a result of a fusion, we get an estimate z = whose

-

(o)-2

i=1

n .
standard deviation is equal to o2 = 3 (¢())~2. If we only know, e.g., the n-value
i=1
2™ with interval uncertainty, i.e., if we only know the bounds z(™ and z™ for
which z(™ < 2™ < 7™ then, in contrast to the probabilistic case, we do not
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know the exact mean (™ and standard deviation ¢(™ corresponding to the n-th
measurement; instead, we only know that, for an appropriately chosen kg = k(po),
we have z(™ < 7™ —ky-0™ and 7 + koo™ <z, Thus, for the fused
result, instead of a single value x, we now have a whole range of values, namely,

"E 70 . (00)=2 L 50 . (g(m))=2

i=1

the set of all possible values of the ratio x =

> (0)72 4 (o(m) 2

i=1
corresponding to all possible values (") and o(™ that satisfy the above two
inequalities. Similarly, we can handle the cases when we have more data points
known with interval uncertainty, and the cases when we also need to take into
account spatial resolution.

As one can see from this description, even in the simplest case, to combine
probabilistic and interval uncertainty, we need to solve a complex non-linear
optimization problem. Thus, combining interval and probabilistic uncertainty
remains an important computational challenge.

7 Conclusions and Future Work

We propose a new approach to combining data from different sources, an approach
which is a fast practical alternative to joint inversion of multiple datasets.
Specifically, in this paper, we consider models that not only have different accuracy
and coverage, but also different spatial resolution. To fuse such models, we must
account for three different types of approximate equalities:

e each higher spatial resolution estimate is approximately equal to the actual
value in the corresponding (smaller size) cell;

e each lower spatial resolution estimate is approximately equal to the average
of values of all the smaller cells within the corresponding larger size cell;

e each lower spatial resolution estimate is also approximately equal to the
value within each of the constituent smaller size cells, with the accuracy
corresponding to the (empirical) standard deviation of the smaller-cell values
within the larger cell.

Depending on whether we have probabilistic or interval uncertainty, the approach
then uses the least squares or interval technique to combine these approximate
equalities. For example, in the least squares approach, we find the desired
combined values by minimizing the resulting sum of weighted squared differences.

On the example of simulated (synthetic) geophysical data, we show that model
fusion indeed improves the accuracy and spatial resolution of individual models.

In the future, we plan to apply the model fusion techniques to more realistic
simulated data and to real geophysical data (and, if necessary, use the results of
these applications to further adjust the techniques). We also plan to develop an
efficient algorithm for combining data known with different types of uncertainty:
e.g., probabilistic and interval uncertainty.
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