From Computing Sets of Optima, Pareto Sets, and Sets of
Nash Equilibria to General Decision-Related Set
Computations

Vladik Kreinovich
(University of Texas at El Paso, USA
vladik@utep.edu)

Bartlomej Jacek Kubica
(Warsaw University of Technology, Poland
B.KubicaQelka.pw.edu.pl)

Abstract: Several algorithms have been proposed to compute sets of optima, Pareto
sets, sets of Nash equilibria. In this paper, we present a general algorithms for decision-
related set computations that includes all these algorithms as particular cases.

Key Words: computing sets, sets of optima, Pareto sets, Nash equilibria
Category: F.2.1, F.4, G.1.m

1 Introduction

Optimization is important. In many practical decision making problems,
we are interested in finding the alternative which is the best (under given con-
straints). In many cases, an objective function f () is explicitly given. In these
cases, “the best” means that we want to find a solution which maximizes the
value of this objective function, i.e., a solution z* for which the value f (z*) can-
not be improved — i.e., for every element x of the set X of all possible solutions,
we have f (z*) > f(x).

In formal terms, the condition that x* is a location of a global optimum can
be described as

Va (f (z%) = f(2)) . (1)

Computing sets of optima is important. Often, there are several optima.
In this case, it is desirable to provide the user with the set of all these optima,
so that the user can see all the options when selecting an alternative.

From this viewpoint, it is desirable to “compute” (in some reasonable sense)
the set of all the optima — i.e., the set of all the points z* that satisfy the
condition (1).

Computing an exact global optimum of a computable function is, in
general, not algorithmically possible. It is known that even for functions

defined on the interval [0, 1], in general, it not possible to have an algorithm that,
given a computable function f : [0,1] — R, returns a location z* of its local max-
ima; see, e.g., [Kreinovich et al. 1998] or [Nachbar and Zame 1996] (definitions
of a computable function will be reminded later in this paper).

For example, in [Kreinovich et al. 1998], it has been proven that no algorithm
is possible that, given a computable polynomial of one variable which attains its
optimum at exactly two points, will return these two optimizing points.

In practice, it is sufficient to be able to compute an approximation
to the set of optima. From the practical viewpoint, the above algorithmic
impossibility result is not that negative, since in practice, small differences in
the values of the objective function can be safely ignored. Also, the objective
function f (x) describing the consequences of selecting an alternative z is also
only known approximately.

Let us denote, by ¢, the accuracy below which differences in the values of
f (x) can be safely ignored. Thus,

— the given value f (z*) means that the actual (unknown) value f,c; (z*) of the
objective function can be any number from the interval [f (z*) — e, f (z*) + €];

— the given value f (z) means that the actual (unknown) value f,. (x) of the
objective function can be any number from the interval [f (z) — ¢, f (z) + €];
and

— the optimization requirement fact (*) > fact () means, in these terms, that
there exist values fact (2*) € [f (2*) — &, f (2*) + €] and

fact (;E) € [f (;E) - €,f(:E) +5]
fOI‘ WhiCh fact (‘T*) 2 fact (J,‘)

If one of the elements of the interval [f (z*) —e, f (x*) + €] is larger than
or equal to one of the elements of the interval [f (z) — ¢, f (z) + €], then the
largest element f (x*) 4+ ¢ of the interval [f (z*) — ¢, f (z*) + €] is larger than or
equal to the smallest element f (z) — e of the interval [f (z) — ¢, f (z) + €], i.e.,
fa)+e=[flx)—e

Vice versa, if f(z*) + & > f(z) — e, then an element f(z*) 4+ € of the
interval [f (x*) —¢, f (z*) + €] is larger than or equal to the element f(x) — ¢
of the interval [f (z) — ¢, f () + €. Thus, the above condition is equivalent to
fa)+e>f(x)—eie,to f(z*)> f(z)—2-¢.

So, it is desirable to describe the set of all the values a* for which f (z*) >
f(x)—2-¢forall x € X, i.e., in formal notations, for which

Vo (f (27) = f(z) —2-¢). (2)

It is reasonable to call the alternatives x* that satisfy this requirement (2 -¢)-
optima. In these terms, instead of computing the set of all the optima, we are
arriving at a modified formalization of the original practical problem: compute
the set of all (2 - €)-optima.

Additional complication: the approximation accuracy is also not ex-
actly known. The above modified formulation implicitly assumes that we know
the exact approximation accuracy . In other words, we assume that we know
the exact value € such that smaller differences between the values of the objective
function f (z) can be safely ignored.

In practice, of course, this “threshold” value ¢ is also known with uncertainty.
A reasonable person can say that, e.g., 1% difference in the values of the objective
function can be safely ignored but 2% difference is no longer negligible. However,
it is difficult to expect a user to claim that a difference below 1.235% can be
safely ignored, while any difference above this threshold value 1.235% is not
negligible.

In other words, instead of a single exact value e, we usually have two bounds
£ < g, so that:

— every difference smaller than e can be safely ignored, while

— differences larger than € cannot be ignored.

Computing the set of optima: the final formulation of the problem. If
we take into account the uncertainty with which we know the accuracy ¢, then
we come to the following conclusion:

— every (2 - e)-optimal alternative is desirable, and
— every desirable alternative must be (2 - €)-optimal.

In other words, given an objective function f, we would like to compute a set S
with the following two properties:

— every (2 - g)-optimal alternative belongs to the set S, and

— every alternative from the set S is (2 - €)-optimal.

The resulting problem is algorithmically solvable. It turns out that the
problem of computing such a set S is already algorithmically solvable; see, e.g.,
[G.-Toth and Kreinovich 2009]. Specifically, it is possible to produce a finite list
of elements L and a rational value § > 0 such that the set S of all the alternatives
which are are d-close to one of the elements of L is the desired set.

Formally, if we denote the set of all (2 - ¢)-optimal alternatives by Ma.. (f),
then the following two conditions are satisfied:

— If xg € Mo (f), then d(xo,x) < § for some ¢ € L.

— If d(zo,¢) < § for some £ € L, then xg € Moz (f).

In other words, the union of the corresponding balls Bs (£) ef {z:d,x) <d}

satisfies the following property:

Moo (f) € | Bs (0) € Moz (). (3)

leL

Comment. We do not describe the algorithm for computing the list L, since later
in this paper, we present an algorithm for solving a more general problem.

Comment about continuity. The above result is based on the (implicit) assump-
tion that the objective function f is continuous. Continuous objective functions
describe the usual consequences of different actions, since usually a small change
in the solution only leads to a small change in the consequences.

In principle, there are some cases when the objective function is not contin-
uous. For example, for some undesired side products of an industrial process,
there is usually a threshold beyond which heavy fines start. In such situations,
however, the desire is to avoid exceeding this threshold. Thus, the environmen-
tally proper way of handling these situations is mot to incorporate these fines
into the profit estimates, but rather to avoid such undesirable situations al-
together, and to view these restrictions as constraints that limit the set X of
possible solutions. On thus restricted set, the objective function is continuous.
Such constraint optimization problems will be discussed later in this section.

A more general problem: computing the Pareto set. The above descrip-
tion of the decision making problem assumes that we have a single objective
function that we are trying to maximize — albeit an imprecisely known one. In
other words, we assume that we have already agreed how to combine different
characteristics describing different aspects of the problem into a single numerical
quantity.

In practice, we usually have several objective functions

f(.’L‘) = (f1 (l’),,fn(fﬂ))

describing different aspects of the possible solution x, such as profit, environmen-
tal friendliness, safety, etc. Ideally, we should maximize the values of all these
characteristics, but in reality, there is often a trade-off: e.g., to achieve more
environmental friendliness, it is often necessary to slightly decrease the profit;
there is a similar trade-off between cost and durability.

In many situations, the user does not have a clear a priori idea which trade-
offs are beneficial and which are not; in other words, the user does not have a

single combined objective function f () that would enable him or her to make an
ultimate decision. In such situations, it is reasonable to present the user with the
set of all possible solutions — and let the user decided between different possible
solutions from this set. The only possible solutions x* that we do not want to
present to the user are solutions x* which can be improved in all the senses, i.e.,
solutions for which, for some other solution x, we have f; (z*) < f; (x) for all j
and f; (z*) < f; (x) for some j. The set of all such “non-improvable” solution is
known as the Pareto set. The problem is how to compute the Pareto set.

This problem has many practical applications; see, e.g., [Figueira et al. 2004].

In formal terms, an alternative z* is dominated if

o (fi(z) 2 fL (@) & .o & fo (@) 2 fo (27) &

((fr(@) > fr (@) V..V o (@) > fo (7)) (4)

Thus, the condition that 2* is not dominated (= Pareto optimal) takes the form
Vo (fr(z) > fi(@) V...V fu(@%) > fo(2)V

(fi@@") =2 fi(@) & ... & fu(27) 2 fu (2))) (5)
In these terms, the Pareto set is the set of all the alternatives = that satisfy the
property (5).

In general, the computation of a Pareto set is an algorithmically unde-
cidable problem. There exist efficient algorithms for computing the Pareto set
for several important specific classes of problems: e.g., for special location prob-
lems [Nickel and Puerto 2005] and for problems with linear objective functions
[Figueira et al. 2004].

In general, however, this problem is known to be computationally difficult;
see, e.g., [Ruzika and Wiecek 2005]. This difficulty has a theoretical explanation
— this problem is, in general, algorithmically undecidable. This undecidability
directly follows from the fact that for n = 1, we get the problem of computing
the set of optima, the problem which is (as we have mentioned earlier) algorith-
mically undecidable.

The problem of computing a Pareto set becomes decidable if we take
into account that the objective functions are known with some accu-
racy. In practice, as we have mentioned, we know each of the objective func-
tions f; (x) only with some accuracy ;. It turns out that if we appropriately
take this uncertainty into account, then (verified) algorithms for computing the
resulting Pareto set become possible. Such algorithms were described, for the
case of n = 2 objective functions f; defined on bounded subsets of R™, in
[Ferndndez et al. 2006], [Ferndndez and Téth 2006], [Téth and Ferndndez 2006],
[Ferndndez and Téth 2007], [Ferndndez and Téth 2009]. For the general case of

arbitrary computable objective functions defined on a general computable set
X, the result is given in [G.-Toth and Kreinovich 2009].

Comment. A similar algorithm is presented in [Kubica and Wozniak 2008].

Specifically, we assume that for every j, we know the bounds £; <€; on the
(unknown) accuracy ¢;. Similarly to the optimization case, for each combination
of values € = (e1,...,&,), we say that an alternative x* is (2 - €)-Pareto optimal
if it satisfies the following property:

Vo ((fu(@*) > fi (@) —2-e1) V.oV (fo (&%) > fo(2) —2-2,) V

(@)= f(e)=2-a)&... & (fn@®) = fulr)=2-2)). (6)

Comments.

— Please note that since we are considering approximate values anyway, we
replaced the strict equality fi (z*) > fi1(x) — 2 - & with a non-strict one

fi(@) = fi(z)—2-e
— After this replacement, the second part
(@)= fil@)=2-6) & ... & (fu (") = fu(x) —2-2))

of the condition (6) follows from the first one, so the requirement (6) take
the simplified form:

Ve (@) 2 fi(@)=2-e) V... V(@) 2 fule)=2-e)). (7)
End of comments.

Given a tuple of objective functions

f:(fla"'vfn)a

we would like to compute a set S with the following two properties:
— every (2 - g)-Pareto optimal alternative belongs to the set .S, and
— every alternative from the set S is (2 - €)-Pareto optimal.

Specifically, it is possible to produce a finite list of elements L and a rational
value § > 0 such that the set S of all the alternatives which are are §-close to
one of the elements of L is the desired set.

Formally, if we denote the set of all (2-¢)-Pareto optimal alternatives by
Py.. (f), then the following two conditions are satisfied:

— If 2* € Po.. (f), then d(z*,£) < ¢ for some £ € L.

— If d(z*,0) < ¢ for some ¢ € L, then z* € Py.z (f).

In other words, the union of the corresponding balls Bs (£) ef {z:d,x) <d}

satisfies the following property:

P (f) C UBzi(g)gPZ.E(f)- (8)

A similar problem: computing the set of Nash equilibria. In the previous
text, we considered the problem of selecting an alternative in which one person
(or one entity) makes the decision, and the results depend only on this person’s
decision.

In practice, often, we have several different persons, with potentially different
objective functions fi (z), ..., fm (2), and we need to take into account the
interests of all the participants. Such decision problems are handled in game
theory. One of the most widely used solution concept is the concept of Nash
equilibrium: participants selects a joint decision z* = (7, ..., z%,) in such a way
that none of them has the incentive to unilaterally change the decision. In other
words, for every x; € X;, we have

fi (ZT,...,x;‘_17$:,$;+1,...,x;kn) > fl (1'*1‘7'"’w?—laxiaxr—o—la"wx;kn) . (9)

*

Formally, we can say that z* = (z7,...,z},) is a Nash equilibrium if the following
condition holds:

(Vey (f1 (2l 25, xr,) > f1(z,ah,. . ,z0) & ... &

(V:ﬂm (fm (x“{7...,m;717x:1) > fm (a:f,...,x;;fl,xm)))). (10)

In general, the computation of the set of all Nash equilibria is an
algorithmically undecidable problem. Indeed, similarly to the Pareto case,
this undecidability directly follows from the fact that for m = 1, we get the
problem of computing the set of optima, the problem which is (as we have
mentioned earlier) algorithmically undecidable.

The problem of computing the set of all Nash equilibria becomes
decidable if we take into account that the objective functions are
known with some accuracy. In practice, as we have mentioned, we know each
of the objective functions f; (x) only with some accuracy ¢;. It turns out that if
we appropriately take this uncertainty into account, then (verified) algorithms for
computing the resulting set of (approximate) Nash equilibria become possible;
see, e.g., [Kubica and Wozniak 2010].

The above three cases are similar. The above three cases are similar, the
results and algorithms are similar. It is therefore desirable to find a general
formulation of a decision making problem that would include these results as
particular cases.

This desirability also comes from the fact that several other practically im-
portant decision making problems can be formulated in a similar manner — so a
general result will enable us to solve all these problems as well.

Another example of a similar problem. An example of such a decision mak-
ing problem is the problem of constraint optimization. In general, we can have
constraints of the equality type a (z) = b(z) and constraints of the inequality

type a (z) > b(z). By moving all the terms to one side, we can have an equiva-

lent reformulation as ¢ (z) = 0 and ¢ (x) > 0, where ¢ (z) L (x) — b(z). Every

constraint ¢ (z) = 0 of the equality type can be represented as two inequality
constraints ¢ () > 0 and —c (z) > 0. Thus, in general, we can formulate the con-
straints optimization problem as follows: optimizing a given objective function
f (x) under constraints ¢; () >0, ..., ¢, (x) > 0.

For the alternative x* to be the location of the conditional optimum, this
alternative must satisfy the following two requirements:

— the alternative 2* must satisfy all n constraints ¢; (z*) > 0, and

— for every other alternative x that satisfies all n constraints, we must have

f@) = f (@)

Formally, these two requirements have the following form
a@)>0& ... &cp () >0&

Vo ((c1 () >0& ... &cp () > 0) — f(z%) > f(2)). (11)

Replacing implication A — B with the equivalent formula B V —A, we get the
following equivalent reformulation of (11) which makes it even closer to our
previous problems:

a@)>0& ... &ep (") >0&

Ve (f(z*) > f(@) Ve (z) <0V...Ve, (x) <0). (12)

It is desirable to prove that — similarly to the above results — the natural
g-approximation is computable.

Comment. For conditions of the type ¢ (x) > 0, the effect of inaccuracy is some-
what different than for inequalities of the above type f (x) > f (2').

Indeed, let us denote, by ¢, the accuracy below which differences in the values
of ¢(x) can be safely ignored. Thus, the given value ¢ (z) means that the actual

(unknown) value cuct () of the corresponding quantity can be any number from
the interval [c (z) —&,c () + €] .

The constraint ¢(x) > 0 means, in these terms, that there exist a value
Cact (x) € [c(x) — €,¢(x) + €] for which c,et () > 0.

If one of the elements of the interval [c(z) —e,c(x) + €] is larger than or
equal to 0, then the largest element ¢ (x) + ¢ of the interval

o (@) — &0 (a) +]

is larger than or equal to 0: ¢(x) + ¢ > 0.
Vice versa, if ¢ (z) + € > 0, then an element ¢ (z) + € of the interval

[e(x) —e,c(x) + ¢

is larger than or equal to 0. Thus, the above condition is equivalent to ¢ (z) +& >
0, i.e., toc(z) > —e.
Note that here we have —¢ instead of —2-¢.

Other possible examples. Similarly, we can consider Pareto optimization un-
der constraints, Nash equilibrium under constraints, etc.

Another case is when we do not have any objective function, we simply want
to find all the alternatives that satisfy the given constraint(s).

Yet another case if when we want to find a alternative z* which guarantees a
certain level of outcome no matter what alternative y is selected by the second
participant: Vy (f (z*,y) > fo), i-e., equivalently, Vy (f (z*,y) — fo > 0).

It is also possible to look for a mazximin solution, a solution z* for which the
worst-case outcome myin f (z*,y) is the largest possible. In this solution,

— there is an alternative y,, for which the value f (z*,y,) is the smallest pos-
sible, and

— for every other selection z, the value f (x,y) can be smaller than or equal to
f(@*,yw), i.e., there exists y for which f (z,y) < f (z*, Yw)-

Formally, this property has the form

Jyw Yy (f (2% 90) > f (2%, y) &V2 3y (f (2", yw) > [(2,9))) -

In some problems, we look for local optima, i.e., for a value x* for which, for
all within a certain radius d from 2*, we have f (*) > f (z). Local optima are
important in many practical problems: to separate an an image of an astronomi-
cal object into components; in spectroscopy to subdivide the observed spectrum
into individual lines corresponding to different ions and chemical substances,
etc.; see, e.g., [Villaverde and Kreinovich 1993].

Formally, a local maximum at z* means that we have
Vo (d(z,z") <d— f(z%) = f(x))

ie.,

Vo (d—d(z,2") 20— f(z") = f(2)).

What we do in this paper. First, in Section 2, we recall the main definitions
related to computability. Then, in Section 3, we formulate our main result. It
proof is presented in Section 4. Finally, in Section 5, we discuss the questions of
computational complexity and feasibility of the resulting algorithms.

2 What is a computable set, what is a computable function:
brief reminder

Need to define computability. In the global optimization problem, we have
the set of alternatives X and we have an objective function f : X — R and we
are interested in computing the set of all optima. In other problems, we have
one or more functions, and we want to compute an appropriate set. In order to
analyze these problems from the algorithmic viewpoint, we need to know how this
information is represented in a computer, i.e., from the computational viewpoint.
In other words, we must start with a “computable” set X and “computable”
function(s) f, and we must generate the corresponding solution set S.

The notions of computable numbers, computable sets, and computable func-
tions are known; they form the so-called computable mathematics (also known as
constructive mathematics); see, e.g., [Beeson 1985], [Bishop and Bridges 1985],
[Kushner 1985], [Beeson 1987], [Bridges and Vita 2006], [Aberth 2007]. However,
these notions are not unique: depending on the practical application, we may
end up with different notions of constructive sets, constructive numbers, etc.
Let us therefore analyze our problem from the computational viewpoint and see
which definitions naturally appear.

Towards a definition of a computable set. Let us start with the repre-
sentation of a set. The easiest set to represent in a computer is a finite set
X = {zM, ..., 2®)}: the finite set can be (and usually is) simply represented by
listing all its elements =), ... ().

In real life, however, the set of alternatives is usually infinite, with one or
more parameters which can take any values from certain intervals. In this case,
it is not possible to ezactly list all possible alternatives. It is also not possible
to exactly produce the optimal solution to the optimization problem — e.g., to
produce the exact real number, we need to describe infinitely many digits, and
a computer can only produce finitely many digits in any given time interval. In

such cases, we can only generate an approximation to the optimal solution. For
the notion of the approximation to be meaningful, we must be able, for every
two given alternatives z,z’ € X, to describe how close these alternatives are. In
other words, we need to be able to describe the distance d (x,2’) between every
two elements, i.e., the set X must be a metric space.

For given two elements x and 2/, the distance d(x,2’) is a real number.
We cannot always compute this number exactly — this would require infinitely
many bits, but we need to be able to compute the value of this metric with
an arbitrary accuracy. In other words, the values of the distance must be a
computable number in the following precise sense.

This real number can also only be computed with some accuracy. It is rea-
sonable to say that a real number is computable if we can compute it with any
given accuracy.

Definition 1. By a computable real number, we mean a pair (z,U), where z is a
real number, and the algorithm U, given a natural number &, produces a rational
number 7y, for which |z — 73| < 27F.

Comment. For example, v/2 is a computable real number because we can com-
pute it with any given accuracy. Inside the computer, a computable number is
represented by the algorithm Y. So, when we say that we can compute some-
thing (e.g., %) based on the computable real number input z, we mean that,
based on the algorithm I/ approximating the real number x, we can generate an
algorithm approximating 2.

It is known that standard arithmetic operations can be performed on com-
putable real numbers: the sum, the difference, the product, etc., of two com-
putable real numbers are computable as well. Similarly, for every computable
real number x, the values sin (z), exp (x), In (x), etc., are also computable; see,
e.g., [Beeson 1985], [Bishop and Bridges 1985], [Kushner 1985], [Beeson 1987],
[Bridges and Vita 2006], [Aberth 2007].

Similarly, we can describe the notion of a computable set: we cannot list
ezxactly all the elements of this set, but we should be able, for any given accuracy
e = 27% to list all the elements with this accuracy, i.e., to produce a finite list
{x(l), . ,x(’“)} that represents all the elements from the set X with the accuracy
e. In other words, for every element x € X, there is an e-close element from this
finite list, i.e., an element z(?) for which d (ﬂc, x(i)) < &. Such a finite list is called
an e-net.

We must also be able to effectively compute the distance between any two
listed elements — whether they are listed for the same accuracy 2% or for two
different accuracies 27% 2=*_ Thus, we arrive at the following definitions.

Definition 2. Let (X, d) be a metric space, and let £ > 0 be a real number. A
finite set {z(),..., 2"} C X is called an e-net for X if for every z € X, there
exists an 4 for which d (z,2") <e.

Definition 3. By a computable set, we mean a metric space (X,d) equipped
with two algorithms:

— an algorithm that, given a natural number k, produces a (finite) 2~ *-net
X®) for X; and

— an algorithm that for every two elements € X*) and z’ € X}, computes
the distance d (z,z’) (i.e., for any integer m > 0, computes a rational number
which is 27™-close to d (z,x")).

Comment 1. For complete metric spaces, the existence of a finite e-net for every
e > 0 is equivalent to compactness. Because of this, what we call computable
sets are sometimes called computable compact sets.

Comment 2. No additional information is required about the elements of each

finite set

X0 = (gD g2 kmiy

Each element (%) can be represented, e.g., by its indices k and [.

Example. The simplest examples of computable sets are:

— A non-degenerate interval [a,a], with a < @. For such an interval, we can
take, as X () the set of all rational numbers of the type p/2* (with integer
p) from this interval.

— A non-degenerate multi-interval (box) [ay,a1] X ... X [a,,, a@m] With a; < @;
and the sup metric

d((ay,...,am),(a},...,a,,)) = max |a; — ajl.
i=1,....m

We can take, as X (%), the set of all rational-valued points (p1/2k, . 7pm/2k)
from this box.

For the Euclidean distance, we can choose a similar set but with coordinates of
the type p; /2" where 2k > \/m.

A computable element can be now naturally defined as an element which can
be approximated with any given accuracy.

Definition 4. Let (X,d) be a computable metric space, with 2~ %-net X(*). By
a computable element of X, we mean a pair (z,U), where x € x and U is an
algorithm that, given an integer k > 0, produces an element r*) € X*) for
which d (x,:c(k)) <27k,

Comment. One can easily see that for the interval [a, @], computable elements
are simply computable real numbers from this interval. Similarly, for the m-
dimensional box, computable elements are simply tuples of computable numbers
(ai1,...,am) from this box.

Need to define Cartesian products. For problems like Nash equilibria, we
need to describe a function f(z1,...,x,) of several variables x1,...,Z,. In
mathematical terms such functions can be described as follows.

Let X; be the set of all possible values of x;. Then, the set of all possible
tuples x = (21, ..., %y,) with 2; € X is called a Cartesian product X1 X ...x X,
of the sets X;. In these terms, a function f (x1, ...,z) of several variables can be
described as a function from the Cartesian product to the set of all real numbers:
f: X1 x...xX,, = R. Thus, to handle such situations algorithmically, we must
define a Cartesian product of computable sets (= constructive compact sets).

If X4,...,X,, are computable sets with metrics d;. Then, similarly to the
above box example, we can define the following sup metric on the Cartesian
product:

d((x1, .. xm), (@, 2l) Y max (dy (z1,2)) ... dn (T, 2)) . (13)

It is easy to check that for each k, once we select a 2~ *-nets XZ-(k) for the sets
X; (1=1,...,m), the set of corresponding tuples

x®) L x B o x®) =
{(x&’fi)l, o ,mfff’)im> : xglfi)l c Xl(k)7 A x;’f)lm S X,(,’f)} (14)

is a 27 %-net for the Cartesian product X. Indeed, for every tuple
x=(21,...,Tm) € X1 X ... x X,

if for every 4, the element 2 e Xi(k) is 27 *-close to w;, i.e., d; (:L‘l(-k), xi> <27k

i

then the tuple z(¥) def (atgk), ... ,ng)) is 2= *-close to z:
d (x(k),x) = max (d1 (x§’“),x1) seeaydp (xffi),xm)) <27k (15)

Thus, the Cartesian product is also a computable set (= constructive compact
set).

Definition of computable function. To complete the description of our prob-
lems, we also need to define the notion of a computable function f from a com-
putable set to real numbers. Intuitively, we must be able, given an arbitrary
computable element x € X, to compute the value f (z). In the computer, a
computable element is given by its 2~ !-approximations ;. Thus, the only way
to compute f (z) with a given accuracy 27% is to compute the value f (r;) for
an appropriate approximation r; to x.

For example, since in the computer, the value v/2 is represented only approx-
imately, to compute sin (ﬂ) with a given accuracy, we must know with what
accuracy we must determine v/2 to get the desired accuracy in sin (\/Q)

So, we arrive at the following definition.

Definition 5. By a computable function from a computable set (X,d) (with
2~ % nets X}) to real numbers, we mean a function f : X — R which is equipped
with two algorithms:

— an algorithm that, given a natural number k£ and an element x € X}, com-
putes the value f () (i.e., for any integer m > 0, computes a rational number
which is 27™-close to f (z));

— an algorithm that, given a natural number k, produces a natural number [
for which d (z,2") < 27" implies |f (z) — f (2/) | < 27F.

Comment. In other words, we must be able to compute both the values of the
function f (x) and its modulus of continuity, i.e., the function wy (¢) that trans-
forms every real number ¢ into a number § = wy (¢) for which d(z,2’) < §
implies |f (z) — f (2') | <e.

As we have mentioned earlier, all standard computer-implemented functions
such as V) €XDp, sin, In, etc., are computable in this sense. In particular, the
possibility to find [from k is based on the fact that most of these functions have
a Lipschitz property |f (z) — f (z')| < L-d(x,2’) for a known L.

It is also known that a composition of computable functions is also com-
putable. Thus, all practical objective functions are computable in this sense.

Operations on computable functions. In the proof of our main result, we
will need the following properties of computable functions:

— if f(z) is a computable function and ¢ is a computable number, then the
function ¢ - f (z) is also computable;

— if f(x) and g () are computable functions, then the difference f (z) — g (z),
the minimum min (f (), ¢ (z)) and max (f (z), g (x)) are also computable;

—if f: X xY — R is a computable function and X and Y are computable
compact sets, then the functions mi)r(l f(z,y) and max f (x,y) are also com-
kS ES

putable.

For the first two properties, the computability of the new functions is straight-
forward. The corresponding moduli of continuity are obtained as follows.

Multiplying a computable function by a computable number. For h (z) =

c¢- f(x), we can take an upper bound A > 0 for |¢| and take wy, (€) = wy (%)

With this choice, d (z,2") < 6 = wy, (¢) implies | f (x)—f (z) | < % and therefore,

[(z) = h(z)| = |f (x) - f(@) [< A-

Difference of computable functions. For h (z) = f (z) — g (z), we can take

o= o (5) 4 3)-

Indeed, in this case, d(z,2') < § = wy (¢) implies d(z,2") < wy (E) and

2
d(z,z') < wg (g) hence |f (z) — f(2')| < = and |[g(z) — g (2')| < % Thus,

Minimum of two computable functions. For h (x) = min (f (z),g (z)), we
take

wh (€) = min (wy (£) ,w, (€)) -

In this case, d (z,2’) < § = wy, (¢) implies d (z,2") < wy (¢) and d (z,2") < wy (¢)
hence |f () — f(2')| < e and |g () — g (¢')[<e.
In particular, we have

f(z) < f(a) +eandg(x) <g(a) +e

Since
min (f (z), 9 (z)) < f(z) and min(f (z),g(z)) < g(z),

we conclude that

min (f (z), g (z)) < f () + € and min (f (z),g () < g () +e.

Since min (f (x), g (x)) is smaller than two numbers f (2’) + ¢ and g (z) + ¢, it
is smaller than the smallest of these two numbers, i.e., that

min (f (z') +¢,9 (2') +€) = min (f (2') , g (")) +&.
Thus, we have

min (f (2),g (x)) < min (f (2') g (2')) + €.

Similarly, we have

min (f (2'), g («)) < min (f (z), g (2)) + ¢,

hence

|min (f (z), g (2)) - min (f (2') g ()| <.

Maximum of two computable functions. For h (z) = max (f (z), g (z)), we
take the same value

won (¢) = min (wy (2) ,wy ().
In this case, d(z,2') < § = wy, (¢) implies d (z,2") < wy (€) and d (z,2") < wy ()
hence |f (z) — f (2')[< e and |g(2) — g (') | <e.
In particular, we have

f@) < f(z)+eand g(2') <g(x) +e
Since
f(x) <max(f (z),g(x)) and g (z) < max (f (z),g(z)),
we conclude that

f (@) < max(f (2),9(x)) + € and g () < max (f (), g (2)) + .

Since both numbers f (') and g (z') are smaller than max (f (x), g (z)) +¢, the
largest of these two numbers is also smaller than max (f (z),g (z)) +e:

max (f (a/) g (a)) < max (f (z) g () + <.

Similarly, we have

max (f (z), g (z)) <min(f (), g (2") +e,

hence
| max (f (), g (x)) —min(f (2"),g(2"))] <e.

Minimum over a computable set: computability. For h (y) = mig(l fz,y),
fAS

computability is not trivial. To compute the value h (y) with a given accuracy
e >0, we:

take 0 = wy (%),

— find a é-net z, ..., 2™ for the constructive set X,

. €
compute the values f (a?(z),y) with accuracy ok resulting in approximate

values f(z(l),y), e f(l’(m),y)v and

— compute h (y) 2f min (f(:r(l), y) Yo ,f(a:(m), y))

Let us show that this value is indeed an e-approximation to h (y).
Indeed, from the fact that each value f (x(i), y) is an (g/2)-approximation to
f (x(i), y), we conclude that

F(59,) < F(s0,0) +

for all = 1,...,m. Thus, the smallest of the left-hand sides is smaller than or
equal to the smallest of the right-hand sides:

<
2

. i . rl i € Y i & - £
o (1 (20.)) £ min (70,0 +5) =7 (0.0) 5 T+
. . (’L) . _
Since min (f (x ,y)) > min f (z,y) = h(y), we thus conclude that
h(y) <h(y)+5 <hy)+e (16)

Vice versa, since X is a compact, the minimum h (y) = rni)r(lf (z,y) of the
TE

function f (z,y) is attained for some zg € X: f (zg,y) = h (y). Since the values
M, ..., 2™ form a d-net, there exists an i for which d (2, (") < §. Due to

the choice of 0 = wy (%), this implies |f (zo,y) — f (a:(i), y) | < %, hence

7 (#9.9) < f @oy) +5 = hly) + 5.

Since f(az(i),y) is an (g/2)-approximation to f (x(i),y), we conclude that

F(0.4) 25 (:0) #

f(x(i),y) < (h(y)+g) +g:h(y)+s.

hence

Since one of the values f(gc(i), y) does not exceed h (y) + ¢, the smallest h(y) of
these values also does not exceed h (y) + ¢:

h(y) <h(y) +e.

Together with (16), this implies that [k (y) — h (y) | < e.
Minimum over a computable set: modulus of continuity. Let us show
that for h (y) = mi)l(l f(x,y), we can take wy, (¢) = wy (¢).

e

Let us show that if d(y,y’) < § = wy (¢), then h(y) < h(y') + e. Indeed,
since X is a compact set and f is a continuous function, there exists a value xg
for which h (y') = Ini;(lf (z,9y") = [(x0,y'). Here,

€

d ((1’0, y) ’ (.’Eo, y,)) = max (0, d (yv y/)) =d (y, y/) < d.
Due to our choice of § = wy (¢), we have hence |f (z0,y) — f (z0,y’) | < €, hence
f(@o,y) < f(o,y') + € =h(y) +e Since h(y) = min f (z,y) < f (zo,y), we
thus conclude that h (y) < h(y') +e.
Similarly, we can prove that h (y') < h(y) +¢, so indeed |h (y) —h (y')| < e.

Maximum over a computable set: computability. To compute the value
h(y) = ma;((f (z,y) with a given accuracy € > 0, we:
fAS

take 6 = wy (%),

— find a d-net W, ..., (™ for the constructive set X,

, €
compute the values f (;v(l),y) with accuracy oL resulting in approximate

values f (z1,y), ..., f (z™,y), and

— compute h (y) 4 hax (f(l’(l), y) yeen ,f(:v(m), y))

Let us show that this value is indeed an e-approximation to h (y).
Indeed, from the fact that each value f (x(i), y) is an (g/2)-approximation to
f (x(i), y), we conclude that

(-0 < (+0.0) 4

for all ¢ = 1,...,m. Thus, the largest of the left-hand sides is smaller than or
equal to the largest of the right-hand sides:

)= (1) < mos (1 (21) +5) = (:5) 5

Since max (f (m(i)7 y)) < m&g;((f (z,y) = h(y), we thus conclude that
7 Te

R(y) <h@y)+35 <hy)+e. an)

Vice versa, since X is a compact, the maximum h (y) = max f(x,y) of the
e

function f (z,y) is attained for some xg € X: f (x9,y) = h (y). Since the values

M. 2™ form a §-net, there exists an i for which d (wo,x(i)) < 4. Due to
the choice of § = wy (g), this implies | f (xo,y) — f (z(i), y) | < g, hence

h(y) = f(zo,y) < f (w(i),y) + %

Since f(m(i),y) is an (¢/2)-approximation to f (x(i),y), we conclude that

f (x(”,y) < f(x(“,y) +%
hence
h(y) < (f (w(“,y) + %) + % = f(m“’,y) +e
Here,
F(e9,0) < ma T (29,0) =70
hence

Together with (17), this implies that [k (y) — h (y) | < e.

Maximum over a computable set: modulus of continuity. Let us show
that for h(y) = magé(f (z,y), we can take wy, (¢) = wy ().
[AS
Let us show that if d(y,y") < § = wy (), then h(y) > h(y') — . Indeed,
since X is a compact set and f is a continuous function, there exists a value xg
for which h (y') = ma;((f (x,y") = f (x0,y’). Here,
A

d((x0,y), (x0,y")) = max (0,d (y,y")) = d (y,y') <.

Due to our choice of § = wy (¢), we have hence |f (z0,y) — f (z0,y’) | < €, hence
f(@o,y) 2 f(z0,y") —e =h(y) e Since h(y) = max f (z,y) = f(z0,y), we
thus conclude that h (y) > h (y') —e.

Similarly, we can prove that h (y') > h (y) —¢, so indeed |h (y) —h (y') | <e.

Towards the main result. Now, we have all the desired definitions, so we are
ready to start the formulation and the analysis of our problem — of computing
different types of sets.

3 Definitions and the main result

Discussion. All above definitions of decision-related properties were formed
in a similar manner: we had basic expressions of the type a > b or a > b or
a = b, and we combined them by using logical connectives V, &, = (“not”), —,
and quantifiers 3¢t and V¢. An additional restriction is that the basic expressions

contained one unknown function: we had expressions of the type f; (...) > fi (...)
or f; (...) > 0 — but not, e.g., expressions of the type f; > f; for i # j.

To analyze such expressions, let us perform some simplifications. First, we
can eliminate equalities by replacing each equality a = b with an equivalent
combination of two inequalities (a > b) & (b > a).

Second, we can replace each implication A — B with an equivalent logical
formula B V —A, this eliminating all implication symbols too.

Third, we can move negations inside the formulas, so that negations appear
only in front of basic expressions:

— we replace = (A & B) with an equivalent formula —A V —B;

(
we replace - (A V B) with an equivalent formula —A & —B;
— we replace - (3t A (t)) with an equivalent formula V¢ (A (t)); and
— we replace = (Vt A (t)) with an equivalent formula 3t (=A (¢)).
Now, when negations are only at basic inequality expressions:

— we replace = (a > b) with b > a and

— we replace - (a > b) with b > a.

Thus, we eliminate all the negation symbols as well.

Thus, we have basic expressions of the type a > b and a > b, and a general
formula can be obtained by using V, &, and quantifiers. Finally, as we have
mentioned in Section 1, when we have a strict inequality, we replace it with a
non-strict one anyway. Thus, we arrive at the following definition.

Definition 6. Let X;,...,X,, be computable compact sets, and let f;, i =

1,...,n, be computable functions from X = X; x ... x X,;, to the set R of real

numbers.
— By a f;-expression, we mean a formula of the type f; (z1,...,2m,m) > 0 of
or the type f; (z1,...,2m) > f(2},...,2,,), where x; and z} are variables

(possibly coinciding).

— By a decision-related property, we mean an expression that is obtained from
fi-expressions by using V, &, and quantifiers Vi.c x, and Ftiex;,.

— For each decision-related property P with free variables z = (z1,...), by
an decision-related set, we mean the set of all the tuples z that satisfy the
property P.

Comment. One can easily check that all the above examples are particular cases

of this general definition.

Definition 7. Let X;,..., X,, be computable compact sets, let f;, i =1,...,n,
be computable functions from X = X; x ... x X,;, to the set R of real numbers,
and let € = (e1,...,&,) be a tuple of positive real numbers.

— By an e-version of a decision-related property P, we mean the formula P
in which

e cach f;-expression of the type f; (z1,...,%,) > 0 is replaced by
fi (3517 e 7517m) Z —&i,

and

e each f;-expression of the type f; (x1,...,2m) > f (2}, ..., 2,) isreplaced
by fi(z1,.. xm) 2 f (@, 2,) — 2 &

— We say that a tuple z e-satisfies the property P if it satisfies the formula P..
— The set of all the tuples that e-satisfy the property P will be denoted by S..

Example: inequality. In particular, an inequality f; > 0 is transformed into
fi > —e;. For this constraint example, the e-modification can be justified by the

following simple result:

Definition 8. Let ¢ = (e1,...,&,) be a tuple of positive real numbers.

— We say that a function f; (x) is &;-close to a function g; (z) if
fi(@) —gi (@) <&
for all and .

— We say that a tuple of functions f ()

=(fi(z),..., fn(x)) is e-close to a
tuple g (z) = (g1 (2) .., gn () if | fi () —

gi ()| < g; for all z and 1.

Proposition 9. Let f; (z) be a function, €; > 0 be a number, and x* be a value.
Then, the following two conditions are equivalent to each other:

— the inequality f; (x*) > —eg; holds for a given function f;(x) and given

value =*;

— the inequality g; (x*) > 0 holds for some function g; which is g;-close to f; ().

Example: equality. The original equality f; = 0 is first represented as two

inequalities f; > 0 and f; > 0, where f; def fi. For the computable function
fj = —fi, the accuracy ¢; with which we know f; is the same as the accuracy
&; with which we know f;: indeed, |f; — f;| = | — f; - (—ﬁ) | = |f; — fil. Thus,

the two inequalities get replaced with two modified inequalities f; > —e; and
—fi > —&;. The second modified inequality is equivalent to f; < e and thus, this
system of two modified inequalities is equivalent to |f;| < &;. This is a reasonable

g;-approximate analogue of the original equality f; = 0.

Proposition 10. Let f; (x) be a function, ; > 0 be a number, and x* be a value.
Then, the following two conditions are equivalent to each other:

— the inequality |f; (z*)]| < &; holds for a given function f;(x) and given
value =*;

— the equality g; (x*) = 0 holds for some function g; which is €;-close to f; (x).

Equalities can be safely added. In general, our main theorems (see below)
remain true if we allow equalities f; (1) = f; (-) and f; (-) = 0 as f;-expressions,
and say that these equalities are e;-satisfied if, correspondingly, |f; (1) — fi () | <
2-g;and |f; (1) < e

Examples: optimality, Pareto optimality, and Nash equilibrium. For
optimality and Pareto optimality, results similar to Propositions 9 and 10 have
been proven in [G.-Toth and Kreinovich 2009]. A similar result holds for the
Nash equilibrium:

Proposition11. Let f : X7 x ... x X;;, — R be a tuple of functions, € be a
tuple of numbers, and o = (x1,...,Zm) € X1 X ... X X, be a value. Then, the
following two conditions are equivalent to each other:

— the value x* is a e-Nash equilibrium, i.e., for every i and for every x; € X;,
we have

fi(@], L miyal, g, ah) >
fi (zT,...,zf_l,xi,:c;_,_l,...,x;‘n)—2-61; (18)

— for some tuple of functions g (x) which is e-close to f (x), the value x* is a
Nash equilibrium, i.e., for every i and for every x; € X;, we have:

* * * * * * * * *
gi (xl,...,xifl,xi,xwl,...’mm) > gi (xl,...,xifl,mi,mwl,...,mm).

In general, negation cannot be safely added. In the original transformation
of general formulas, we eliminated equality and we eliminated negation. Let us
show that while equality can be easily added to this formulation, it is not possible
to consistency add negation. Indeed, let us consider a condition — (f; > 0).

— According to the current methodology, we replace — (f; > 0) with —f; > 0
and then replace it with a modified inequality —f; > —¢;, i.e., f; <e.

— On the other hand, if we could simply allow negations in the above definition,
then, to modify the above formula, we would replace f; > 0 with f; > —e.
Then, the original formula —(f; > 0) would be replaced with a modified
formula = (f; > —¢), ie., fi < —e.

One can see that the resulting formulas f; < € and f; < —e are indeed different.
Moreover, the second formula f; < —e does not allow the possibility f; = 0
which is perfectly in line with the original formula — (f; > 0).

Because of the difficulty with negation, the s-modification is not al-
ways meaningful. In Section 1, we gave examples of several problems for which
e-modifications make sense. It should be mentioned, however, that because of the
above difficulty with negation, not all formulas get a meaningful modification.
As an example, let us take the requirement

Vo (fi(x) =0— f;(z) =0).

According to our methodology, we first eliminate equality and transform this
requirement into

Vo ((fi(x) 2 0& — fi(z) 2 0) = (fj () 2 0& — f; () > 0)).
Second, we eliminate implication, resulting in
Vo (= (fi(2) 2 0& — fi(z) 2 0)V (fj () 2 0& — f;(z) >0)).
Third, we move negations inside, resulting in
Vo (= (fi(x) 20) V= (=fi(z) 2 0) V (f; (x) > 0& — f; () > 0))
and in
Vo ((=fi (x) > 0)V (fi(z) > 0) V (f; (z) 2 0& — f; () > 0)).
The corresponding e-modification has the form
Vo ((=fi(z) = —e) V (fi (2) = i) V (f; () = —e; & — f () = —¢;)).

This modified condition is, however, meaningless because if it satisfied for all
possible values x. Indeed:

— If f; (x) > —¢;, then the second condition f; (x) > —&; from the disjunction
is satisfied.

— Otherwise, if f; () < —e&;, then —f; () > ¢; and since ¢; > —¢;, the first
condition — f; () > —e; from the disjunction is satisfied.

Monotonicity of e-satisfaction. In our proofs and algorithms, we will use the
fact that if ¢; < &; for each 4, then:

— the inequality f; (x1,...,2m) > —g; implies f; (x1,..., %) > —&;, and

— the inequality f; (x1,...,2m) > f (2}, ...,z)—2-¢, implies f; (z1,...,%m) >
fl,...,x,)— 2.

Logical operations V, &, Vticx,, and Jtiecx, are monotonic in terms of implica-
tion: e.g., if A implies A’ and B implies B’, then AV B implies A’ V B’.
We can therefore conclude that P, implies Fx, i.e., that S; C Sz.

Theorem 12. There exists an algorithm that, given a decision-related property
P and two tuples ¢ and € of rational numbers for which 0 < g; < ;, produces
a finite list of elements L and a rational number 6 > 0 with the following two
properties:

— FEvery tuple z* that e-satisfies the property P is 6-close to some element from
the list L.

— FEvery tuple that is d-close to some element of the list L €-satisfies the prop-
erty P.

The list L and the accuracy § provide a description of the desired decision-
related set. Specifically, the desired set S is approximated by the set of all the
elements which are J-close to one of the elements from the given list, i.e., by the
union of the corresponding balls Bs (¢) o {z:d ¢, z) <}

S.c|UBswcCs-

leL

It is worth mentioning that while in some decision-related problems like op-
timization, the solution always exists, in other problems — such as constraint
satisfaction — it is possible that there are no solutions. In such cases, the above
algorithm will produce an empty list L = ().

Comment. The above result shows that we can compute the finite set L and the
value §. From the common sense viewpoint, this seems to be a reasonable way
to say that the solution set is computable, and, in our opinion, it makes perfect

practical sense for the above general problem. In other words, as a solution set,

we present the union U Bs (£).

LeL
It is worth mentioning that in the previous text, we had a different — more

general — definition of a computable set — as a computable compact set (also
known as a constructive compact set). It is possible to strengthen Theorem 12
and select § in such a way that this union is a computable compact set:

Theorem 13. There exists an algorithm that, given a decision-related property
P and two tuples ¢ and € of rational numbers for which 0 < g; < g;, produces
a finite list of elements L and a rational number § > 0 with the following three
properties:

— FEvery tuple z* that e-satisfies the property P is 6-close to some element from
the list L.

— FEvery tuple that is 0-close to some element of the list L g-satisfies the prop-
erty P.

— The set U Bs (¢) of all tuples which are d-close to some element of the list
ter
L is computable (i.e., is a computable compact set).

4 Proofs

Proof of Proposition 9. If g; (z*) > 0 and g; is f; is g;-close to f;, then
|fi (x*) — gi ()| < &; hence f; (x*) > ¢; (z*) — &; and so f; (z*) > —¢,.

Vice versa, if f; (x*) > —¢;, then for g; (x) e fi (z) + €4, we have g; (™) >0
and at the same time |f; (z) — ¢; (x) | = &; < €, s0 g; and f; are indeed ¢;-close.
Proof of Proposition 10. If g; (z*) = 0 and g; is f; is g;-close to f;, then
|fi (z) — gi (z7) | < & hence |f; (27)] < .

Vice versa, if | f; (¢*) | < ¢, then for g; (v) =
0 and at the same time |f; (x) — g; (z) | = |fi (z
g;-close.

E fi (@)~ fi (%), we have g; (%) =
*)| < e, s0 g; and f; are indeed

Proof of Proposition 11. Let us first assume that f and g are e-close and the
condition (19) holds, i.e.,

gi (a:’{,...,x;‘_l,zf,xf+1,...,zfn) > g (xf,...,xf_l,xi,xal,...,x:;) .
Then, due to |f; (-) — g: () |ei, we have

*

* * * * * * * * *
fi (ml,...7xi71,xi,xi+1,...,xm) > g (x17...,xi71,xi,xi+1,...,xm) —g; >

* * * * * * * *
g (wl,...,xifl,xi,xﬂrl,...,mm)—gi Z fz (SL’I,. ..,aﬁiil,xi,xwh...,xm)—Z-Ei,

i.e., the desired inequality (18).
Vice versa, let us assume that the inequality (18) holds. Let us define the
new functions g; as follows:

— for the given a*, we take g; (z*) = f; (z*) + €43
— for all x # z*, we take g; (x) = f; (x) — &;.

Then, every condition of the type
fil@) = fi (@1, 2 g, 2], 204, 2n,) >

* * * *
fi (ml,...,xifl,aji,mwl,...,xm) —2-g;

with x; # 2} implies
gi (%) = fi (z*) +&; > (fl (J:f,...,mffl,xhxfﬂ,...,xfn) —2.5i) 4+ =

* * * * * * * *
fi(al, ol al g, ah) —ei=gi (2], @@ w2
Thus, for the tuple of functions g(x), the value z* is indeed a Nash equilibrium.

The proposition is proven.

Comment. Please note that the functions g; (x) defined in the above proof are
not continuous and thus, not computable. This is OK since the formulation of
the proposition does not require computability of the functions g; (x).

Proof of Theorems 12 and 13.

1°. Since Theorem 12 trivially follows from Theorem 13, it is sufficient to prove
Theorem 13.
o def & . &
2°. Let us denote o = max; () . Then, for every i, we have == < ag hence
&i €q
g; < agp - €;. Due to the monotonicity property of the set S., we thus have

S. C Sayz. (20)

We will show how to compute a finite set L and two rational values § < ¢ for
which

Saez € U Bs(0) € | B (0) €S- (21)
LelL leL
Due to (20), this implies that
S.cUBswyc|JBs)CS= (22)

LeL leL

3°. The sets S,z and Sz are particular cases of the general set S,.z correspond-
ing to « = ag < 1 and to a = 1. Let us therefore find a general description
of the set S,.z. We will do it by following the structure of the properties: we
start with the basic statements, and we show how this description can be ex-
tended to statements obtained by using logical connectives and quantifiers. 3.1°.

A basic statement f; (z1,...,2,) > —a - &; can be equivalently reformulated as
gi (X1, .., Tm) > —a, where
det fi(x1,...,x
gi(ml’”.’xm) © M

Since f; is a computable function and € is a computable number, the function
gi (Z1,...,2m,) is also computable.

3.2°. A basic statement f; (z1,...,2m,m) — f(2),...,2,) > —2 - a-F; can be
equivalently reformulated as h; (x1,...,2,) > —a, where
hi (-Tla...yxm) déf fi ('Tla"'vxm)2_7f (x/h,zlm)
‘E

Since f; is a computable function and g is a computable number, the function
h; (x1,...,Ty) is also computable.

3.3°. Let us assume that we have a property P & P’, where properties P and
P’ have already been represented in the form f(z) > —a and f'(2) > —«
for computable functions f(z) and f’(z). Then, the property P& P’ can be
represented as g (z) > —a, where g (2) 4 1in (f(2), f (2).

Since both functions f (z) and f’ (z) are computable, we can use a result from
the previous section to conclude that the new function g (2) is also computable.

3.4°. Let us assume that we have a property P V P’, where properties P and
P’ have already been represented in the form f(z) > —« and f'(2) > —«
for computable functions f (z) and f’(z). Then, the property P& P’ can be

def

represented as g (z) > —a, where g (z) = max (f (2), ' (2)).
Since both functions f (z) and f’ (z) are computable, we can use a result from
the previous section to conclude that the new function g (z) is also computable.

3.5°. Let us assume that we have a property Jtex, P (¢, z), where the property
P (t, z) have already been represented in the form f (¢,z) > —« for a computable
function f (¢, z). Then, the property Jt:cx, P (t, z) can be represented as g (z) >
—a, where g (z) def max f (t, z)

I g - fEX, 9 .

Since the function f (t, z) is computable, we can use a result from the previous
section to conclude that the new function g (z) is also computable.

3.6°. Let us assume that we have a property Vi x, P (¢, z), where the property
P (t, z) have already been represented in the form f (¢,z) > —« for a computable

function f (¢, z). Then, the property Vt:cx, P (t, z) can be represented as g (z) >
—a, where g (z) 4 min f(t,2).
teX;
Since the function f (t, z) is computable, we can use a result from the previous
section to conclude that the new function g (z) is also computable.

3.7°. Thus, an (« - €)-version of each decision-related property can be reformu-
lated in the equivalent form f (z) > —a for an appropriate computable function
f(2). Thus, Saz={z: f(2) > —a}.

4°. Since the function f (z) corresponding to the desired decision-related prop-

erty P is computable, there exists the corresponding algorithm w (g).

—

Let us take, as €, the rational number ¢ = , and let us take § = wy (e),

and § = g

Each z is a tuple of elements from computable (compact) sets X;. Thus, the
set Z of all possible values z is a Cartesian product of computable compact sets
and thus, a computable compact set itself. In particular, this means that we can
algorithmically compute a d-net 2, ..., 2™ for the set Z.

Since the function f (z) is computable, we can compute all the values f (z(i))
with arbitrary accuracy. Let us denote the rational number resulting from com-
puting f (z(i)) with accuracy e by f(z(i)). As the desired set L, we will now
take

L= {x(i) : f(z(i)> > —ap—2- 5} . (23)

(Both compared values f (2()) and —ag — 2 - € are rational, so we can algorith-
mically check the above inequality.)
Let us prove that for these d, d, and L, we indeed have the property (21).

4.1°. Let us first prove that So,z € |J Bj (), ie., that if f(z) > —ag, then
leL

there exists an 2 € L for which d (z, z(i)) < 4.
Indeed, since the values z(*) form a d-net for the set Z, there exists an i for
which d (z, z(i)) < 4. All we need to prove now is that z(Y) € L, i.e., by definition

of the set L, that f(z(i)) > —ap—2-¢.

Indeed, because of our choice of § as 5 wr (¢), the condition d (z,z(i)) <

1)
§ = 5 ws (¢) implies that d (z, z(’)) < wy (€). By definition of the modulus of

continuity, this implies that |f (2) — f (2®) | < e. Thus, f (2)) > f(2) — € and
since f (z) > —ap, we conclude that f (z(i)) > —ag — €.

Now, by definition of f(z(i)), we have |f(z(l)) —f (z(i)) | < e hence f(z(i)) >
f(z9) —e. We already know that f (2()) > —ag — €, so we conclude that
f(z(i)) > —ap — 2 ¢ hence 2V € L. The statement is proven.

4.2°. Let us now prove that |J Bj(¢) C Sz, i.e., that if for some z € Z and i for
leL

which 2 € L, we have d (2, z(i)) <, then f(z) > —1.

Indeed, () € L means that f(z(i)) > —ag — 2 - . Since f(z(i)) is an e-
approximation to f (2(V), we have f (2(V) > f(z(i)) —e¢ and therefore, f(z(i)) >
—Qn — 3-e.

Due to d (z,2(Y) <6 = wy (g), we have |f (2) — f (2() | < € hence f(2) >
f (z(i)) — ¢ and thus, f(2) > —ag — 4 - . By definition of ¢, this means that

f(z) > —1, i.e., that indeed |J Bj(¢) C Sz
teL
The property (21) is proven.

5°. To complete the proof, we must show that there exists a & for which § < § < §
— and for which therefore

UBsocJBswyc B0,

LeL leL LeL

for which the union |J Bs (¢) is a computable compact set.
teL
Indeed, for an arbitrary d, the condition that z € |J Bs (¢) means that there
LeL
exists £ € L for which d(z,¢) < §. This condition is equivalent to ¢ (z) < 4,

where g (2) def mind (z,£). Thus, |J Bs(¢) ={z:g(z) <d}.
leL ¢eL
According to the properties of the minima of computable functions, the func-

tion ¢ (z) is also a computable function on a computable compact set. According
to [Bishop and Bridges 1985], for every computable function g (z) and for every
two computable numbers § < §, we can algorithmically find a value 6 € (é, 3)
for which the set {2z : g (2) < d} is a computable compact set.

For this 0, the set |J Bs (£) = {2 : g (z) < 0} is computable. The theorem is

LeL
proven.

5 Computational complexity and feasibility of the resulting
algorithms

Computational complexity: general case. Once we established that the
algorithms exist, the natural next question is: how efficient are these algorithms?
According to the proofs, the above algorithms require that we consider all the
elements of the corresponding e-net, its number of steps grows as the number of
these elements. For an m-dimensional box this number is = V/e™, so it grows
exponentially with the dimension m of the box.

This is, however, acceptable, since in general, the optimization problems are
NP-hard [Kreinovich et al. 1998], and therefore, the worst-case exponential time
is inevitable (unless, of course, it turns out that, contrary to the expectations of

most computer scientists, P = NP and thus, all such problems can be solved in
feasible (polynomial) time).

Implementation of the above algorithms: interval computations. The
usual implementation of the above algorithms involve interval computations; see,
e.g., [Jaulin et el. 2001, Moore at al. 2009].

Interval computations were originally designed to estimate the uncertainty
of the result of data processing in situations in which we only know the upper
bounds A on the measurement errors. In this case, based on the measurement
result Z, we can only conclude that the actual (unknown) value x of the desired
quantity is in the interval [— A, 7 + A].

In interval computations, at each intermediate stage of the computation, we
have intervals of possible values of the corresponding quantities.

From interval computations to more sophisticated set computations.
In interval computations, at every intermediate stage of the computations, we
only keep the intervals of possible values of each quantity, but we do not keep
the information about the relations between these quantities. As a result, we
often have bounds with excess width.

To remedy this problem, in [Ceberio et al. 2006], [Ceberio et al. 2007], and
[Kreinovich 2009], we proposed an extension of interval technique to set compu-
tations, where on each stage, in addition to intervals of possible values of the
quantities, we also keep sets of possible values of pairs (triples, etc.). As a result,
in several practical problems, such as

— estimating statistics (variance, correlation, etc.) under interval uncertainty,
and

— solutions to ordinary differential equations (ODEs) with given accuracy,

this new formalism enables us to find estimates in feasible (polynomial) time;
see [Ceberio et al. 2007] and [Kreinovich 2009].

Comment. The idea of using a grid to describe and compute sets is similar to
the ideas from [Escardé 2009], where real numbers are represented as > a,, -27",
with a,, € {—1,1}, and sets are described in terms of possible values of a,,.

Alternative approaches to efficient set representation and set computations
can be found, e.g., in [Collins 2007] and [Collins 2007a.

Acknowledgments

This work was supported in part by NSF grant HRD-0734825, by Grant 1 T36
GMO078000-01 from the National Institutes of Health, by CCA’2009 conference,
and by Ettore Majorana Center for Scientific Culture, Erice, Italy.

One of the authors (V.K.) is thankful to all the participants of CCA’2009 for
valuable discussions.

References

[Aberth 2007] Aberth, O.: “Introduction to Precise Numerical Methods”, Academic
Press, San Diego, California, 2007.

[Beeson 1985] Beeson, M.: “Foundations of Constructive Mathematics: Metamathe-
matical Studies”, Springer, Berlin/Heidelberg/New York, 1985.

[Beeson 1987] Beeson, M.: “Some relations between classical and constructive mathe-
matics”; Journal of Symbolic Logic 43 (1987) 228-246.

[Bishop and Bridges 1985] Bishop, E., Bridges, D. S.: “Constructive analysis”,
Springer-Verlag, Berlin-Heidelberg-New York, 1985.

[Bridges and Vita 2006] Bridges, D. S., Vita, L. S.: “Techniques of Constructive Anal-
ysis”, Springer, New York, 2006.

[Ceberio et al. 2006] Ceberio, M., Ferson, S., Kreinovich, V. et al.: “How To Take
Into Account Dependence Between the Inputs: From Interval Computations to
Constraint-Related Set Computations”, In: Proc. 2nd Int’l Workshop on Reliable
Engineering Computing, Savannah, Georgia, February 22-24, 2006, pp. 127-154;
final version in Journal of Uncertain Systems 1, No. 1 (2007), 11-34.

[Ceberio et al. 2007] Ceberio, M., Kreinovich, V., Pownuk, A., Bede, B.: “From Inter-
val Computations to Constraint-Related Set Computations: Towards Faster Esti-
mation of Statistics and ODEs under Interval, p-Box, and Fuzzy Uncertainty”, In:
Melin, P., Castillo, O., Aguilar, L. T., Kacprzyk, J., Pedrycz, W.: (eds.), Founda-
tions of Fuzzy Logic and Soft Computing, Proceedings of the World Congress of the
International Fuzzy Systems Association IFSA’2007, Cancun, Mexico, June 18-21,
2007, Springer Lecture Notes on Artificial Intelligence, 2007, Vol. 4529, pp. 33—42.

[Collins 2007] Collins, P.: “Optimal semicomputable approximations to reachable and
invariant sets”, Theoretical Computer Science 41, No. 1 (2007), 33—48.

[Collins 2007a] Collins, P.: “Effective computations in linear systems”, In: Computa-
tion and Logic in the Real World, Lecture Notes in Computer Science 4497 (2007),
169-178.

[Escardé 2009] Escard6, M. In: Bauer, A., Dillhage, R., Hertling, P., Ko, K.-I., and
Rettinger, R. (eds.), Proceedings of the Sixth International Conference on Com-
putability and Complexity in Analysis CCA’2009, Ljubljana, Slovenia, August 18—
22, 2009, pp. 4-15.

[Ferndndez and Téth 2006] Ferndndez, J., T6th, B.: “Obtaining the efficient set of
biobjective competitive facility location and design problems”; In: “Proceedings
of EURO XXI”, Reykjavik, Iceland, July 2-5, 2006.

[Ferndndez and Téth 2007] Ferndndez, J., Téth, B.: “Obtaining an outer approxima-
tion of the efficient set of nonlinear biobjective problems”; Journal of Global Opti-
mization 38, No. 2 (2007), 315-331.

[Fernédndez and Téth 2009] Ferndndez, J., T6th, B.: “Obtaining the efficient set of non-
linear biobjective optimization problems via interval branch-and-bound methods”;
Computational Optimization and Applications 42, No. 3 (April 2009), 393-419.

[Ferndndez et al. 2006] Ferndndez, J., T6th, B., Plastria, F., Pelegrin, B.: “Reconciling
franchisor and franchisee: a planar multiobjective competitive location and design
model”; In: “Recent Advances in Optimization”, Springer Lecture Notes in Eco-
nomics and Mathematical Systems 563 (2006), 375-398.

[Figueira et al. 2004] Figueira, J., Greco, S., Ehrgott, M. (eds.): “Multiple Criteria
Decision Analysis: State of the Art Surveys”, Kluwer, Dordrecht, 2004.

[Jaulin et el. 2001] Jaulin, L. et al.: “Applied Interval Analysis”, Springer, London,
2001.

[Kreinovich 2009] Kreinovich, V.: “From Interval Computations to Constraint-Related
Set Computations: Towards Faster Estimation of Statistics and ODEs Under Inter-
val and P-Box Uncertainty”, In: Bauer, A., Dillhage, R., Hertling, P., Ko, K.-1., and

Rettinger, R. (eds.), Proceedings of the Sixth International Conference on Com-
putability and Complexity in Analysis CCA’2009, Ljubljana, Slovenia, August 18—
22, 2009, pp. 4-15.

[Kreinovich et al. 1998] Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: “Computa-
tional Complexity and Feasibility of Data Processing and Interval Computations”,
Kluwer, Dordrecht, 1998.

[Kubica and Wozniak 2008] Kubica, B. J., Wozniak, A.: “Interval methods for com-
puting the Pareto-front of a multicriterial problem”; Lecture Notes in Computer
Science, Springer, Berlin, 4967 (2008), 1382-1391.

[Kubica and Wozniak 2010] Kubica, B. J., Wozniak, A.: “An interval method for seek-
ing the Nash equilibria of non-cooperative games”; In: Wyrzykowski, R. (ed.) “Pro-
ceedings of the Eighth International Conference on Parallel Processing and Applied
Mathematics PPAM’2009, Wroclaw, Poland, September 13-16, 2009”; Lect. Notes
Comp. Sci., Springer, Berlin (to appear).

[Kushner 1985] Kushner, B. A.: “Lectures on Constructive Mathematical Analysis”;
American Mathematical Society, Providence, Rhode Island, 1985.

[Moore at al. 2009] Moore, R. E., Kearfott, R. B., Cloud, M. J.: “Introduction to in-
terval analysis”, SIAM Press, Philadelphia, Pennsylvania, 2009.

[Nachbar and Zame 1996] Nachbar, J. H., Zame, W. R.: “Non-computable strategies
and discounted repeated games”; Economic theory 8 (1996), 103-122

[Nickel and Puerto 2005] Nickel, S., Puerto, J. “Location Theory: A Unified Ap-
proach” | Springer-Verlag, Berlin, 2005.

[Ruzika and Wiecek 2005] Ruzika, S., Wiecek, M. M.: “Approximation methods in
multiopbjective programming”, Journal of Optimization Theory and Applications
126 (2005), 473-501.

[T6th and Ferndndez 2006] Téth, B., Ferndndez, J.: “Obtaining the efficient set of non-
linear biobjective optimization problems via interval branch-and-bound methods”;
In: “Proceedings of the 12th GAMM - IMACS International Symposium on Scientific
Computing, Computer Arithmetic, and Validated Numerics SCAN’06”, Duisburg,
Germany, September 2629, 2006.

[G.-Toth and Kreinovich 2009] G.-Toth, B., Kreinovich, V.: “Validated methods for
computing Pareto-sets: general algorithmic analysis”; International Journal of Ap-
plied Mathematics and Computer Science 19, 3 (2009), 369-380.

[Villaverde and Kreinovich 1993] Villaverde, K., Kreinovich, V.: “A linear-time algo-
rithm that locates local extrema of a function of one variable from interval mea-
surement results”; Interval Computations, No. 4 (1993), 176-194.

