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Abstract

In many practical applications, it is useful to represent a function f(x)
by its fuzzy transform, i.e., by the “average” values

Fi =

∫
f(x) ·Ai(x) dx∫

Ai(x) dx

over different elements of a fuzzy partition A1(x), . . . , An(x) (for which

Ai(x) ≥ 0 and
n∑

i=1

Ai(x) = 1). It is known that when we increase the

number n of the partition elements Ai(x), the resulting approximation
gets closer and closer to the original function: for each value x0, the
values Fi corresponding to the function Ai(x) for which Ai(x0) = 1 tend
to f(x0).

In some applications, if we approximate the function f(x) on each
element Ai(x) not by a constant but by a polynomial (i.e., use a fuzzy
transform of a higher order), we get an even better approximation to
f(x).

In this paper, we show that such fuzzy transforms of higher order (and
even sometimes the original fuzzy transforms) not only approximate the
function f(x) itself, they also approximate its derivative(s). For example,
we have F ′

i (x0) → f ′(x0).
Keywords: fuzzy transform, higher-order fuzzy transform, derivatives,
universal approximation property

1 Fuzzy Transforms: A Brief Introduction

Need for fuzzy techniques: reminder. In many application areas, a sig-
nificant part of our knowledge is in the form of human expertise, an expertise
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that most experts can only describe by using imprecise (“fuzzy”) words from a
natural language.

For example, a skilled driver cannot explain her skills by explicitly stating
for how many angles one should turn the wheel to change the lane at a given
speed, but this driver can express her rules by saying, for example, that if we
are traveling at a high speed, we should turn the wheel a little bit.

It is desirable to incorporate this “fuzzy” expertise into automatic control
systems. To be able to do that, we must transform this knowledge into precise
terms, terms understandable to a computer. Fuzzy techniques (see, e.g., [17, 20]
have been specifically designed to formalize such “fuzzy” knowledge.

Fuzzy techniques: the main idea. In fuzzy techniques, every imprecise
statement A (like “small”) is represented by a membership function, i.e., a func-
tion that assigns, to every real number x, a value A(x) which describes to what
“degree” the property A is satisfied for this value x.

This membership function is also called a fuzzy set.

Fuzzy control: the main idea. Expert knowledge about control is usu-
ally formulated in the following terms: an expert selects words A1, . . . , An like
“small”, “medium”, “large”, etc. describing his knowledge about the input x,
and formulates (in similar imprecise terms) what actions to undertake under
these n different assumptions about the input. Thus, we have rules of the fol-
lowing type:

• if the input x satisfies the property A1, then the control u should satisfy
the property B1;

• if the input x satisfies the property A2, then the control u should satisfy
the property B2;

• . . .

• if the input x satisfies the property An, then the control u should satisfy
the property Bn.

The corresponding fuzzy control methodology transforms these rules into a pre-
cise control strategy u(x) [17, 20].

Typical selection of membership functions in fuzzy control. We want
to select the rules in such a way that the corresponding terms cover all possible

inputs x from a given range, i.e., for which, for every x, we have
n∑

i=1

Ai(x) = 1.

A collection of fuzzy sets with this property is called a fuzzy partition.
In the non-fuzzy case, when we talk about a partition, we usually mean that

each element belongs to only one class. In the fuzzy case, transition is gradual,
so when we move, e.g., from small to medium, then the degree of smallness
gradually decreases from 1 (for a real small object) to 0 (for a truly medium
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object). Thus, it is reasonable to require that if we want to get good results on
the domain [x, x] of values x, then we should select values

x0 < x = x1 < x2 < . . . < xn−1 < xn = x < xn+1

for which each function Ai(x):

• increases from 0 to 1 when xi−1 ≤ x ≤ xi,

• attains the value 1 at x = xi,

• decrease from 1 to 0 for xi ≤ x ≤ xi+1,

• is equal to 0 outside the interval [xi−1, xi+1], and

• is continuous for all x.

Comment. Please notice that

• in our definition, the first and the last functions A1(x) and An(x) are also
defined slightly outside the domain of interest [x, x];

• in [21], these first and last functions are only considered inside the domain
[x, x].

This difference does not change the approximation property inside the domain
(and our proofs), but it makes definitions and proofs much easier – because we
no longer have to consider the first and the last functions separately.

Triangular membership functions and uniform partitions. In principle,
we can use different functions Ai(x). From the computational viewpoint, the
simplest function Ai(x) is a triangular function which is linear on both intervals
[xi−1, xi] and [xi, xi+1]:

• for x ∈ [xi−1, xi], we have Ai(x) =
x− xi−1

xi − xi−1
;

• for x ∈ [xi, xi+1], we have Ai(x) = 1− x− xi
xi+1 − xi

.

It is also desirable to have a uniform partition, to avoid situations in which
we have many rules about one part of the domain and very few rules about the
other parts of the domain. This can be achieved if we select the values xi equally

spaced, i.e., xi = x0 + i · hn for a step hn =
x− x

n− 1
, and select the functions

An,1(x), . . . , An,n(x) which differ from each other only by shift, i.e., for which

An,i(x) = A0

(
x− xi
hn

)
for some fixed continuous function A0(x) defined on the

interval [−1, 1].
Such a partition is among the most frequently used in fuzzy control.
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What if we apply similar ideas to a functional dependence. In some
practical situations, we know the exact functional dependence f(x) between the
input quantity x and the auxiliary quantity y, but we do not know the exact
value x. Instead, we only know whether the input x is, for example, small,
medium, or large.

For example, for a body with a known mass m, we know the exact formula
that describes the dependence of the kinetic energy y on the velocity x: y =
1

2
· x2. If we knew the exact value x, then we could use this formula to describe

the corresponding value y. What is we only know that x is small? Or that x is
medium?

A similar situation occurs in decision making. According to the traditional
decision making (see, e.g., [12, 13, 16, 18, 22]), we should select an alternative
for which the expected value of utility is the largest possible. In the situation
in which the decision consists of selecting a single parameter x, we often know
how the utility depends on x. For example, we in petroleum engineering, once
we know the level of sulphur in the incoming oil, we can compute how much
processing is needed to produce gasoline from this oil, and thus, we can estimate
the expected profit u. But what is instead of the exact value x, we only know
that, for example, x is small? or, more generally, that it satisfies the fuzzy
property – which is described by a membership function Ai(x)? How do we
then estimate the expected value

∫
u(x) · ρ(x) dx of the utility u(x)?

To estimate this expected value, we need to assign, to each value x, a sub-
jective probability ρ(x) of this value. Intuitively, the larger the membership
degree Ai(x), the more probable is the corresponding value x. Thus, we can
assume that the corresponding probability density ρ(x) is a monotonic function
of Ai(x): ρ(x) = g(Ai(x)) for some function g(z). The simplest such func-
tion is a linear function g(z) = k · z, for which ρ(x) = k · Ai(x). In this case,∫
u(x) · ρ(x) dx = k ·

∫
u(x) ·Ai(x) dx.

From the condition that the total (subjective) probability is 1, i.e., that∫
ρ(x) dx = 1, we conclude that k ·

∫
Ai(x) dx = 1, hence k =

1∫
Ai(x) dx

. Thus,

the expected utility takes the form
∫
u(x) · ρ(x) dx =

∫
u(x) ·Ai(x) dx∫

Ai(x) dx
.

More generally, we have the same fuzzy partition A1(x), . . . , An(x) (as in
the case of fuzzy control), we know that the input x satisfies the property Ai,
and we want to estimate the corresponding value y.

In this case, as the desired estimate, it is reasonable to take the above-
described “average” value of the function f(x) over the fuzzy set Ai(x), i.e., the
value

Fi =

∫
f(x) ·Ai(x) dx∫

Ai(x) dx
. (1)

The corresponding tuple of values F1, . . . , Fn is called the fuzzy transform of the
function f(x); see, e.g., [21] and references therein.
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2 Fuzzy Transform: Formal Definition and Ap-
proximation Properties

Formal definition of a fuzzy transform. Thus, we arrive at the following
definitions [21]. First, we define a fuzzy transform with respect to a single
membership function:

Definition 1. Let f(x) and Ai(x) ≥ 0 be functions. By a fuzzy transform of
the function f(x) with respect to the function Ai(x), we mean a number

Fi =

∫
f(x) ·Ai(x) dx∫

Ai(x) dx
. (2)

Now, we can define a fuzzy partition – as a sequence of membership functions
satisfying certain properties – and a fuzzy transform with respect to a partition
as a sequence of the corresponding fuzzy transforms.

Definition 2. Let [x, x] by an interval, let

x0 < x = x1 < x2 < . . . < xn−1 < xn = x < xn+1 (3)

be a sequence of real numbers. By a fuzzy partition, we mean a sequence of

non-negative continuous functions A1(x), . . . , An(x) for which
n∑

i=1

Ai(x) = 1 for

all x ∈ [x1, xn] and for which, each function Ai(x):

• increases from 0 to 1 when xi−1 ≤ x ≤ xi,

• attains the value 1 at x = xi,

• decrease from 1 to 0 for xi ≤ x ≤ xi+1, and

• is equal to 0 outside the interval [xi−1, xi+1].

Definition 3. Let A1(x), . . . , An(x) be a fuzzy partition, and let f(x) be a
function. By a fuzzy transform of the function f(x) with respect to the fuzzy
partition A1(x), . . . , An(x), we mean a tuple of values F1, . . . , Fn, where Fi is
the fuzzy transform of f(x) with respect to the function Ai(x).

Uniform partitions. For approximation purposes, it is useful to consider a
special class of “uniform” partitions. To formulate this notion, we first need to
define an auxiliary notion of the basic function:

5



Definition 4. By a basic function A0(x), we mean a continuous function
which:

• increases from 0 to 1 when −1 ≤ x ≤ 0,

• attains the value 1 at x = 0,

• decrease from 1 to 0 for 0 ≤ x ≤ 1, and

• is equal to 0 outside the interval [−1, 1].

It is easy to prove the following result.

Proposition 1. Let [x, x] be an interval, let n be a positive integer, and let
A0(x) be a basic function. Then, for the values

xn,1 = x, xn,2 = x+ hn, . . . , xn,i = x+ (i− 1) · hn, . . . ,

xn,n = x+ (n− 1) · hn = x, (4)

where hn
def
=

x− x

n− 1
, the functions An,i(x) = A0

(
x− xn,i
hn

)
form a fuzzy parti-

tion.

Definition 5. Let A0(x) be a basic function. The fuzzy partition formed by
the functions

An,1(x) = A0

(
x− xn,1
hn

)
, . . . , An,n(x) = A0

(
x− xn,n
hn

)
is called a uniform partition.

Approximation properties of fuzzy transform. It is known (see [21] and
references therein) that given a fixed basic membership function A0(x) and a
continuous function f(x), if we consider the uniform fuzzy partitions An,1(x),
. . . , Ann(x) corresponding to different values n > 1, then the fuzzy transform
Fn,1, . . . , Fn,n tends to f(x) as n increases, in the following precise sense: for
every real number x0 ∈ [x, x], if we take, for every n, a value i(n, x0) for which
An,i(x0) ̸= 0, then

Fn,i(n,x0) → fi(x0).

3 Fuzzy Transforms of Higher Order: Formula-
tion of the Problem

Fuzzy transforms of higher order. To get a better approximation, it was
proposed to approximate the function f(x) on each interval [xi−1, xi], not by a
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constant Fi, but by a polynomial

Fi(x) =
d∑

j=0

Fij · (x− xi)
j (5)

of a given order d. The coefficients Fij of this polynomial can be obtained from
the condition that the mean square difference between f(x) and Fi(x) (weighted
by Ai(x)) is the smallest possible:

Minimize

∫
(f(x)− Fi(x))

2 ·Ai(x) dx. (6)

Definition 6. Let f(x) and Ai(x) ≥ 0 be integrable functions, and let d ≥ 0
be a natural number. By a fuzzy transform of order d of the function f(x) with
respect to the function Ai(x), we mean a polynomial Fi(x) of d-th order for
which minimizes the value

∫
(f(x)− Fi(x))

2 ·Ai(x) dx.

Comment 1. In other words, a fuzzy transform of order d is a polynomial
Fi(x) of d-th order that minimizes the weighted squared difference between this
polynomial and the original function f(x).

Comment 2. Similar to the fact that for polynomials, the terms “degree” and
“order” are used interchangeably, it is also possible to call the polynomial Fi(x)
a fuzzy transform of degree d.

Definition 7. Let A1(x), . . . , An(x) be a fuzzy partition, let f(x) be a function,
and let d ≥ 0 be a natural number. By a fuzzy transform of order d of the
function f(x) with respect to the fuzzy partition A1(x), . . . , An(x), we mean a
tuple of polynomials F1(x), . . . , Fn(x), where Fi(x) is the fuzzy transform of
order d of f(x) with respect to the function Ai(x).

For d = 0, the optimization criterion (6) leads directly to the fuzzy transform
(1). For d > 0, we can also produce an explicit solution to this optimization
problem if we introduce the orthonormal basis φi,0(x), . . . , φi,d(x) on the class
of all polynomials, i.e., polynomials φi,0(x) of order 0, φi,1(x) of order 1, . . . ,
and φi,d(x) of order d for which∫

φ2
i,j(x) ·Ai(x) dx = 1 (7)

for all i and ∫
φi,j(x) · φi,j′(x) ·Ai(x) dx = 0 (8)

for all j ̸= j′.
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In terms of this basis, the fuzzy transform of d-th order can be described as

Fi(x) =

d∑
j=0

fi,j · φi,j(x), (9)

where

fi,j
def
=

∫
f(x) · φi,j(x) ·Ai(x) dx. (10)

What we do in this paper. In this paper, we prove that the polynomials
that form the fuzzy transforms of the d-th order approximate not only the
original function f(x) itself, but also its derivatives f ′(x), f ′′(x), . . . , f (k)(x),
. . . , f (d)(x).

4 Main Result: Approximation of Derivatives

Theorem 1. Let:

• d > 0 be a natural number;

• [x, x] be an interval;

• A0(x) be a basic function;

• for every n, An,1(x), . . . , An,n(x) be a fuzzy partition generated by the
basic function A0(x) on the interval [x, x];

• for every x0 ∈ [x, x] and for every n, as i(n, x0), we select one of the
values i for which An,i(x0) ̸= 0.

Let:

• f(x) be a d times continuously differential function;

• Fn,1(x), . . . , Fn,n(x) be the d-th order fuzzy transform of the function
f(x) with respect to the partition An,1(x), . . . , An,n(x).

Then, for every k ≤ d, as n→ ∞, we have

F
(k)
n,i(n,x0)

(x0) → f (k)(x0). (11)

Specifically, we will prove that for every ε > 0, there exists an integer N
such that for every x0 and for every n ≥ N , we have:

|Fn,i(n,x0)(x0)− f(x0)| ≤ ε · 1

nd
,

|F ′
n,i(n,x0)

(x0)− f ′(x0)| ≤ ε · 1

nd−1
,
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|F ′′
n,i(n,x0)

(x0)− f ′′(x0)| ≤ ε · 1

nd−2
,

. . .

|F (k)
n,i(n,x0)

(x0)− f (k)(x0)| ≤ ε · 1

nd−k
, (12)

. . .

|F (d)
n,i(n,x0)

(x0)− f (d)(x0)| ≤ ε.

In terms of the “little o” notations, we have

Fn,i(n,x0)(x0) = f(x0) + o

(
1

nd

)
,

. . . ,

F
(k)
n,i(n,x0)

(x0) = f (d)(x0) + o

(
1

nd−k

)
, (13)

. . . ,

F
(d)
n,i(n,x0)

(x0) = f (d)(x0) + o (1) .

Comment. The fact that we have convergence to the original function f(x) is
not very surprising: this convergence is proved by using techniques well known
in approximation theory. The new result is that we also have convergence of
the derivatives, and that we have an explicit rate of convergence to the values
of the function f(x) and its derivatives. While similar derivative-approximation
results are known in approximation theory – for polynomial approximations,
for spline approximations – our result about fuzzy-transform approximations is
new.

In general terms, we prove is that if we start with fuzzy rules that approx-
imate a given function f(x), then we can generate another set of rules that
approximate the corresponding derivative. From this general viewpoint, the
above formulas for the higher order fuzzy transform can be viewed as a new
way to define a fuzzy derivative of a fuzzy function. It would be interesting
to compare this definition with previously proposed definitions of differentiat-
ing fuzzy functions [6, 7, 8, 9, 10, 24] and related definitions of differentiating
interval-valued and set-valued functions [2, 3, 4, 5, 11, 14, 15, 19, 23, 24].

5 Proof of the Main Result

To prove this result, we introduce the following auxiliary definition.
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Definition 8. Let d > 0 be a natural number, let f(x) be a d times continu-
ously differentiable function, and let x0 be a real number. By a d-th order Taylor
polynomial of the function f(x) at the point x0, we mean the polynomial

Tf,x0
(x)

def
= f(x0) + f ′(x0) · (x− x0) +

1

2!
· f ′′(x0) · (x− x0)

2 + . . .+

1

k!
· f (k)(x0) · (x− x0)

k + . . .+
1

d!
· f (d)(x0) · (x− x0)

d. (14)

Lemma 1. Let f(x) be a d times continuously differentiable function on the
interval [x, x]. Then for every real number ε > 0 there exists a value δ > 0 such
that for every x and x0, if |x− x0| ≤ δ, then

|f(x)− Tf,x0
(x)| ≤ ε · (x− x0)

d. (15)

Comment. In terms of the “little o” notations, this lemma can be rewritten as

f(x) = Tf (x, x0) + o((x− x0)
d),

where it is understood that the convergence in the o(·) expression is uniform in
x.

Proof of Lemma 1: idea. We will prove Lemma 1 by induction over the
order d. In this proof, we will use standard facts and results from calculus; see,
e.g., [1].

Proof of Lemma 1: base case. Let us start with the base case of d = 1. In
this case, the function f(x) is continuously differentiable, i.e.,

• the function f(x) is differentiable, and

• its derivative f ′(x) is continuous on the interval [x, x].

It is known that every continuous function on an interval – in particular, the
derivative f ′(x) – is uniformly continuous on this interval. Thus, for every real
number ε > 0, there exists a value δ > 0 for which, for every two points x′ and
x′′ from this interval for which |x′ − x′′| ≤ δ, we have |f ′(x′)− f ′(x′′)| ≤ ε.

Let us prove that for d = 1, the desired inequality (15) holds for this same
value δ.

Indeed, due to the Mean Value Theorem, for every x and x0, we have

f(x)− f(x0)

x− x0
= f ′(c(x, x0)) (16)
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for some value c(x, x0) which located in between x and x0. Since the value
c(x, x0) is located in between x and x0, its distance to x0 cannot exceed the
distance between x and x0, i.e., |c(x, x0) − x0| ≤ |x − x0|. So, if |x − x0| ≤ δ,
then |c(x, x0)− x0| ≤ δ, and thus, |f ′(c(x, x0))− f ′(x0)| ≤ ε.

If we denote s1(x, x0)
def
= f ′(c(x, x0))− f ′(x0), then we can say that

f ′(c(x, x0)) = f ′(x0) + s1(x, x0), (17)

where |s1(x, x0)| ≤ ε.
Substituting the expression for f ′(c(x, x0)) from the formula (16) into the

expression (17), we now have

f(x)− f(x0)

x− x0
= f ′(x0) + s1(x, x0). (18)

Multiplying both sides of the equality (18) by x− x0, we conclude that

f(x)− f(x0) = f ′(x0) · (x− x0) + s1(x, x0) · (x− x0). (19)

Moving f(x0) to the right-hand side, we get

f(x) = f(x0) + f ′(x0) · (x− x0) + s1(x, x0) · (x− x0). (20)

By definition (14) of the Taylor polynomial, we thus get

f(x) = Tf,x0(x) + s1(x, x0) · (x− x0), (21)

where |s(x, x0)| ≤ ε. Thus, for d = 1, we get the desired inequality

|f(x)− Tf,x0(x)| ≤ ε · |x− x0|. (22)

The base case is proven.

Proof of Lemma 1: induction step. Let us now assume that we have
already proved Lemma 1 for functions which are d times continuously differen-
tiable. Let us prove that in this case, a similar statement is true for functions
which are d+ 1 times differentiable.

Indeed, if a function f(x) is d + 1 times continuously differentiable, then
its first derivative f ′(x) is d times continuously differentiable. Thus, by the
induction assumption, for every ε > 0, there exists a δ > 0 such that if |z−x0| ≤
δ, then

|f ′(z)− Tf ′,x0(z)| ≤ ε · |z − x0|d, (23)

where

Tf ′,x0(z) = f ′(x0) + f ′′(x0) · (z − x0) + . . .+
1

j!
· f (j+1)(x0) · (z − x0)

j + . . .

+
1

d!
· f (d+1)(x0) · (z − x0)

d. (24)
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The expression (23) can be rewritten as

f ′(z) = Tf ′,x0(z) + sd(z, x0) · (z − x0)
d, (25)

where sd(z, x0)
def
=

f ′(z)− Tf ′,x0(z)

(z − x0)d
satisfies the inequality

|sd(z, x0)| ≤ ε. (26)

It is well known that once we know the derivative f ′(x) of a function f(x),
we can reconstruct the original function f(x) as the integral of this derivative:

f(x) = f(x0) +

∫ x

x0

f ′(z) dz. (27)

Substituting the formulas (25) and (24) into this integral expression, and ex-
plicitly integrating each terms (z − x0)

j , we conclude that

f(x) = f(x0) + f ′(x0) · (x− x0) +
1

2!
· f ′′(x0) · (z − x0)

2 + . . .+

1

(j + 1)!
· f (j+1)(x0) · (z − x0)

j+1 + . . .+
1

(d+ 1)!
· f (d+1)(x0) · (z − x0)

d+1+

S(x, x0), (28)

where

S(x, x0)
def
=

∫ x

x0

sd(z, x0) · (z − x0)
d dz. (29)

All the terms in the right-hand side of (28) – with the exception of the term
S(x, x0) – form the Taylor polynomial Tf,x0

(x) of order (d + 1) corresponding
to the function f(x). Thus, the expression (28) can be rewritten as

f(x) = Tf,x0(x) + S(x, x0). (30)

To complete our proof, we need to estimate the term S(x, x0). From (26), we
conclude that

|S(x, x0)| =
∣∣∣∣∫ x

x0

sd(z, x0) · (z − x0)
d dz

∣∣∣∣ ≤ ∫ x

x0

|sd(z, x0)| · |z − x0|d dz ≤

ε ·
∫ x

x0

|z − x0|d dz = ε · 1

d+ 1
· |x− x0|d+1. (31)

Since d ≥ 0 and therefore
1

d+ 1
≤ 1, we conclude that

|S(x, x0)| ≤ ε · |x− x0|d+1, (32)

Therefore, we can rewrite S(x, x0) as

S(x, x0) = sd+1(x, x0) · (x− x0)
d+1, (33)

where sd+1(x, x0)
def
=

S(x, x0)

(x− x0)d+1
satisfies the inequality |sd+1(x, x0)| ≤ ε.

The induction step is proven, and so is the lemma.
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Resuming the proof of the theorem itself. Now that the lemma is proven,
let us prove the theorem itself.

Let a function f(x) be continuously differentiable on the interval [x, x], and
let x0 be a value on this interval. According to Lemma 1, this means that for
every ε > 0, there exists a value δ > 0 such that for all the values x in the
δ-vicinity of x0, we have

f(x) = Tf,x0(x) + sd(x, x0) · (x− x0)
d, (34)

where |sd(x, x0)| ≤ ε. Since |x− x0| ≤ δ, we thus have

f(x) = Tf,x0(x) + rx0(x), (35)

where the term
rx0(x)

def
= sd(x, x0) · (x− x0)

d (36)

satisfies the inequality
|rx0(x)| ≤ ε · |x− x0|d. (37)

For each x0, it is sufficient to consider values x which are close to
x0. By definition, the basic function A0(x) is only different from 0 for x ∈

[−1, 1]. For every n, each membership function An,i(x) = A0

(
x− xn,i
hn

)
is

only different from 0 when |x−xn,i| < hn. We have defined i(n, x0) as the value
for which An,i(x0) ̸= 0. Thus, we have

|x0 − xn,i| ≤ hn. (38)

We are interested in the fuzzy transform Fn,i(x) corresponding to this index
i = i(n, x0). For this i, the computation of the fuzzy transform only involves
values x for which An,i(x) ̸= 0. For all these values x, we have |x− xn,i| ≤ hn.
Thus, due to (38), we get |x− x0| ≤ |x− xn,i|+ |x0 − xn,i| ≤ 2 · hn, i.e.,

|x− x0| ≤ 2 · hn. (39)

Here, hn =
x− x

n− 1
is of order

1

n
. The value hn decreases with n and tends

to 0 as n→ ∞. Thus, for every ε > 0, once n gets so large that 2 · hn ≤ δ, the
inequality (37) becomes valid. So, for all x for which An,i(x) ̸= 0, we have

|rx0(x)| ≤ ε · 2d · hdn. (40)

Since hn ∼ n−1, for the remainder rx0(x), we thus get an upper bound of
order n−d.

The desired fuzzy transform as a sum of two fuzzy transforms. Ac-
cording to the formulas (9) and (10), the fuzzy transform of a sum of two
functions is equal to the sum of their fuzzy transforms. Thus, the desired fuzzy
transform Fn,i(x) of the function f(x) is equal to the sum of the following two
fuzzy transforms:

13



• the fuzzy transform of the Taylor polynomial Tf,x0
(x) of the d-th order,

and

• the fuzzy transform Rn,i(x) of the remainder function rx0
(x).

Fuzzy transform of the Taylor polynomial: result. By Definition 6, the
fuzzy transform of d-th order of the function with respect to a membership
function An,i(x) is defined as a polynomial Fn,i(x) that minimizes the weighted
squared difference between a d-th order polynomial and the given function.
When the given function is already a d-th order polynomial, this difference can
be made equal to the smallest possible value 0 if we select this same given
polynomial as Fn,i(x).

Thus, for a polynomial of d-th order – in particular, for the Taylor polynomial
Tf,x0(x) – its fuzzy transform is simply equal to this same polynomial.

Fuzzy transform of the Taylor polynomial: conclusion. Since we know
the fuzzy transform of the Taylor polynomial, to find the fuzzy transform of
the function f(x), we must now estimate the fuzzy transform of the remainder
term rx0(x). As we have mentioned, this fuzzy transform is one of the two
components of the desired fuzzy transform Fn,i(x), we thus conclude that

Fn,i(x) = Tf,x0(x) +Rn,i(x). (41)

We want to prove that the values Fn,i(x0) and F
(k)
n,i (x0) (1 ≤ k ≤ d) of the

function Fn,i(x) and of its first d derivatives at the point x0 is close to the
corresponding values f(x0) and f

(k)(x0).
By differentiating both sides of the equality (41) one or several times and

substituting x = x0, we conclude that for every j ≤ k, we have

F
(k)
n,i (x0) = T

(k)
f,x0

(x0) +R
(k)
n,i(x0). (42)

Let us first analyze the first term in this sum: the derivatives of the Taylor
polynomial.

Derivatives of the Taylor polynomial. By definition of the Taylor poly-
nomial Tf,x0(x) (Definition 8), for this polynomial, we have

Tf,x0(x0) = f(x0), T
′
f,x0

(x0) = f ′(x0), . . . , T
(d)
f,x0

(x0) = f (d)(x0), . . . ,

T
(k)
f,x0

(x0) = f (k)(x0). (43)

So, the formula (41) takes the form

F
(k)
n,i (x0) = f (k)(x0) +R

(k)
n,i(x0). (44)

Thus, to show that the differences between the values of the original deriva-

tives f (k)(x0) and of their fuzzy transform approximations F
(k)
n,i (x0) are indeed

small, we need to show that the values and the derivatives R
(k)
n,i(x0) of the fuzzy

transform Rn,i(x) of the remainder term rx0(x) are also small.

14



Towards estimating fuzzy transform of the remainder term. We are
interested in the fuzzy transform of the remainder term rx0(x) with respect to

the membership function An,i(x)
def
= A0

(
x− xi
hn

)
, where i = i(n, x0). Accord-

ing to the formulas (9) and (10), this fuzzy transform has the form

Rn,i(x) =
d∑

j=0

fn,i,j · φn,i,j(x), (45)

where

fn,i,j
def
=

∫
rx0(x) · φn,i,j(x) ·An,i(x) dx (46)

and the functions φn,i,j(x) are the orthonormal basis functions corresponding to
the membership function An,i(x). Thus, to describe the desired fuzzy transform
Rn,i(x), it is useful to analyze the corresponding orthonormal basis functions
φn,i,j(x).

Analyzing the orthonomal basis. The membership function An,i(x) is ob-
tained from the basic function A0(x) by a linear change of variables: An,i(x) =
A0(yn,i(x)), where

yn,i(x)
def
=

x− xn,i
hn

. (47)

It is therefore reasonable to try to describe the basis functions φn,i,j(x) corre-
sponding to the membership function An,x(x) in terms of the orthonormal basis
corresponding to the basic function A0(x).

Let φ0(x), φ1(x), . . . , φd(x) be the orthonormal polynomials of orders 0, 1,
. . . , d that correspond to the basic function A0(x), i.e., for which∫

φ2
j (x) ·A0(x) dx = 1, (48)

and ∫
φj(x) · φj′(x) ·A0(x) dx = 0 (49)

for all j ̸= j′.
As we have mentioned, the membership function An,i(x) is obtained from

the basic function A0(x) by a linear change of variables An,i(x) = A0(yn,i(x)).
To find the orthonormal functions corresponding to the membership function
An,i(x), let us therefore try to perform a similar linear change of variables in
the functions φj(x), i.e., let us consider the auxiliary functions

ψn,i,j(x)
def
= φj(yn,i(x)) = φj

(
x− xn,i
hn

)
. (50)

For the new variable y = yn,i(x), formulas (48) and (49) lead to∫
φ2
j (y) ·A0(y) dy = 1, (51)
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and ∫
φj(y) · φj′(y) ·A0(y) dy = 0 (52)

for all j ̸= j′, i.e., to ∫
ψ2
n,i,j(x) ·An,i(x) dy(x) = 1, (53)

and ∫
ψn,i,j(x) · ψn,i,j′(x) ·An,i(x) dy(x) = 0 (54)

for all j ̸= j′.

From (47), we get dy(x) =
dx

hn
and therefore, the formula (53) takes the form∫

ψ2
n,i,j(x) ·An,i(x)

dx

hn
= 1, (55)

i.e., the form ∫
ψ2
n,i,j(x) ·An,i(x) dx = hn. (56)

Therefore, the functions

φn,i,j(x)
def
=

1√
hn

· ψn,i,j(x) (57)

satisfy the desired orthonormality conditions∫
φ2
n,i,j(x) ·An,i(x) dx = 1, (58)

and ∫
φn,i,j(x) · φn,i,j′(x) ·An,i(x) dx = 0 (59)

for all j ̸= j′.
Substituting the formula (50) into the expression (57), we conclude that the

functions φm,i,j(x) from the desired orthonormal basis have the form

φn,i,j(x) =
1√
hn

· φj

(
x− xn,i
hn

)
. (60)

Estimating the coefficients fn,i,j at the basis functions φn,i,j(x). Let
us use the above expression (60) for the orthonormal basis functions to estimate
the coefficients fn,i,j (as described by the formula (46)).

Substituting the formula (60) and the expression for An,i(x) into the formula
(46), we conclude that

fn,i,j =

∫
rx0(x) · φn,i,j(x) ·An,i(x) dx =
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fn,i,j =

∫
rx0(x) ·

1√
hn

· φj

(
x− xn,i
hn

)
·A0

(
x− xn,i
hn

)
dx. (61)

To estimate this integral, let us find all the bounds on all the factors in the
integrated expression.

• First, we know, from (40), that

|rx0(x)| ≤ ε · 2d · hdn. (62)

• The second factor
1√
hn

is simply a constant.

• Let us estimate the third factor. Let C denote the largest possible value
of the absolute values |φ0(x)|, . . . , |φd(x)| of all the polynomials φ0(x),
. . . , φd(x) on the interval [−1, 1]. Then, we can conclude that |φj(x)| ≤ C
for all j and for all x. In particular, for the third factor, we have:∣∣∣∣φj

(
x− xn,i
hn

)∣∣∣∣ ≤ C. (63)

• Finally, by the definition of the basic function A0(x), we have |A0(x)| ≤ 1
for all x. In particular, for the third factor, we have a similar bound:∣∣∣∣A0

(
x− xn,i
hn

)∣∣∣∣ ≤ 1. (64)

By combining all these inequalities, we conclude that the integrated expres-
sion in (61) is bounded by∣∣∣∣rx0(x) ·

1√
hn

· φj

(
x− xn,i
hn

)
·A0

(
x− xn,i
hn

)∣∣∣∣ =
|rx0(x)| ·

1√
hn

·
∣∣∣∣φj

(
x− xn,i
hn

)∣∣∣∣ · ∣∣∣∣A0

(
x− xn,i
hn

)∣∣∣∣ ≤
ε · 2d · hdn · 1√

hn
· 1 · C = (C · 2d) · ε · hd−1/2

n . (65)

The integration is bounded by the values x for which |x − xn,i| ≤ hn, i.e.,
by the values from the interval [xn,i − hn, xn,i + hn] of width 2 · hn. Thus,

|fn,i,j | ≤
∫ xn,i+hn

xn,i−hn

(C · 2d) · ε · hd−1/2
n dx =

(2 · hn) · [(C · 2d) · ε · hd−1/2
n ] = (C · 2d+1) · ε · hd+1/2

n . (66)
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Resulting bounds on the values of the fuzzy transform Rn,i(x). Substi-
tuting the expression (60) for the functions fn,i,j(x) from the orthonomal basis
into the formula (45), we conclude that

Rn,i(x) =

d∑
j=0

fn,i,j ·
1√
hn

· φj

(
x− xn,i
hn

)
. (67)

Since the absolute value of the sum cannot exceed the sum of the absolute
values, we get

|Rn,i(x)| ≤
d∑

j=0

|fn,i,j | ·
1√
hn

·
∣∣∣∣φj

(
x− xn,i
hn

)∣∣∣∣ . (68)

We know the bounds (66) on the absolute values |fn,i,j | of the coefficients, we
have denoted by C the bound on the absolute value of |φj(x)|. So, we can get
the bound for each term in the sum (68):

|fn,i,j |·
1√
hn

·
∣∣∣∣φj

(
x− xn,i
hn

)∣∣∣∣ ≤ [(C ·2d+1)·ε·hd+1/2
n ]· 1√

hn
·C = (C2 ·2d+1)·ε·hdn.

(69)
To get the bound for the whole sum (68), we can now multiply this bound

by the number (d+ 1) of terms in this sum:

|Rn,i(x)| ≤ (d+ 1) · (C2 · 2d+1) · ε · hdn = (C2 · 2d+1 · (d+ 1)) · ε · hdn. (70)

In particular, for x = x0, we have

|Rn,i(x0)| = |f(x0)− Fn,i(n,x0)(x0)| ≤ (C2 · 2d+1 · (d+ 1)) · ε · hdn. (71)

Since hn ∼ 1

n
, we get the desired asymptotic result

Fn,i(n,x0)(x0) = f(x0) + o

(
1

nd

)
. (72)

Resulting bounds on the derivatives of the fuzzy transform Rn,i(x).
Differentiating both sides of the formula (67), and taking into account that

d

dx

(
x− xn,i
hn

)
=

1

hn
, (73)

we conclude that

R′
n,i(x) =

d∑
j=0

fn,i,j ·
1√
hn

· 1

hn
· φ′

j

(
x− xn,i
hn

)
. (74)
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Similarly, for every k ≤ d, if we differentiate the formula (67) k times, we
multiply by the same factor (73) each of these k times and thus, we get an
expression

R
(k)
n,i(x) =

d∑
j=0

fn,i,j ·
1√
hn

·
(

1

hn

)k

· φ(k)
j

(
x− xn,i
hn

)
. (75)

Let Ck denote the largest of the maxima of the absolute values |φ(k)
j (x)| of the

k-th order derivatives of all d+1 polynomials φj(x) on the interval [−1, 1]. With
this notation, we have ∣∣∣∣φ(k)

j

(
x− xn,i
hn

)∣∣∣∣ ≤ Ck. (76)

Since we already know the bounds (66) on fn,i,j , so we can conclude that

|R(k)
n,i(x)| ≤ (d+ 1) · (C · 2d+1) · ε · hd+1/2

n · 1√
hn

·
(

1

hn

)k

· Ck =

(C · Ck · 2d+1 · (d+ 1)) · ε · hd−k
n . (77)

In particular, for x = x0, we have

|R(k)
n,i(x0)| = |f (k)(x0)−F

(k)
n,i(n,x0)

(x0)| ≤ (C ·Ck · 2d+1 · (d+ 1)) · ε · hd−k
n . (78)

Since hn ∼ 1

n
, we get the desired asymptotic result

F
(k)
n,i(n,x0)

(x0) = f (k)(x0) + o

(
1

nd−k

)
. (79)

The theorem is proven.
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