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Abstract— In some cases, our uncertainty about about a
quantity can be described by an interval of its possible values.
If we have two or more pieces of interval information about
the same quantity, then we can conclude that the actual value
belongs to the intersection of these intervals.

In general, we may need a fuzzy number to represent our par-
tial knowledge. A fuzzy number can be viewed as a collection of
intervals (α-cuts) corresponding to different degrees α ∈ [0, 1].
In practice, we can only store finitely many α-cuts. Usually, we
only store the lower and upper α-cuts (corresponding to α = 0
and α = 1) and use linear interpolation – i.e., use trapezoidal
fuzzy numbers. However, the intersection of two trapezoidal
fuzzy numbers is, in general, not trapezoidal. One possible
approach is to simply take an intersection of lower and alpha
α-cuts, but this approach underestimates the resulting member-
ship function. A more accurate approach is to use, e.g., Least
Squares Method to provide a better linear approximation to the
resulting membership function. However, as we will show, this
approximation method makes the corresponding “knowledge
fusion” operation non-associative. Moreover, we prove that any
improved trapezoidal approximation to intersection (fusion) of
trapezoidal fuzzy numbers leads to non-associativity.

I. INTRODUCTION

Data fusion: case of interval uncertainty. In some cases,
our uncertainty about about a quantity can be described by
an interval of its possible values; see, e.g., [2].

A typical case of interval uncertainty is when all our
information about a quantity comes from measurements.
Measuring instruments are never absolutely accurate. As
a result, the measured value x̃ of a quantity is usually
somewhat different from the actual (unknown) value x of
this quantity. For crude measurements, the difference ∆x

def=
x̃−x (or, to be more precise, its absolute value |∆x|) is larger,
for accurate measurements this difference |∆x| is smaller, but
it is always non-zero.

Often, the only information we have about the accuracy
of the measuring instrument is the upper bound ∆ on this
measurement error: |∆x| ≤ ∆. In this case, based on the
measurement result x̃, the only information that we can
deduce about the actual (unknown) value x is that x belongs
to the interval X

def= [x̃−∆, x̃ + ∆].
Often, we have two or more pieces of interval information

X1, . . . , Xn about the same quantity – e.g., coming from
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two or more different measurements. In this case, we can
conclude that the actual value x belongs to the intersection

X = X1 ∩ . . . ∩Xn

of the corresponding intervals.
The intersection X = [x, x] is easy to describe in terms

of the bounds Xi = [xi, xi] of the corresponding intervals:

x = max(x1, . . . , xn);

x = min(x1, . . . , xn).

In full accordance with common sense, this operation has the
following properties:
• if we combine the same piece of information with

itself, the result remains the same X ∩ X = X; in
mathematical terms, this interval “data fusion” operation
∩ is idempotent;

• the result of combining several pieces of knowledge
does not depend on the order in which we combine
them; in particular,

X1 ∩ (X2 ∩X3) = (X1 ∩X2) ∩X3;

in mathematical terms, this interval “data fusion” oper-
ation ∩ is associative.

Need for fuzzy uncertainty. In many cases, the information
about a quantity comes from expert estimates. Expert are
often “fuzzy” in their estimates. For example, an expert can
say that the value of the quantity is small (without providing
us an exact meaning of “small”). In such situations, a natural
way to represent this expert information is by using fuzzy
numbers; see, e.g., [1], [3].

Data fusion for fuzzy numbers. If we have several fuzzy
numbers X1, . . . , Xn describing the same quantity, then it is
natural to take their intersection

X = X1 ∩ . . . ∩Xn

as the fuzzy number that combines (fuses) all these pieces
of information.

In terms of membership functions Xi(x), the intersection
is usually interpreted as the minimum:

X(x) = min(X1(x), . . . , Xn(x)).



Computer representation of fuzzy numbers: trapezoidal
numbers. A fuzzy number X can be viewed as a collection
of intervals (α-cuts) X(α) corresponding to different degrees
α ∈ [0, 1]: X(α) def= {x : X(x) ≥ α} for α > 0 and
X(α) def= {x : X(x) > 0} for α = 0, where S means the
closure of the set S.

In terms of α-cuts, an intersection simply means that for
every α, we take the intersection of the corresponding α-cuts:

X(α) = X1(α) ∩ . . . ∩Xn(α).

In practice, we can only store finitely many α-cuts. Usu-
ally, we only store the lower and upper α-cuts (corresponding
to α = 0 and α = 1) and use linear interpolation – i.e., use
trapezoidal fuzzy numbers.
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Fusing trapezoidal fuzzy numbers: a problem. The in-
tersection of two trapezoidal fuzzy numbers is, in general,
not trapezoidal. It is sufficient to illustrate this fact on the
example of the left-hand sides of the intersecting numbers; it
is easy to describe a similar example for the right-hand side:
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Usual solution. A usual solution to the above problem is
simply:
• take an intersection of lower and alpha α-cuts, and then
• as the result of the fusion, take the trapezoidal number

corresponding to this intersection.
The resulting trapezoidal number is described in the follow-
ing picture:
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Limitation of the traditional approach. The main problem
with this approach is that, as one can easily see, this approach
underestimates the resulting membership function.

It is therefore desirable to come up with a different trape-
zoidal approximation to intersection (fusion) of trapezoidal
fuzzy numbers, an approximation that would provide a more
accurate approximation to the actual intersection.

Mathematical comment. The above underestimation can be
easily explained. Indeed, for both trapezoidal functions, the
membership function is linear in the domain where it is
different from 0 and 1. Since we use minimum as the in-
tersection, the combined membership function is a minimum
of two linear functions.

A minimum of two linear functions is always concave; see,
e.g., [4]. Thus, by definition of a concave function, its value
are always above the straight line that connects its endpoints:
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II. HOW TO IMPROVE THE TRADITIONAL TRAPEZOIDAL
APPROXIMATION TO INTERSECTION: IDEA AND ITS

LIMITATIONS

Analysis of the problem. In the standard approach, we
simply take the intersection of the α-cuts corresponding
to α = 0 and to α = 1, and then linearly extrapolate
the resulting function. The limitation of this approach is
that for the intermediate values α ∈ (0, 1), this approach
does not provide a good approximation to the α-cuts of the
intersection.

The resulting idea. The above analysis naturally leads to
the following idea:

• first, compute the actual intersection
• second, approximate the non-0 and non-1 parts of this

intersection by linear functions; for this approximation,
we can use, e.g., the usual Least Squares Method; see,
e.g., [5].
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A somewhat unexpected problem: non-associativity. We
tried the above Least Squares approach to combine two
trapezoidal membership functions X1 and X2 into a single
trapezoidal membership function X1⊗X2 that approximates
the intersection X1∩X2. We saw that there is an unexpected
problem with this approach: the resulting operation is no
longer associative.

Specifically, when we take three different pieces of knowl-
edge X1, X2, and X3, then we can combine them in several
different ways:

• we can first combine X1 and X2 into a trapezoidal
function X1⊗X2, and then combine the result X1⊗X2

with X3 into a new membership function

(X1 ⊗X2)⊗X3;

• alternatively, we can first combine X2 and X3 into a
trapezoidal function X2 ⊗ X3, and then combine X1

with the result X2⊗X3 into a new membership function

X1 ⊗ (X2 ⊗X3).

In both ways, we combine all three pieces of knowledge. So,
intuitively, we expect the results to be equal

(X1 ⊗X2)⊗X3 = X1 ⊗ (X2 ⊗X3).

In mathematical terms, we expect the combination operation
⊗ to be associative.

In practice, however, the Least Squares-based operation ⊗
is not associative.

Comment. A numerical example is presented later in the text,
in the proof of our main result.

Non-associativity is indeed a problem. One may argue that
the above non-associativity is not always a problem. For
example, if from the very beginning, we have all three pieces
of knowledge X1, X2, and X3, then we can simply take the
intersection X1∩X2∩X3 of all three of then, and then use the
Least Squares (or any other approximation technique) to find
the trapezoidal function that approximates this intersection.

In many practical situations, however, pieces of knowledge
are not available from the very beginning, they arrive one
by one. If we first have X1, after which X2 arrives, then
we approximate the resulting knowledge by a trapezoidal
membership function X1 ⊗X2. If after this, a new piece of
knowledge X3 arrives, then combine this piece of knowledge
with the current state X1 ⊗ X2 of our knowledge base,
resulting in (X1 ⊗X2)⊗X3.

Alternatively, if we first have X2, after which X3 arrives,
then we approximate the resulting knowledge by a trape-
zoidal membership function X2 ⊗ X3. If after this, a new
piece of knowledge X1 arrives, then combine this piece of
knowledge with the current state X2⊗X3 of our knowledge
base, resulting in X1 ⊗ (X2 ⊗X3).

In both cases, eventually, we learn the same three pieces of
knowledge X1, X2, and X3. It is therefore desirable in both

case, we should end up in the same state of our knowledge-
base, i.e., that we should have

(X1 ⊗X2)⊗X3 = X1 ⊗ (X2 ⊗X3).

Resulting question. Associativity seems to be desirable.
The Least Squares method does not lead to associativity.
Since there are many other approximation techniques beyond
the Least Squares, a natural question is: can we retain
associativity by using one of these alternative techniques?

What we do in this paper. In this paper, we prove that
non-associativity is inevitable: no matter what approximation
method we select, the resulting approximation operation is
not associative.

Thus, the only way to avoid non-associativity is to use the
traditional (underestimating) trapezoidal description of the
intersection of two trapezoidal membership functions.

III. PROPERTIES OF THE APPROXIMATION OPERATION:
MOTIVATIONS

Plan of work. We would like to prove that every “reason-
able” approximation operation ⊗ is not associative. To prove
this result, we will first describe properties that are reasonable
to require of any operation that approximates an intersection
with a trapezoid. We will do describe these properties in this
section.

Then, in the next section, we will prove that every op-
eration × that satisfies these reasonable properties is not
associative.

First idea: we only consider left sides. As we have
mentioned, it is sufficient to separately consider the left and
the right sides of the corresponding membership functions.
Since the right sides are similar to the left ones, we will only
analyze the left sides.

In any case, this restriction to left sides is sufficient for our
purpose: if the combination of left sides is not associative,
then the whole combination operation is not associative
either.

From the mathematical viewpoint, the left side of a
trapezoidal membership is an interval. To describe the left
side of a trapezoidal membership function µ, it is sufficient
to describe two values:
• the last value a for which µ(a) = 0 and
• the first value a for which µ(a) = 1:
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The value a is always smaller than or equal to the value
a. Thus, these values form an interval a = [a, a]. Vice versa,
once we have an interval, a = [a, a], we can form a (left
side of the) trapezoidal function by selection a function µ(x)
which is:
• equal to 0 for x ≤ a;
• equal to 1 for x ≥ a, and
• is linear on the interval [a, a].
Since left sides of trapezoidal membership functions are

thus in natural 1-1 correspondence with intervals, we will –
whenever it is more convenient – talk about the operation ⊗
on intervals.

First property: commutativity. The result of combining two
pieces of knowledge should not depend on the order in which
these two pieces of knowledge are listed, i.e., we should have
a⊗ b = b⊗ a for all intervals a and b.

Idempotence: a⊗a = a. If the new piece of knowledge X2

is identical to our original knowledge X1 (X1 = X2), this
means that this new piece of knowledge does not provide us
with any new information. Thus, we do not gain anything
new by combining these two pieces of knowledge X1 and
X2.

In other words, the result X1 ⊗ X1 of combining every
piece of knowledge with itself should be identical to that
original piece of knowledge: X1 ⊗ X1 = X1. This means
that for every interval a, we must have a ⊗ a = a, i.e.,
in mathematical terms, that the interval operation ⊗ is
idempotent.

Case when the intersection is already a trapezoidal mem-
bership function. A slightly more general case where we are
sure what we want as a result a⊗ b is when the intersection
a ∩ b of the corresponding membership functions is itself
trapezoidal. In this case, the trapezoidal approximation to this
intersection membership function should, of course, coincide
with this intersection.

One can easily see that the case when the intersection
of the left sides corresponding to the intervals a = [a, a]
and b = [b, b] is itself trapezoidal is when this intersection
coincides with one of the original membership functions, i.e.,
when we have one of the following two cases.

In the first case, we have a ≤ b and a ≤ b. In this case, the
intersection is equal to the membership function described by
the interval b:
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In the second case, we have b ≤ a and a ≤ b. In this

case, the intersection is equal to the membership function
described by the interval a.

For convenience, we will denote the relation “a ≤ b and
a ≤ b” between the two intervals a = [a, a] and b = [b, b]
as a ≤ b. In terms of this notation, the above requirement is
that if a ≤ b, then a⊗ b = b.

The requirement that the combination operation should
be an improved approximation. For the non-trivial case,
when a 6≤ b and b 6≤ a, we would like to require that
the upper endpoint of the resulting interval c = a⊗ must
be strictly in between the upper endpoints of the combined
intervals, and the lower endpoint of c must also be strictly
in between the corresponding endpoints:
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Thus, we would like to require that in this case, a 6≤ a⊗b,
a⊗ b 6≤ a, b 6≤ a⊗ b, and a⊗ b 6≤ b.

Now, we are ready to formulate our main result.

IV. DEFINITIONS AND THE MAIN RESULT

Notation. For two intervals a = [a, a] and b = [b, b], we say
that a ≤ b if a ≤ b and b ≤ b.

Definition. By an improved trapezoidal approximation to
the intersection of trapezoidal fuzzy numbers, we mean an
operation ⊗ that transforms any two intervals a and b into
an interval a⊗b, and which satisfies the following properties:
• it is commutative, i.e., a⊗ b = b⊗ a for all intervals a

and b;
• it is idempotent, i.e., a⊗ a for all intervals a;
• it preserves trapezoidal intersection, i.e., if a ≤ b, then

a⊗ b = b;
• it improves over the usual approximation, i.e., if a 6≤ b

and b 6≤ b, then a 6≤ a ⊗ b, a ⊗ b 6≤ a, b 6≤ a ⊗ b, and
a⊗ b 6≤ b.

Proposition. Every improved trapezoidal approximation
to the intersection of trapezoidal fuzzy numbers is non-
associative.

Comment. In other words, for every such operation ⊗, there
exist trapezoidal membership functions X1, X2, and X3 for
which

(X1 ⊗X2)⊗X3 6= X1 ⊗ (X2 ⊗X3).

In terms of intervals, for every operation ⊗, there exist
intervals a, b, and c, for which

(a⊗ b)⊗ c 6= a⊗ (b⊗ c).



Proof. Let us pick two intervals a and b for which a 6≤ b and
b 6≤ a. For example, we can take a = [1, 4] and b = [2, 3].
Let us show that associativity is violated for c = b. We will
prove this by reduction to a contradiction. Let us assume that
associativity is satisfied for these three intervals, i.e., that

(a⊗ b)⊗ b = a⊗ (b⊗ b).

Due to idempotence, we have b⊗b = b, so the above equality
leads to

(a⊗ b)⊗ b = a⊗ b.

So, for d
def= a⊗ b, we have d⊗ b = d and thus, d ≤ d⊗ b.

One of our requirements is that the operation ⊗ is improving,
meaning that a 6≤ d and d 6≤ a imply that d 6≤ d⊗ b. Thus,
the fact that d ≤ d ⊗ b means that we have either a ≤ d or
d ≤ a.

However, since we assumed that a 6≤ b and b 6≤ a, we can
use the same improvement property to conclude that a 6≤
d = a⊗ b and d = a⊗ b 6≤ a. The contradiction proves that
the above equality cannot be true. So, associativity is indeed
violated. The proposition is proven.
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