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Abstract—In many practical situations, we have several esti-
mates x1, . . . , xn of the same quantity x, i.e., estimates for which
x1 ≈ x, x2 ≈ x, . . . , and xn ≈ x. It is desirable to combine (fuse)
these estimates into a single estimate for x. From the fuzzy
viewpoint, a natural way to combine these estimates is: (1) to
describe, for each x and for each i, the degree µ≈(xi−x) to which
x is close to xi, (2) to use a t-norm (“and”-operation) to combine
these degrees into a degree to which x is consistent with all n
estimates, and then (3) find the estimate x for which this degree
is the largest. Alternatively, we can use computationally simpler
OWA (Ordered Weighted Average) to combine the estimates xi.
To get better fusion, we must appropriately select the membership
function µ≈(x), the t-norm (in the fuzzy case) and the weights
(in the OWA case).

Since both approaches – when applied properly – lead to
reasonable data fusion, it is desirable to be able to relate the
corresponding selections. For example, once we have found the
appropriate µ≈(x) and t-norm, we should be able to deduce
the appropriate weights – and vice versa. In this paper, we
describe such a relation. It is worth mentioning that while
from the application viewpoint, both fuzzy and OWA estimates
are not statistical, our mathematical justification of the relation
between them uses results that have been previously applied to
mathematical statistics.

I. FORMULATION OF THE PROBLEM

A. Single-quantity data fusion: a problem

In many practical situations, we have several estimates
x1, . . . , xn of the same quantity x, i.e., estimates for which
x1 ≈ x, x2 ≈ x, . . . , and xn ≈ x. It is desirable to combine
(fuse) these estimates into a single estimate for x.

There are several possible approaches to solving this prob-
lem.

B. Fuzzy approach to data fusion

From the fuzzy viewpoint (see, e.g., [3], [4]), a natural way
to combine these estimates is as follows:

• to describe, for each x and for each i, the degree

µ≈(xi − x) (1)

to which x is close to xi,
• to use a t-norm (“and”-operation) t&(a, b) to combine

these degrees into a degree

d(x) = t&(µ≈(x1 − x), . . . , µ≈(xn − x)) (2)

to which x is consistent with all n estimates, and then
• find the estimate x for which the degree d(x) is the

largest.

C. Computational complexity: the main limitation of the fuzzy
approach

While the above approach is natural, the corresponding pro-
cedure looks computationally complex, especially for generic
membership functions µ≈(x) and generic t-norms t&(a, b), for
which the expression d(x) can be very complex, and for which
the optimization of d(x) may be a computationally difficult
task.

Several approaches have been proposed to simplify the
resulting computations; one of the most well known is the
OWA approach; see, e.g., [6], [7], [8].

D. OWA approach to single-variable data fusion
OWA (Ordered Weighted Average) is a computationally

simpler alternative to fuzzy data fusion, i.e., to combining the
estimates x1, . . . , xn into a single estimate x.

The main idea behind OWA is as follows. We sort the values
x1, . . . , xn into an increasing sequence

x(1) ≤ x(2) ≤ . . . ≤ x(n), (3)

select the weights w1, . . . , wn ≥ 0 for which
n∑

i=1

wi = 1, (4)

and use the weighted average

x =
n∑

i=1

wi · x(i) (5)

as the desired fused estimate.

E. Problem
To get a better fusion:
• we must appropriately select the membership function

µ≈(x) and the t-norm (in the fuzzy case), and
• we must appropriately select the weights (in the OWA

case).
Both approaches – when applied properly – lead to reasonable
data fusion.

It is therefore desirable to be able to relate the corresponding
selections:

• once we have found the appropriate µ≈(x) and t-norm,
we should be able to deduce the appropriate weights, and

• once we have found the appropriate weights, we should
be able to deduce the appropriate membership function
µ≈(x) and t-norm.



F. What we do in this paper

In this paper, we describe a relation between selections
corresponding to fuzzy and OWA estimates: we explain how,
once we have found the appropriate µ≈(x) and t-norm, we
can deduce the appropriate weights – and vice versa.

Comment. It is important to emphasize that:
• while from the application viewpoint, both fuzzy and

OWA estimates are not statistical,
• our mathematical justification of the relation between

them uses results that have been previously applied to
mathematical statistics.

II. MAIN IDEA

A. Reducing to the case of Archimedean t-norms

In fuzzy logic, several different types of t-norms are
used. One of the mostly widely used classes of t-norms are
Archimedean t-norms. It is known (see, e.g., [3], [4]) that these
t-norms t&(a, b) are isomorphic to the the simple algebraic
product t-norm a · b – isomorphic in the following sense.

There exists a monotonic 1-1 function f : [0, 1] → [0, 1] for
which

t&(a, b) = f−1(f(a) · f(b)), (6)

where f−1(x) denoted the inverse function (for which
f−1(x) = y if and only if f(y) = x).

Not all t-norms are Archimedean. For example, the mini-
mum t-norm min(a, b) is not Achimedean. It is known [3],
[4] that a general t-norm can be obtained:

• by setting Archimedean t-norms on several (maybe in-
finitely many) subintervals of the interval [0, 1], and

• by using min(a, b) as the value of t&(a, b) for the cases
when a and b do not belong to the same Archimedean
subinterval.

From this general classification theorem for t-norms, we can
conclude that for every t-norm and for every ε > 0, there exists
an ε-close Archimedean t-norm. (Crudely speaking, we can
replace the corresponding non-Archimedean min-parts with a
close Archimedean t-norm, e.g., with (a−p + b−p)−1/p for a
sufficiently large p).

Thus, for an arbitrary accuracy ε > 0 and for an arbitrary
t-norm, we can have an Archimedean t-norm which is, within
this accuracy, indistinguishable from the original one. So, from
the practical viewpoint, we can always safely assume that the
t-norm is Archimedean, i.e., that is has the form (6).

For this t-norm, the value

d(x) = t&(µ≈(x1 − x), . . . , µ≈(xn − x)) (7)

can be represented as

d(x) = f−1(f(µ≈(x1 − x)) · . . . · f(µ≈(xn − x))). (8)

Since the function f(x) – and thus, its inverse function f−1(x)
– are monotonic, the degree d(x) attains its maximum if and
only if the value D(x)

def
= f(d(x)) attains its maximum. Due

to (8), we have

D(x) = f(µ≈(x1 − x)) · . . . · f(µ≈(xn − x)). (9)

This expression can be described as

D(x) =
n∏

i=1

ρ(xi − x), (10)

where we denoted

ρ(x)
def
= f(µ≈(x)). (11)

B. Resulting reformulation of the problem
We have two ways to fuse estimates x1, . . . , xn into a single

estimate x:
• find x for which the value

n∏
i=1

ρ(xi − x) is the largest

possible (fuzzy approach), and

• find x as
n∑

i=1

wi · x(i) (OWA approach).

The problem is:
• given the function ρ(x), find the weights wi for which

the OWA estimate is close to the original fuzzy estimate;
and

• given the weights wi, find the function ρ(x) for which
the corresponding fuzzy estimate is close to the original
OWA estimate.

C. How we plan to solve this problem
To solve the above problem, we will take into consideration

that a similar mathematical problem is already solved in robust
statistics. Before we explain our solution, let us therefore
briefly describe what is robust statistics and how a similar
problem is solved there.

III. A SIMILAR PROBLEM IS ALREADY SOLVED IN
ROBUST STATISTICS

A. Robust statistics: reminder
In this section, we will recall that a similar mathematical

problem is already solved in robust statistics – an area of
statistics in which we need to make statistical estimates under
partial information about the probability distribution.

In robust statistics (see, e.g., [2]), there are several different
types of techniques for estimating a shift-type parameter a
based on a sample x1, . . . , xn.

B. M-methods: reminder
The most widely used methods are M-methods, methods

which are similar to the maximum likelihood approach from
the traditional (non-robust) statistics. In the maximum like-
lihood approach, if we know that the probability density
function has the form f0(xi − a) for some unknown value
a, and that the values x1, . . . , xn are independent, then the
likelihood to get the sample x1, . . . , xn is equal to the product

n∏
i=1

f0(xi − a). (12)

In the Maximum Likelihood approach, we select the value
a = aM for which this likelihood is the largest possible:

n∏
i=1

f0(xi − a) → max
a

. (13)



Comment. This formula is, in effect, identical to our fuzzy
fusion formula, with f0(x) = ρ(x).

C. M-methods: robust case

In the Maximum Likelihood approach, we know the proba-
bility density function f0(x). In the robust approach, we apply
a similar method with some function f0(x).

Each of these robust M-methods coincides with the Max-
imum Likelihood method for the corresponding probability
density function.

D. L-estimates

Another important class of robust estimates are L-estimates,
i.e., estimates of the type

aL =
1

n
·

n∑
i=1

m

(
i

n

)
· x(i), (14)

for some function m(x) for which∫ 1

0

m(t) dt = 1. (15)

Comment. This formula is, in effect, identical to our OWA
fusion formula, with

wi =
1

n
·m
(
i

n

)
. (16)

E. A problem which is solved in robust statistics

The question solved in robust statistics is: what is the natural
correspondence between M-estimates and L-estimates?

F. Correspondence between M- and L-estimates: case of tra-
ditional statistics

To explain the meaning of this correspondence, let us first
consider the case when we know the exact shape f0(x) of
the probability density function, and we know that the actual
probability density function has the form f0(x− a) for some
(unknown) parameter a. In this case,

• for each function f0(x), we can use the solution of the
corresponding equation (13) as an M-method estimate
aM (U) for the parameter a;

• for each function m(p), we can use the estimate (14) as
an L-method estimate aL(m) for the parameter a.

The quality of each estimate can be estimated as the mean
square of the difference between the estimate and the actual
value a, i.e.,

• for M-estimates, as

qM (U) = E[(aM (U)− a)2]; (17)

and
• for L-estimates, as

qL(m) = E[(aL(m)− a)2]. (18)

For a given probability density function f0(x):

• the function f0(x) is asymptotically optimal, i.e., the
value

qM (U) = E[(aM (U)− a)2] (19)

is, asymptotically, the smallest possible, and
• we can also find the asymptotically optimal function

m(p), i.e., the function m(p) for which the value

qL(m) = E[(aL(p)− a)2] (20)

is, asymptotically, the smallest possible.
Under certain reasonable conditions, the asymptotically

optimal L-estimate can be found as follows (see, e.g., [1],
[2]):

• first, we compute the cumulative distribution function
F0(x) as

F0(x) =

∫ x

−∞
f0(t) dt; (21)

• then, we find the auxiliary function M(p) as

M(F0(x)) = −(ln(f0(x))
′′, (22)

i.e., as
M(p) = z(F−1

0 (p)), (23)

where z(x)
def
= −(ln(f0(x))

′′, and F−1
0 (p) denotes an

inverse function;
• after that, we normalize the auxiliary function M(p) to

get

m(p) =
M(p)∫ 1

0
M(q) dq

. (24)

Similarly, if we know the function m(p), then, to find the
corresponding function f0(x), we find a probability density
function f0(x) for which m(p) leads to the asymptotically
optimal L-estimate.

Comment. It turns out that, under reasonable conditions, for
the resulting functions f0(x) and m(p), the quality values

qM (U) = E[(aM (U)− a)2] (25)

and
qL(m) = E[(aL(p)− a)2] (26)

are asymptotically equal when the sample size n tends to
infinity:

qM (U)

qL(m)
=

E[(aM (U)− a)2]

E[(aL(p)− a)2]
→ 1 as n → +∞. (27)

G. Correspondence between M- and L-estimates: robust case

In the robust case, when we do not know the exact shape
of a probability density function, we only know the class F0

of possible shapes, and we know that the actual probability
density function has the form f0(x−a), where f0(x) is one of
the shapes from the class F0, and a is an (unknown) parameter.
In this case too, we can consider

• M-estimates aM (U) (described by the formula (13)), and
• L-estimates aL(m) (described by the formula (14)).



In the robust case, since the distribution is not known
exactly, for different distributions f0(x) from the class F0,
we get different accuracies

Ef0 [(aM (U)− a)2] (28)

and
Ef0 [(aL(m)− a)2]. (29)

As a natural measure of quality of a given estimate, we can
take the worst-case accuracy

qM (U) = sup
f0∈F

Ef0 [(aM (U)− a)2]; (30)

qL(m) = sup
f0∈F

Ef0 [(aL(m)− a)2]. (31)

As shown in [2], for many reasonable classes F0 of distribu-
tions,

• we can find the asymptotically optimal (minimax) func-
tion f0(x), i.e., the function f0(x) for which the value
qM (U) is, asymptotically, the smallest possible, and

• we can find the asymptotically optimal (minimax) func-
tion m(p), i.e., the function m(p) for which the value
qL(m) is, asymptotically, the smallest possible.

These asymptotically optimal M-estimates and L-estimates can
be obtained as follows [1], [2]:

• first, in the class F0, we find the probability distribution
f0(x) for which the Fisher information

I(f0) =

∫ (
f ′
0(x)

f0(x)

)2

· f0(x) dx

is the smallest possible;
• then, we find M-estimate and L-estimate which are

asymptotically optimal for this distribution f0(x).
The correspondence between the functions f0(x) and m(p)

can thus be described as follows.
Let us first assume that we know the function f0(x), then,

to find the corresponding function m(p), we do the following:
• first, we find a class F0 of probability density functions

for which f0(x) leads to the asymptotically optimal M-
estimate;

• then, we use this class F0 to find the function m(p) which
leads to the asymptotically optimal L-estimate for this
class F0.

Similarly, if we know the function m(p), then, to find t he
corresponding function f0(x), we do the following:

• first, we find a class F0 of probability density functions
for which m(p) leads to the asymptotically optimal L-
estimate;

• then, we use this class F0 to find the function f0(x) which
leads to the asymptotically optimal M-estimate for this
class F0.

It turns out that for the resulting functions f0(x) and m(p),
the quality values qM (U) and qL(m) are also asymptotically
equal when the sample size n tends to infinity:

qM (U)

qL(m)
→ 1 as n → +∞. (32)

H. Correspondence between M- and L-estimates: explicit de-
scription

We have mentioned that the robust M- and L-estimates co-
incide with M- and L-estimates for an appropriate probability
density function f0(x). Thus, the robust-case correspondence
between M- and L-estimates can be described by exactly the
same formulas as for the traditional statistical case.

I. Examples

Several examples are given in [1] and [2]. For example, the
Gaussian function

f0(x) = exp

(
−1

2
· x2

)
(33)

is proportional to the probability density of the normal distri-
bution. Hence,

F0(x) =

∫ x

−∞
f0(t) dt (34)

is proportional to the cumulative distribution function of a
normal distribution. Here,

ln(f0(x)) = −1

2
· x2, (35)

hence
ln(f0(x))

′′ = 1, (36)

and
z(x) = − ln(f0(x))

′′ = 1. (37)

So,
M(p) = z(F−1

0 (p)) = 1. (38)

The integral of M(p) = 1 over the interval [0, 1] is 1, so

m(p) = M(p) = 1. (39)

IV. RELATION BETWEEN FUZZY AND OWA ESTIMATES:
OUR MAIN IDEA

A. Let us apply the solution from robust statistics to the case
of fuzzy and OWA estimates

We have seen that, mathematically,
• M-estimates correspond to fuzzy estimates, and
• L-estimates correspond to OWA estimates.

We can therefore use the solution provided by robust statistics
to find the desired correspondence between the utility function
and the spectral risk measures.

B. Resulting solution

Specifically, once we know the membership function µ≈(x)
and the function f(x) describing the t-norm, i.e., for which

t&(a, b) = f−1(f(a) · f(b)), (40)

then we can find the corresponding OWA weights as follows:
• first, we compute an auxiliary function

f0(x) = f(µ≈(x)); (41)



• then, we compute the second auxiliary function

F0(x) =

∫ x

−∞
f0(t) dt; (42)

• after that, we find the third auxiliary function M(p) from
the formula

M(F0(x)) = −(ln(f0(x))
′′, (43)

i.e., as

M(p) = z(F−1
0 (p)), (44)

where z(x) = −(ln(f0(x))
′′, and F−1

0 (p) denotes an
inverse function;

• finally, we compute

I
def
=

∫ 1

0

M(q) dq, (45)

then m(p) =
M(p)

I
, and select the desired weights

wi =
1

n
·m
(
i

n

)
. (46)

Comment. The above procedure describes how, knowing the
membership function and the t-norm, we can find the corre-
sponding weights wi. What if we know the weights wi and
we want to find the membership function and the t-norm?

First, by extrapolation, we find a function m(p) for which

m

(
i

n

)
= n · wi. (47)

To find f(x), we can use the above formula M(F0(x)) =
−(ln(f0(x)))

′′, where f0(x) = F ′′
0 (x), and M(p) = I ·m(p)

for I =
∫ 1

0
M(q) dq.

Thus, given wi, we can find the function f0(x) as follows:

• first, we find the auxiliary function F0(x) and the auxil-
iary value I by solving the equation

I ·m(F0(x)) = −(ln(F ′
0(x)))

′′; (48)

• then, we find f0(x) = F ′
0(x).

Once we know the auxiliary function f0(x), we can take
different t-norms, and for each of these t-norms, we can find
an appropriate membership function µ≈(x).

For an algebraic product t-norm, we have f(x) = x, thus
f0(x) = f(µ≈(x)) = µ≈(x), so the desired membership
function is µ≈(x) = f0(x).

For a general Archimedean t-norm t&(a, b), we first find the
function f(x) for which t&(a, b) = f−1(f(a) · f(b)). Then,
from the equality f0(x) = f(µ≈(x)), we conclude that

µ≈(x) = f−1(f0(x)). (49)

C. Example

for the Gaussian membership function and algebraic t-norm,
the condition

n∏
i=1

ρ(xi − x) → max
x

(50)

leads to
n∏

i=1

exp

(
−1

2
· (xi − x)2

)
→ max

x
(51)

i.e., equivalently, to

exp

(
−

n∑
i=1

1

2
· (xi − x)2

)
→ max

x
, (52)

and to
n∑

i=1

1

2
· (xi − x)2 → min

x
. (53)

Differentiating the minimized expression by x and equating
the derivative to 0, we conclude that

x =
1

n
·

n∑
i=1

xi, (54)

i.e., that the corresponding fused estimate is simply the arith-
metic average of the original estimates x1, . . . , xn.

As we have mentioned, for the Gaussian f0(x), the corre-
sponding function m(p) is equal to 1. Thus, the corresponding
weights are

wi =
1

n
·m
(
i

n

)
=

1

n
. (55)

So, the corresponding OWA estimate is equal to

x =
1

n
·

n∑
i=1

x(i). (56)

The sum does not change if we simply re-order the values xi.
Thus, in this case, the fuzzy and OWA estimates are not only
asymptotically equivalent – the corresponding estimates (54)
and (56) are actually identical.

Comment. It is worth mentioning that the same mathematical
result from robust statistics also has economic applications;
see, e.g., [5].
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