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Abstract—In many practical situations, we have only partial
information about the probabilities. In some cases, we have crisp
(interval) bounds on the probabilities and/or on the related
statistical characteristics. In other situations, we have fuzzy
bounds, i.e., different interval bounds with different degrees of
certainty.

In a situation with uncertainty, we do not know the exact
value of the desired characteristic. In such situations, it is
desirable to find its worst possible value, its best possible value,
and its “typical” value – corresponding to the “most probable”
probability distribution. Usually, as such a “typical” distribution,
we select the one with the largest value of the entropy. This
works perfectly well in usual cases when the information about
the distribution consists of the values of moments and other
characteristics. For example, if we only know the first and the
second moments, then the distribution with the largest entropy
if the normal (Gaussian) one.

However, in some situations, we know the entropy (= amount
of information) of the distribution. In this case, the maximum
entropy approach does not work, since all the distributions which
are consistent with our knowledge have the exact sam e entropy
value. In this paper, we show how the main ideas of the maximum
entropy approach can be extended to this case.

I. PROBABILITIES ARE USUALLY IMPRECISE: A
REMINDER

Probabilities are imprecise. In many practical situations, we
have only partial information about the probabilities, i.e., our
information about the probabilities is imprecise.

Types of imprecise probability. In different situations, we
have different types of partial information.

• In some cases, we have crisp (interval) bounds on the
probabilities and/or on the related statistical characteris-
tics.

• In other situations, we have fuzzy bounds, i.e., in effect,
different interval bounds with different degrees of cer-
tainty.

Processing imprecise probabilities: the Maximum Entropy
approach. We are interested in finding the values of certain
statistical characteristics. In the ideal case when we know the
exact values of all the probabilities, we can determine the exact
values of the corresponding statistical characteristic – e.g., the
mean (expected value) of a certain quantity (like gain or loss
in economic situations).

In situations when probabilities are only known with un-
certainty, we cannot predict the exact value of the desired

characteristic. In such situations, from the common sense
viewpoint, it is desirable to find:

• the worst possible value of this characteristic,
• the best possible value of this characteristic, and
• the “typical” value of this characteristic.

Intuitively, by the “most typical” characteristic, we mean the
value of this characteristic that corresponds to the “most
probable” probability distribution. Usually, as such a “typical”
distribution, we select the one with the largest value of the
entropy (see, e.g., [1], [2]).

For a discrete probability distribution, in which we have n
different values x1, . . . , xn with probabilities p1, . . . , pn, the
entropy S(p) is defined as

S = −
n∑

i=1

pi · log2(pi). (1)

For a continuous distribution with a probability density func-
tion ρ(x), the entropy is defined as the integral (crudely
speaking, the limit of the above sum):

S = −
∫

ρ(x) · log2(ρ(x)) dx. (2)

The meaning of the entropy is that it represents the average
number of “yes”-“no” questions that we need to ask to
determine the exact value xi (in the discrete case) or the
value x with a given accuracy ε > 0 (in the continuous
case). In other words, the entropy represents the amount of
information as measured in bits (i.e., numbers of binary, “yes”-
“no” questions).

Successes of the Maximum Entropy approach: a brief
reminder. The Maximum Entropy approach works perfectly
well in usual cases when the information about the distribution
consists of the values of moments and other characteristics.

For example, if we only know the first and the second
moments, then the distribution with the largest entropy if the
normal (Gaussian) one.

A problem: situations in which the Maximum Entropy Ap-
proach is not applicable. As we have mentioned, the entropy
itself is – like moments – a reasonable statistical characteristic
of the probability distribution, a characteristic that has a clear
meaning: it describes the amount of information.



It is therefore not surprising that in some practical situations,
in addition to knowing the values of the moments etc., we also
know the value of the entropy of the (unknown) distribution.
In this case, the Maximum Entropy approach does not work.
Indeed,

• In the Maximum Entropy approach, among all the dis-
tributions which are consistent with the our (partial)
knowledge, we select a one for which the entropy is the
largest possible. This requirement usually selects a unique
distribution for which the entropy is the largest. (In rare
cases, there may be a few different distributions with the
same largest value of entropy.)

• However, in our case, our partial knowledge includes
the knowledge of the entropy value S. Thus, all the
probability distributions which are consistent with this
partial information have the exact same value of the
entropy – the value S. So, all these distributions will
be kept intact by the Maximum Entropy approach – so
this approach does not allow us to select any distribution
as “most typical”.

What we plan to do. In this paper, we show how the
maximum entropy approach can be naturally extended – so
that it will also be able to cover the case when entropy is one
of the constraints.

II. MAIN IDEA AND ITS CONSEQUENCES

In practice, we always have uncertainty. In practice, even in
the ideal case when we observe a large number N of situations
corresponding to the same probability distribution, we still
cannot determine the corresponding probabilities p1, . . . , pn
with an absolute accuracy – we can only determine the
frequencies f1, . . . , fn with which the values x1, . . . , xn have
been observed.

In the limit, when the sample size N tends to infinity, the
frequencies fi tend to the corresponding probabilities, but for
finite N , they differ.

Resulting idea. We are considering a typical case when we do
not have the full information neither about the probabilities pi
nor about the frequencies fi. When N is given, we still cannot
uniquely determine the probabilities even when we know the
frequencies exactly. Therefore, instead of selecting “typical”
probabilities, let us select “typical” frequencies.

When N is large, the probabilities and frequencies are close,
so for all computational purposes, we can use the frequencies
instead of the probabilities to compute the desired statistical
characteristics.

However, from the viewpoint of selecting the frequencies,
the difference between the frequencies and the probabilities
open the possibility of using the Maximum Entropy ap-
proach. Specifically, for each collection of frequencies f =
(f1, . . . , fn), we have different possible tuples of probabilities
(p1, . . . , pn), with slightly different values of the entropy.
Among all these possible values of the probabilities, we can
now select the one for which the entropy is the largest.

Let us show how this idea can be transformed into the exact
formulas.

Relation between frequencies and probabilities: a re-
minder. It is known (see, e.g., [3]) that asymptotically, for
large N , the differences δi

def
= pi − fi are independent nor-

mally distributed random variables, with mean 0 and variance

σ2
i =

fi · (1− fi)

N
.

What can we say, based on this information, about the
relation between frequencies and probabilities? In statistics,
there is a standard χ2-criterion for checking whether the given
set of observables t1, . . . , tn is consistent with the assumption
that they are normally distributed with mean 0 and variance
σ2
i : the value

n∑
i=1

t2i
σ2
i

(3)

must be (approximately) equal to n; see, e.g., [3].
Thus, the above information about the relation between the

frequencies and probabilities means that we must have
n∑

i=1

δ2i
σ2
i

=

n∑
i=1

δ2i
fi · (1− fi)/N

≈ n. (4)

Dividing both sides of this approximate inequality by N ,
we conclude that the constraint (4) can be described in the
equivalent form, as

n∑
i=1

δ2i
fi · (1− fi)

≈ n

N
. (5)

Let us maximize entropy under this constraint. For each
selection of frequencies fi, we want to maximize the entropy
S under the above constraint. In terms of the probabilities pi,
the entropy has the form

S(p1, . . . , pn) = −
n∑

i=1

pi · log2(pi). (6)

By definition of the differences δi = pi − fi, we have pi =
fi + δi, so

S(p1, . . . , pn) = S(f1 + δ1, . . . , fn + δn) =

−
n∑

i=1

p(fi + δi) · log2(fi + δi). (7)

For large N , the differences δi are small, so we can expand
the expression for S in Taylor series in terms of δi and keep
only linear terms in this expansion – ignoring quadratic and
higher order terms. As a result, we get the formula

S(f1 + δ1, . . . , fn + δn) = S(f1, . . . , fn) +
n∑

i=1

∂S

∂fi
· δi. (8)

Here, the entropy S(f1, . . . , fn) is equal to the given value
S0, and

∂S

∂fi
= − log2(fi)− log2(e), (9)



so the maximized expression (8) has the form

S0 −
n∑

i=1

(log2(fi) + log2(e)) · δi. (10)

To maximize this expression under the constraint (5), we
can the Lagrange multiplier technique, i.e., for an appropriate
value λ, we solve the unconstrained optimization problem of
maximizing the following function:

S0 −
n∑

i=1

(log2(fi)+ log2(e)) · δi +λ ·
n∑

i=1

δ2i
fi · (1− fi)

. (11)

Differentiating this expression with respect to δi and equating
the derivative to 0, we conclude that

−(log2(fi) + log2(e)) + λ · 2δi
fi · (1− fi)

= 0, (12)

hence

δi = c · (log2(fi) + log2(e)) · fi · (1− fi) (13)

for an appropriate constant

c =
1

2 · λ
. (14)

Substituting this formula into the expression (10), we con-
clude that the entropy is equal to S0 +∆S, where

∆S = c ·
n∑

i=1

(log2(fi) + log2(e))
2 · fi · (1− fi). (15)

As usual for the Lagrange multiplier method, the value c of
the parameter (i.e., in effect, the value λ of the Lagrange mul-
tiplier) can be determined from the constraint (5). Substituting
the formula (13) into the constraint (5), we conclude that

c2 ·
n∑

i=1

(log2(fi) + log2(e))
2 · f2

i · (1− fi)
2

fi · (1− fi)
=

c2 ·
n∑

i=1

(log2(fi) + log2(e))
2 · fi · (1− fi) =

n

N
. (16)

Thus, we conclude that

c2 =
n

N ·
n∑

i=1

(log2(fi) + log2(e))
2 · fi · (1− fi)

(17)

and that

c =

√
n

√
N ·

√
n∑

i=1

(log2(fi) + log2(e))
2 · fi · (1− fi)

. (18)

Substituting this expression for c into the formula (15), we
conclude that

∆S =

√
n ·

n∑
i=1

(log2(fi) + log2(e))
2 · fi · (1− fi)

√
N ·

√
n∑

i=1

(log2(fi) + log2(e))
2 · fi · (1− fi)

=

√
n√
N

·

√√√√ n∑
i=1

(log2(fi) + log2(e))
2 · fi · (1− fi). (19)

Thus, the largest value of ∆S is attained when the following
characteristic is the largest:

S2
def
=

n∑
i=1

(log2(fi) + log2(e))
2 · fi · (1− fi). (20)

So, we arrive at the following conclusion:

How to extend the maximum entropy approach to the
case when entropy is one of the constraints: resulting
formula. Let us consider the situations in which the fixed
value of entropy is one of the constraints on the probability
distribution. In this situation, among all distributions that
satisfy this (and other) constraints, we must select a one for
which the following characteristic takes the largest possible
value:

S2 =

n∑
i=1

(log2(pi) + log2(e))
2 · pi · (1− pi). (21)

III. CONTINUOUS CASE

Formulation of the problem. The above formulas relate to the
case when we have finite number (n) of possible outcomes,
and we want to find the probabilities p1, . . . , pn of these n
outcomes.

In many practical problems, we have a continuous case,
when all real numbers x from a certain interval (finite or
infinite) are possible. In this continuous case, we are interested
in finding the probability density ρ(x) characterizing this
distribution.

Reminder. The probability density is defined as the limit

ρ(x) = lim
∆x→0

p([x, x+∆x])

∆x
, (22)

when the width ∆x of the corresponding interval tends to 0.
Here, p([x, x +∆x]) is the probability to find the value of a
random variable inside the interval [x, x+∆x].

How we usually deal with the continuous case: general
idea (reminder). A usual way to deal with the continuous case
is to divide the interval of possible values of x into several
small intervals [xi, xi + ∆x] of width ∆x and consider the
discrete distribution with these intervals as possible values.
When ∆x is small, by the definition of the probability density,
the probability pi = p([xi, xi + ∆x]) for x to be inside the
i-th interval [xi, xi +∆x] is approximately equal to

pi ≈ ρ(xi) ·∆x. (23)

We use these values and then consider the limit case, when
∆x → 0.

Example. This is how we go from the discrete entropy

S = −
n∑

i=1

pi · log2(pi). (24)



to the corresponding continuous formula

S = −
∫

ρ(x) · log2(ρ(x)) dx. (25)

Indeed, substituting pi ≈ ρ(xi) ·∆x into the formula (24), we
conclude that

S = −
n∑

i=1

ρ(xi) ·∆x · log2(ρ(xi) ·∆x). (26)

Since the logarithm of the product is equal to the sum of the
logarithms, we conclude that

S = −
n∑

i=1

ρ(xi) ·∆x · log2(ρ(xi))−

n∑
i=1

ρ(xi) ·∆x · log2(∆x). (27)

Let us analyze these two terms one by one.
The first term in this sum is the integral sum for the integral∫
ρ(x) · log2(ρ(x)) dx. When ∆x → 0, this term tens to this

integral. Thus, when ∆x is small, the term
n∑

i=1

ρ(xi) ·∆x · log2(ρ(xi)) (28)

is close to the integral
∫
ρ(x) · log2(ρ(x)) dx.

The term
n∑

i=1

ρ(xi) ·∆x is the integral sum for the integral∫
ρ(x) dx. This integral describes the probability of finding x

somewhere, and is, therefore, equal to 1. Thus, when ∆x is
small, this sum is approximately equal to 1. Hence, when ∆x
is small, the second term

n∑
i=1

ρ(xi) ·∆x · log2(∆x) (29)

is approximately equal to log2(∆x).
Substituting these approximate expressions into the formula

(27), we conclude that for small ∆x, we have

S = −
∫

ρ(x) · log2(ρ(x)) dx− log2(∆x). (30)

The second term in this sum does not depend on the prob-
ability distribution at all. Thus, maximizing the entropy S is
equivalent to maximizing the integral in the expression (30).

This is exactly what is called the entropy of the continuous
distribution.

Towards adjusting the new formula for the case of a
continuous distribution. Let us apply the same procedure to
our new characteristic

S2 =
n∑

i=1

(log2(pi) + log2(e))
2 · pi · (1− pi). (31)

Substituting pi = ρ(xi) ·∆x into this expression, we get

S2 =
n∑

i=1

Ai · ρ(xi) ·∆x · (1− ρ(xi) ·∆x), (32)

where we denoted

Ai
def
= (log2(ρ(xi) ·∆x) + log2(e))

2. (33)

When ∆x is small, we have ρ(xi) ·∆x ≪ 1. Thus, asymptot-
ically,

1− ρ(xi) ·∆x ≈ 1, (34)

and the formula (32) can simplified into

S2 =

n∑
i=1

(log2(ρ(xi) ·∆x) + log2(e))
2 · ρ(xi) ·∆x. (35)

Here,
log2(ρ(xi) ·∆x) + log2(e) =

log2(ρ(xi)) + log2(∆x) + log2(e). (36)

Thus,
(log2(ρ(xi) ·∆x) + log2(e))

2 =

(log2(ρ(xi)) + log2(∆x) + log2(e))
2 =

(log2(ρ(xi)) + (log2(∆x) + log2(e)))
2 =

log22(ρ(xi))+

2 · log2(ρ(xi)) · (log2(∆x) + log2(e))+

(log2(∆x) + log2(e))
2. (37)

Therefore, the expression (35) can be represented as the sum
of the following three terms:

S2 =
n∑

i=1

log22(ρ(xi) · ρ(xi)) ·∆x+

2 ·
n∑

i=1

log2(ρ(xi)) · (log2(∆x) + log2(e)) · ρ(xi) ·∆x+

n∑
i=1

(log2(∆x) + log2(e))
2 · ρ(xi) ·∆x. (38)

Let us analyze these terms one by one.
The first term is an integral sum for the integral∫

log2(ρ(x)) · ρ(x) dx. (39)

So, for small ∆x, this term is very close to this integral – and
the smaller ∆x, the closer the first sum to this integral (39).

The second term is proportional to the sum
n∑

i=1

log2(ρ(xi)) · ρ(xi) ·∆x, (40)

with the coefficient proportionality

2 · (log2(∆x) + log2(e)). (41)

The sum (40) is an integral sum for the integral∫
log2(ρ(x)) · ρ(x) dx, (42)

which is simply −S, where S is the entropy of the correspond-
ing continuous distribution. Thus, for small ∆x, the sum (40)



is approximately equal to −S, and the second term is thus
asymptotically equal to

−2 · (log2(∆x) + log2(e)) · S. (43)

The third term is proportional to the sum
n∑

i=1

ρ(xi) ·∆x, (44)

with the coefficient proportionality

(log2(∆x) + log2(e))
2. (45)

Similarly to the entropy case, the sum (44) is an integral sum
for the integral ∫

ρ(x) dx = 1. (46)

Thus, for small ∆x, the sum (44) is approximately equal to
1, and the third term is thus asymptotically equal to

(log2(∆x) + log2(e))
2. (47)

Adding up the expressions (39), (43), and (47) for the three
terms that form the expression (38), we conclude that

S2 =

∫
log2(ρ(x)) · ρ(x) dx−

2 · (log2(∆x) + log2(e)) · S+

(log2(∆x) + log2(e))
2. (48)

The third term does not depend on the probability distribution
at all, so it can be ignored when we compare the values S2

of different distributions – to select the most “typical” one.
The second term depends only on the step size ∆x and

on the entropy S. Since we consider the situations in which
the value of the entropy is known (since this value is one
of the constraints), this term also has the same value for all
the distributions that are consistent with all these constraints.
Thus, this term can also be ignored when we compare the
values S2 of different distributions – to select the most
“typical” one.

Thus, in this selection, the only important term is the
first (integral) term: selecting the distribution with the largest
possible value of S2 is equivalent to selecting the distribution
with the largest possible value of the integral (39).

Thus, we arrive at the following recommendation:

How to extend the maximum entropy approach to the case
when entropy is one of the constraints: resulting formula
for the continuous case. Let us consider the situations in
which the fixed value of entropy is one of the constraints
on the probability distribution. In this situation, among all
distributions that satisfy this (and other) constraints, we must
select a one for which the following characteristic takes the
largest possible value:

S2 =

∫
log22(ρ(x)) · ρ(x) dx. (49)

IV. MEANING OF THE NEW FORMULA

Meaning of entropy: reminder. In order to come up with
a reasonable interpretation of this characteristic, let us recall
the usual interpretation of the entropy S. This interpretation is
related to the average number of binary (“yes”-“no”) questions
that we need to ask to locate the value x with a given accuracy
ε > 0.

In general, when we have N elements and we ask one yes-
no question, then it is reasonable to divide the elements into
two equal groups of size N/2 and ask whether an element
belongs to the first group. After this answer, we can decrease
the number of possible elements by a factor of two, from N to
N/2. If we can ask the second question, we can further divide
this number by two, to (N/2)/2 = N/22. After q questions,
we have N/2q possible elements, etc. Thus, if we have a group
of N elements and we want to reduce to a group of n ≪ N
elements, than the required number q of binary questions can
be found from the condition that N/2q ≈ n, i.e., 2q ≈ N/n,
and q ≈ log2(N/n).

When we have a value which is close to x, and we want to
locate it with accuracy ε, this means that we want, starting
from the original list of N possible elements, to restrict
ourselves to the list of all the elements which are ε-close to x,
i.e., which are located in the interval [x−ε, x+ε] of width 2ε.
The proportion of elements in this interval is approximately
equal to ρ(x) · 2ε. Thus, to locate this element, we must get
down from the original number of N elements to the number
n = N · (ρ(x) · 2ε) elements in this interval. This reduction
requires

q(x) ≈ log2

(
N

n

)
= log2

(
N

N · (ρ(x) · 2ε)

)
=

log2

(
1

ρ(x) · 2ε

)
= − log2(ρ(x))− log2(2ε). (50)

Thus, to locate a value close to x with a given accuracy, we
need to ask k(x) ≈ − log2(ρ(x)) binary questions.

The average number of such questions is equal to

E[q] =

∫
q(x) · ρ(x) dx = −

∫
log2(ρ(x)) · ρ(x) dx. (51)

Thus, the entropy is simply the average number of questions
that we need to ask to locate the corresponding random value
with a given accuracy.

In these terms, the idea of the Maximum Entropy method is
that among all possible distribution, we select the one which
is the least certain, i.e., for which we need, on average, the
largest number of binary questions to locate the corresponding
value.

From the meaning of entropy to the meaning of the new
function. We consider the situations in which entropy is one
of the constraints, i.e., situations when we know the entropy
of the distribution. In such situations, because of the meaning
of entropy, for all the distributions which are consistent with
the given information, the average number of questions is the
same.



What may differ is the “spread” of these values. Some
distributions may require the same number of questions for all
x, for others, for some x, we need many more questions, for
some, much less. The number of questions q(x) corresponding
to a randomly selected x is s random variable itself. Usually,
the spread of a random variable can be described if we know
its mean E[q] and its standard deviation σ[q]: with high
confidence, the actual value of q(x) is within the interval
[E[q]−k ·σ[q], E[q]+k ·σ[q]], where the parameter k (usually,
2, 3, or 6) depends on the confidence with which we want to
conclude that q(x) belongs to this interval.

In our situation, all distributions have the same mean E[q]
(entropy), but they may have different standard deviations σ[q].
When we select among several possible distributions, the one
which is the least certain – i.e., the one that requires the largest
number of binary questions – it is therefore reasonable to select
the one for which the largest possible number of questions
E[q] + k · σ[q] is the largest possible. Since the mean E[q] is
the same for all these distributions, this means that we select
a distribution with the largest standard deviation σ[q].

It is known that the standard deviation is related to the
second moment E[q2] by the formula σ2[q] = E[q2]−(E[q])2.
Thus, when the mean E[q] is fixed, maximizing the stan-
dard deviation is equivalent to maximizing the second mo-
ment E[q2].

In our case, q(x) ≈ − log2(ρ(x)), so the second moment
has the form

E[q2] =

∫
(log2(ρ(x))

2 · ρ(x) dx. (52)

This is exactly our function S2. Thus, we arrive at the
following interpretation of the new function S2.

Resulting interpretation. As we remember, entropy is the
average number of binary questions that we need to ask to
locate the corresponding random value x. Similarly, the new
function S2 is the expected value of the square of the number
of binary questions.

When the entropy is fixed, maximizing this new function is
equivalent to maximizing the standard deviation of the number
of binary questions.

Thus, when we know the average number of binary ques-
tions need to locate x, among all possible distributions we
select a one for which the standard deviation of the number
of binary questions is the largest.

V. CONCLUSIONS AND FUTURE WORK

Formulation of the problem. In many practical situations,
we have incomplete information about the probabilities. In
this case, among all possible probability distributions, it is
desirable to select the most “typical” one. Traditionally, we
select the distribution which has the largest possible value of
the entropy S. For example, for a continuous distribution with
probability density ρ(x), entropy has the form

S = −
∫

log2(ρ(x)) · ρ(x) dx. (53)

This Maximum Entropy approach has good justifications,
and it can be applied (and has been successfully applied) in
many practical situations.

However, there are situations in which this method cannot
be directly applied. Specifically, in some case, one of the
characteristics that we know about the distribution is its
entropy S0. In this case, all distributions which are consistent
with this information have the exact same entropy value S0.
Thus, it is impossible to select one of them based on the value
of its entropy – as the Maximum Entropy approach suggest.

Our main result. In this paper, we show that in such
situations, we should maximize a special characteristic S2. For
example, for a continuous distribution with probability density
ρ(x), this characteristic has the form

S2 =

∫
log22(ρ(x)) · ρ(x) dx. (54)

Remaining open questions. An interesting open question is:
what if we know both the values of the entropy S and of
the new characteristic S2. In this case, neither the Maximum
Entropy approach, not maximizing the new characteristic S2

help. It is desirable to extend the Maximum Entropy approach
to such situations, i.e., to come up with a new characteristic
S3 that should be maximized in this case.

Similarly, when we know the values of S, S2, and S3, we
should be able to maximize yet another characteristic S4, etc.
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