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Abstract

Most applications of statistics to science and engineering are based
on the assumption that the corresponding random variables are normally
distributed, i.e., distributed according to Gaussian law in which the prob-
ability density function ρ(x) exponentially decreases with x: ρ(x) ∼
exp(−k · x2). Normal distributions indeed frequently occur in practice.
However, there are also many practical situations, including situations
from mathematical finance, in which we encounter heavy-tailed distri-
butions, i.e., distributions in which ρ(x) decreases as ρ(x) ∼ x−α. To
properly take this uncertainty into account when making decisions, it is
necessary to estimate the parameters of such distributions based on the
sample data x1, . . . , xn – and thus, to predict the size and the probabili-
ties of large deviations. The most well-known statistical estimates for such
distributions are the Hill estimator H for α and the Weismann estimator
W for the corresponding quantiles.

These estimators are based on the simplifying assumption that the
sample values xi are known exactly. In practice, we often know the values
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xi only approximately – e.g., we know the estimates x̃i and we know
the upper bounds ∆i on the estimation errors. In this case, the only
information that we have about the actual (unknown) value xi is that xi

belongs to the interval xi = [x̃i − ∆i, x̃i + ∆i]. Different combinations
of values xi ∈ xi lead, in general, to different values of H and W . It is
therefore desirable to find the ranges [H,H] and [W,W ] of possible values
of H and W . In this paper, we describe efficient algorithms for computing
these ranges.

Keywords: heavy-tailed distributions, interval uncertainty, efficient
algorithms, Hill estimator, Weissman estimator

1 Introduction

Traditional statistical techniques of science and engineering are based on the
assumption that all the distributions are Gaussian (normal). In a normal dis-
tribution, the probability of large deviations decreased exponentially with these
deviations; in other words, the “tails” of these distributions become practically
0s. In practice, however, many probability distributions differ from normal
in the sense that their tails are “heavy” – the probability of large deviations
decreases only as a power law, so large deviations are quite possible. Such
distributions are especially important in financial applications.

For such heavy-tailed distributions, there exist algorithms for estimating the
parameters of these distributions based on the sample data x1, . . . , xn. These
algorithms assume that we know the exact values xi of these data points.

In practice, we usually only know the values xi with some uncertainty. For
example, we know estimates x̃i for the corresponding data points, and we know
the upper bounds ∆i on the corresponding estimation error. In such situations,
the only information that we have about the actual (unknown) values xi is that
xi belongs to the corresponding interval [xi, xi] = [x̃i −∆i, x̃i +∆i].

Different values of xi from these intervals lead, in general, to different values
of the desired statistical characteristics. It is therefore desirable to find the
range of all possible values of these characteristics when xi ∈ [xi, xi].

Such algorithms are developed in this paper.

2 Heavy-Tailed Distributions: Empirical Fact

Normal distributions: reminder. Most application of statistics to science
and engineering are based on the assumption that the corresponding random
variables are normally distributed, i.e., distributed according to Gaussian law
in which the probability density function ρ(x) exponentially decreases with x:
ρ(x) ∼ exp(−k · x2); see, e.g., [31].

Normal distributions indeed frequently occur in practice. This empirical
fact can be justified by the Central Limit Theorem, according to which, under
certain reasonable conditions, the joint effect of many relatively small factors is
(approximately) normally distributed; see, e.g., [31].
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Normal distribution in financial models. The quantitative study of stock
prices can be traced back to a pioneering PhD dissertation of L. Bachelier [2]
who has shown that for any fixed time quantum, the probabilities of stock price
fluctuations of different size can be well described by a Gaussian random walk
(what physicists call Brownian motion).

In the Gaussian random walk model, fluctuations of different sizes x are
normally distributed. The Gaussian random walk model indeed describes small
financial fluctuations reasonably well.

Limitations of the Gaussian description. While the Gaussian random
walk model well describes the probabilities of small fluctuations, this model
drastically underestimates the probabilities of large fluctuations. For example,

• in the normal distribution, fluctuations larger than 6σ have a negligible
probability ≈ 10−8, while

• in real economic systems, even larger fluctuations occur every decade (and
even more frequently).

It is important to properly take care of such fluctuations because when we
underestimate the probability of large fluctuations, we thus underestimate risk
– and become unprepared when large fluctuations occur.

Emergence of heavy-tailed (fractal) models. In the 1960s, Benoit Man-
delbrot, the author of fractal theory, empirically studied the fluctuations and
showed [18] that larger-scale fluctuations follow the power-law distribution, with
the probability density function

ρ(x) = A · x−α, (1)

for some constant α ≈ 2.7.
In these distributions, the probability decreases much slower than for the

normal distribution, so the tails are much heavier. Because of this, the asymp-
totically power-law distributions are also known as heavy-tailed distributions.

Heavy-tailed distributions are ubiquitous. The above empirical result,
together with similar empirical discovery of power laws in other application
areas, has led to the formulation of fractal theory; see, e.g., [19, 20].

Since then, similar asymptotically power-law distributions have been empir-
ically found in other financial situations [4, 5, 7, 10, 21, 23, 30, 33, 34, 35], and
in many other application areas [3, 12, 19, 22, 29].

3 Heavy-Tailed Distribution: Theoretical Justi-
fication

Need for a theoretical explanation. From the purely mathematical view-
point, we can, in principle, have many different non-Gaussian distributions. In
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practice, however, asymptotically power law distributions are the most widely
spread.

In many application areas, there is no good theoretical explanation for this
empirical phenomenon. For example, in economics, these laws are not widely
used by mainstream economists – exactly because they are empirical, they lack
a clear economic justification [32]. Without a good theoretical explanation,
economists are reluctant to rely on these laws being valid in the future as well
– and to make serious decisions based on these laws.

As a result, in the existing financial decisions, economists often use Gaussian
random walk models which are much less accurate than the empirically more
accurate power law models. As a consequence of this practice, the existing
financial instruments often underestimate the probability of large-scale crisis-
type fluctuations.

To make financial systems more reliable and less vulnerable to large-scale
crisis-style fluctuations, it is therefore important to overcome the economists’ re-
luctance, and to provide a convincing theoretical explanation for the empirically
observed power laws. This need is emphasized, e.g., in [32].

Most existing explanations are too complex. There exist several theoret-
ical explanations for the empirical power law; see, e.g., [11]. These explanations
are based on the deep mathematical analysis of complex systems. The complex
mathematical nature of these explanations makes them not very convincing for
economists.

It is therefore desirable to provide simpler – and hopefully more convincing
– explanations for the power law.

What we do in this section. In this section, we provide a detailed descrip-
tion of such a simpler explanation – based on scale invariance. The main ideas
behind this explanation can be found in [25] and [17].

Analysis of the problem: a practice-oriented temporal reformulation
of the probabilities. Ideally, we should be able to predict when the fluctu-
ations will reach a given size x0. In reality, as we have mentioned, economic
fluctuations are random (unpredictable). As a result, we cannot predict the
exact moment of time when fluctuations reach the threshold x0. Instead, we
can only predict the average time t before such a fluctuation occurs.

From this viewpoint, we would like to find the dependence t(x0) of this
average time on the size of the fluctuation.

This dependence is naturally related to the probabilities. Indeed, the prob-
ability density function ρ(x) means that the probability of a fluctuation of size
x0 is equal to ρ(x0). (To be more precise, it is equal to ρ(x0) · h, where h is the
corresponding discretization step).

The probability that the fluctuation of this size occurs within a single time
quantum ∆t is equal to ρ(x0)·h. Thus, the expected number of such fluctuations
during a single time quantum is ρ(x0) · h. During the time period t, we have
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N
def
=

t

∆t
time quanta. The expected number of fluctuations of size x0 during

this time period is therefore equal to

N · (ρ(x0) · h) =
t

∆t
· (ρ(x0) · h). (2)

The average time t(x0) until such a fluctuation occurs can be estimated as the
time t for which this expected number of fluctuations becomes close to 1:

t(x0)

∆t
· (ρ(x0) · h) ≈ 1, (3)

hence

t(x0) ≈
∆t

ρ(x0) · h
. (4)

Thus, once we find the dependence t(x), we will be able to find the desired
probability density function ρ(x) as

ρ(x) ≈ ∆t

t(x) · h
=

const

t(x)
, (5)

where const
def
=

∆t

h
.

Scale invariance: a natural requirement. We want to describe a general
dependence t(x) of the average time t during which the fluctuation of a given
size occurs on the size x of this fluctuation.

When describing this dependence, one should take into account that the
numerical value of the fluctuation size x depends on the choice of a measuring
unit for describing fluctuations. In principle, different units can be chosen. For
example, when the European countries changed from their original currencies
to Euros, all the stock prices at local stock markets were accordingly re-scaled.
In general, if instead of the original unit, we use a new unit which is λ times
smaller, then the fluctuation whose size in the original unit is x has the value
x′ = λ · x in the new units.

It is reasonable to require that the expression describing dependence t(x)
should not depend on the choice of the unit. One needs to be careful, however,
when formulating this natural requirement. Namely, we cannot simply assume
that for the same numerical value x, the time is the same no matter which units
we use. If we use a smaller unit than before, then

• a fluctuation whose size is one new unit is smaller than the fluctuation
whose size is one original unit – and thus,

• the time to reach the 1 new unit size fluctuation should be smaller than
the time to reach the 1 old unit size fluctuation.
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So, to make a proper formalization, we must take into account that if we re-
scale the units in which we measure fluctuations, we must accordingly change
the units for time.

If we use the new unit for the fluctuation size, then instead of the numerical
value x, we get a new numerical value x′ = λ · x. Thus, instead of the original
time t(x), we get a new time t(x′) = t(λ · x). We require that this new time
is actually the same time as t(x), but expressed in different time units. If we
denote the ratio of the corresponding time units by r(λ), then we arrive at the
formula

t(λ · x) = r(λ) · t(x). (6)

Thus, we arrive at the following requirement: for every λ > 0, there exists a
value r(λ) for which, for all x and for all λ, the formula (6) holds.

Scale invariance implies power law. It is known that every continuous
function t(x) satisfying the above property has the form t(x) = r · xα for some
α; see, e.g., [1], Section 3.1.1, or [25]. (This result was first proven in [27].)

Proof. For differentiable functions t(x), the result about power functions is
easy to prove. Indeed, if we differentiate both sides of (6) by λ and take λ = 1,
we get

x · dt
dx

= α · t, (7)

where α
def
= r(1). By moving all the terms containing t into one side and all the

terms containing x to the other side, we conclude that

dt

t
= α · dx

x
. (8)

Integrating both sides, we get

ln(t) = α · ln(x) + c, (9)

hence

t = eα·ln(x)+c = ec ·
(
eln(x)

)α
= C · xα (10)

for C = ec.

Conclusion. Under a natural requirement that the distribution of economic
fluctuations does not depend on the choice of a monetary unit, we conclude that
t(x) ∼ xα and thus,

ρ(x) ∼ const

t(x)
∼ x−α. (11)

Thus, the power law is justified.
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4 Traditional Techniques of Heavy-Tail Analy-
sis: Hill and Weissman Estimators

Need for heavy-tail analysis. As we have mentioned, there are many prac-
tical situations (including situations from mathematical finance), in which we
encounter heavy-tailed distributions, i.e., distributions in which ρ(x) decreases
as ρ(x) ∼ x−α.

To properly take this uncertainty into account when making decisions, it is
necessary to estimate the parameters of such distributions based on the sample
data x1, . . . , xn – and thus, to predict the size and the probabilities of large
deviations.

Two main tasks of heavy-tail analysis. In view of the above, we have two
tasks:

• First, based on the sample x1, . . . , xn, we must be able to estimate the
parameter α of the actual distribution.

• Second, we must estimate the size and probability of large deviations
corresponding to this distribution.

Estimating the probability of large deviations: analysis of the prob-
lem. For every real number x0, the probability Prob(x > x0) can be described

as 1−Prob(x ≤ x0), i.e., as 1−F (x0), where F (z)
def
= Prob(x ≤ z) is the cumu-

lative distribution function (CDF) of the corresponding probability distribution.
For the probability distribution with the probability density ρ(x) ∼ x−α,

the corresponding CDF has the form

F (x) =

∫ x

ρ(z) dz ∼ x−(α−1). (12)

An alternative way of describing the probabilities of large deviations comes
from the fact that in practice, it is not possible to completely prevent the failure
of a system. What we can do is decrease to the level that makes such a failure not
realistically possible. For that purpose, in many practical applications, there is
an acceptable risk, i.e., an allowable probability of failure p0. Once this value is
given, we may be interested to find the largest possible value x0 within this risk,
i.e., value x0 for which the probability of exceeding this value is the “negligible”
value p0: Prob(x > x0) = p0. This condition can be equivalently described as
Prob(x ≤ x0) = 1− p0.

For each value p ∈ [0, 1], the value x for which F (x) = p, is called the p-th
quantile Q(p) of the corresponding probability distribution. In these terms, the
desired value x0 is the (1−p0)-th quantile: x0 = Q(1−p0). Thus, in our second
task, we need, given p0, to find the estimate for the quantile Q(1− p0).
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Known solutions to the two tasks: Hill and Weissman estimators.
Solutions to both estimations tasks are known; see, e.g., [29]:

• The most widely used solution to the first task is the Hill estimator first
proposed by in [13]:

H =
1

k
·

k∑
j=1

ln(x(n−j+1))− ln(x(n−k)), (13)

where, as usual, x(i) denotes order statistics, i.e., the results of ordering
the original sample in the increasing order:

x(1) ≤ x(2) ≤ . . . ≤ x(n). (14)

This estimator estimates the value γ
def
=

1

α− 1
.

• The most widely used solution to the second task is the Weissman esti-
mator for the quantile Q(1− p) first proposed in [36]:

W = x(n−k) ·
(

k + 1

(n+ 1) · p

)H

, (15)

where H is the Hill estimator.

Comment. To make our exposition clearer, let us briefly describe how both
estimates can be derived.

Derivation of the Hill estimator: in brief. In general, in statistics, one
of the most widely estimation method is the Maximum Likelihood method in
which we select a distribution in which the probability (density) corresponding
to the observed data is the largest possible; see, e.g., [31]. Moreover, it is known
that under reasonable conditions, this method leads to asymptotically optimal
estimates of the corresponding parameters.

Most widely used statistical estimates, such as the sample mean and sample
variance, come from applying the Maximum Likelihood method to the corre-
sponding normal distribution, with the unknown mean and variance σ2.

In contrast to the normal distribution, when we know the expression of the
probability density function (pdf) ρ(x) for all x, in the heavy-tailed case, we only
know the expression for the asymptotic values of ρ(x), i.e., for the values ρ(x)
corresponding to the large x. Thus, instead of considering the whole sample,
we only consider, for some reasonable value k, the k+1 largest values from this
sample, i.e., values x(n−k), x(n−k+1), . . . , x(n). (For recommendations on how
to select k, the reader is referred, e.g., to [29]).

We therefore assume that on the semi-line [x(n−k),∞), the probability dis-
tribution has the form ρ(x) ∼ x−α for some constant α. Since we only know the
distribution for x ≥ x(n−k), we will therefore consider a conditional distribution
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– under the condition x ≥ x(n−k). For this conditional distribution, the proba-
bility density ρc(x) is equal to 0 for x < x(n−k) and it is equal to ρc(x) = C ·x−α

for x ≥ x(n−k) for some constant C.
The value C can be determined from the condition that the overall proba-

bility is 1:

1 =

∫ ∞

x(n−k)

ρc(x) dx =

∫ ∞

x(n−k)

C · x−α dx =

C

−(α− 1)
· x−(α−1)

∣∣∣∣+∞

x(n−k)

=
C

α− 1
· (x(n−k))

−(α−1). (16)

Thus,
C = (α− 1) · (x(n−k))

α−1. (17)

For each corresponding observation x(n−k+1), . . . , x(n−k+i), . . . , x(n) the corre-
sponding probability density is C · (x(n−k+i))

−α, so the overall probability L of
observing xi is equal to the product of these probabilities:

L = Ck ·
k∏

i=1

(x(n−k+i))
−α. (18)

Substituting the expression (17) into the formula (18), we conclude that

L = (α− 1)k ·
k∏

i=1

(
x(n−k+i)

x(n−k)

)−α

. (19)

According to the Maximum Likelihood method, we need to find the value α for
which this value L is the largest possible. In the case of the Gaussian distribu-
tion, it is known that it is convenient to maximize the logarithm ln(L) instead
of the original expression. (Maximizing logarithm is equivalent to maximizing
the value since ln(z) is a monotonic function.)

Here too, using the logarithms simplifies the optimized expression into

ln(L) = k · ln(α− 1)− α ·
k∑

i=1

(ln(x(n−k+i))− ln(x(n−k))). (20)

Differentiating this expression with respect to α and equating the derivative to
0, we conclude that

k

α− 1
−

k∑
i=1

(ln(x(n−k+i))− ln(x(n−k))) = 0, (21)

i.e.,

1

α− 1
=

1

k
·

k∑
i=1

(ln(x(n−k+i))− ln(x(n−k)))

=
1

k
·

k∑
j=1

ln(x(n−j+1))− ln(x(n−k)). (22)

This is exactly the Hill estimator.
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Derivation of the Weissman estimator: in brief. Based on the values
x(i), we want to estimate the (1− p)-th quantile Q(1− p).

In general, the i-th value x(i) out of n is an approximation for the quantile

with p0 ≈ i

n
. Thus, for a given p0, we can estimate Q(p0) by the value x(i) for

i for which p0 ≈ i

n
, i.e., by the value x(⌊p0·n⌋). In particular, for p0 = 1 − p,

we take x(n−⌊p·n⌋), where ⌊z⌋ (the “floor” function), as usual, means the largest
integer which is smaller than or equal to z.

A more accurate estimation leads to p0 ≈ i

n+ 1
and x(n−⌊p·(n+1)⌋).

This works well when p ≥ 1/n, i.e., when we are estimating the probability
of a deviation that has already been observed. However, the example of finan-
cial applications shows that it also desirable to predict the probability of large
fluctuations that has not yet been observed. In other words, it is desirable to
estimate the quantile Q(1− p) for p ≪ 1/n.

For the power law distribution with the probability density ρ(x) ∼ x−α,
we have Prob(z > x) = C · x−(α−1), i.e., using the Hill estimator notation
γ = 1/(α− 1), Prob(z > x) = C · x−1/γ . Here:

• For the value x(n−k), as we have just mentioned, we have

k + 1

n+ 1
= C · (x(n−k))

−1/γ . (23)

• For the desired quantile value q
def
= Q(1− p), we have

p = C · q−1/γ . (24)

Dividing both sides of the first equation (23) by both sides of the second equation
(24), we conclude that

k + 1

(n+ 1) · p
=

(
q

x(n−k)

)1/γ

. (25)

Raising both sides by the power γ, we get(
k + 1

(n+ 1) · p

)γ

=
q

x(n−k)
. (26)

Now, multiplying both sides by x(n−k) and using the Hill estimator H for γ, we
get

q = x(n−k) ·
(

k + 1

(n+ 1) · p

)H

, (27)

which is exactly the Weissman estimator.
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An alternative expression for the Weissman estimator. To compute
ab, a computer usually computes first the logarithm b · ln(a) of this expression
and then takes the exponent of this logarithm. Thus, from the computational
viewpoint, it is therefore reasonable to get a simplified expression for ln(W ).

By taking the logarithm of the expression (15), we conclude that

ln(W ) = ln(x(n−k)) + ln

(
k + 1

(n+ 1) · p

)
·H. (28)

Substituting the expression (13) for the Hill estimator H into this formula, we
conclude that

ln(W ) =
1

k
· ln
(

k + 1

(n+ 1) · p

)
·

k∑
j=1

ln(x(n−j+1))−

(
ln

(
k + 1

(n+ 1) · p

)
− 1

)
· ln(x(n−k)). (29)

Monotonicity properties of the Hill estimator. From the original ex-
pression (13) for the Hill estimator, we can conclude that this expression has
the following properties:

• the value H increases with x(n−k+i) for all i = 1, . . . , n (first monotonicity
property);

• the value H decreases with x(n−k) (second monotonicity property); and

• under the condition that x(n−k) coincide with several consequent values

x(n−k) = x(n−k+1) = . . . = x(n−k+s), (30)

the dependence of H on the common value x(n−k) = . . . = x(n−k+s) is also
monotonic – i.e., increasing or decreasing (third monotonicity property).

The third monotonicity property follows from the fact that with respect to
the logarithms ln(xi), the Hill estimator H is a linear function, and a linear
function is always either increasing or decreasing with respect to each of its
variables – depending on whether a coefficient at this variable is non-negative
of non-positive. Since ln(z) is an increasing function, monotonicity with respect
to ln(xi) implies monotonicity with respect to xi as well.

Monotonicity properties of the Weissman estimators. Based on the
expression (29), we conclude that the Weissman estimator has the same mono-

tonicity properties. Indeed, since p ≪ 1/n, we have
k + 1

(n+ 1) · p
≫ 1 and thus,

ln

(
k + 1

(n+ 1) · p

)
> 0 and ln

(
k + 1

(n+ 1) · p

)
−1 > 0. Thus, the Weissman estima-

tor W satisfies the same three properties:
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• the value W strictly increases with x(n−k+i) for all i = 1, . . . , n (first
monotonicity property);

• the value W strictly decreases with x(n−k) (second monotonicity prop-
erty); and

• under the condition that x(n−k) coincide with several consequent values

x(n−k) = x(n−k+1) = . . . = x(n−k+s), (31)

the dependence of W on the common value x(n−k) = . . . = x(n−k+s) is also
monotonic – i.e., increasing or decreasing (third monotonicity property).

Comment. In the following text, we will consider arbitrary estimators that
satisfy these three monotonicity properties. Thus, our results apply not only to
the Hill and Weissman estimators, but also to all other estimators that satisfy
these properties.

5 Need to Take Interval Uncertainty into Ac-
count

Existing estimators: implicit assumption. The above estimators are based
on the simplifying assumption that the sample values xi are known exactly.

Possibility of interval uncertainty. In practice, we often know the values
xi only approximately. In other words, instead of the exact value of xi, we only
know the approximate estimation x̃i. We also have some information about the

approximation error ∆xi
def
= x̃i − xi.

In some cases, we know the probability distribution of different values of the
approximation error. However, in many practical situations, we only know the
upper bound ∆i on this error, i.e., the value for which |∆xi| ≤ ∆i; see, e.g.,
[28].

In such situations, the only information that we have about the actual (un-
known) value xi is that xi belongs to the interval

xi = [x̃i −∆i, x̃i +∆i].

Because of this, such uncertainty is also known as an interval uncertainty.

Interval uncertainty in financial problems. Interval uncertainty also nat-
urally appears in the analysis of financial data; see, e.g., [14] and references
therein. For example, in the analysis of stock market data, each sample value
xi may represent the price of a certain stock on the i-th day. In reality, the
price of each stock slightly fluctuates during the day.

Usually, practitioners take, as xi, the average price or the price at a certain
specific time. The problem is that there are several possibilities of select a
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single day price, and different selections lead to (slightly) different results. It is
therefore reasonable, instead of artificially picking one number xi, to consider
the entire interval [xi, xi] of all possible prices offered during the i-th day.

As shown in [14], not only this approach more reasonable – the resulting use
of the additional information about daily variances of stock prices leads to a
better predictions of future stock values.

Need to take interval uncertainty into account: formulation of the
problem. Different combinations of values xi ∈ xi lead, in general, to different
values of the estimators H and W .

It is therefore desirable to find the ranges [H,H] and [W,W ] of possible
values of H and W :

H = [H,H] = {H(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}; (32)

W = [W,W ] = {W (x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}. (33)

This problem is a particular case of interval computations. Due to the
ubiquity of interval uncertainty, the need to estimate a range of a given function
f(x1, . . . , xn) over given intervals x1, . . . ,xn occurs in many other application
areas. The problem of computing this range is known as the main problem of
interval computations; see, e.g., [15, 24].

Interval computations is, in general, NP-hard. In spite of the simplicity
of the problem’s formulation, in general, the interval computations problem is
NP-hard (computationally intensive [26]); see, e.g., [16].

It is even NP-hard if we restrict ourselves to simple functions: e.g., to
quadratic ones. Moreover, the problem is NP-hard even for the simplest statis-
tically meaningful quadratic function: the function V (x1, . . . , xn) that describes
the sample variance [8, 9]

V (x1, . . . , xn) =
1

n
·

n∑
i=1

x2
i −

(
1

n
·

n∑
i=1

xi

)2

. (34)

One may think that since, e.g., the Hill estimator is easier than a quadratic
function – once we get to logarithms, it only uses addition and sorting (i.e., min
and max operations) – however, it is known that even if only limit ourselves to
min and max, the problem of interval computations still remains NP-hard.

What we do in this paper. In this paper, we show that for the Hill and
Weissman estimators, there are efficient algorithms for computing their ranges
over given intervals.

In other words, in this paper, we produce efficient algorithms for heavy-tail
analysis under interval uncertainty.
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6 Computing Ranges of Monotonic Estimators
under Interval Uncertainty: Analysis of the
Problem

What we do in this section. In order to develop efficient algorithms for
estimating the ranges of the Hill and Weissman estimators, let us analyze the
problem of computing this range. To perform this analysis, let us first recall the
properties of these estimators and what exactly we want to compute.

General description of the problem. To describe a general monotonic
estimator, we first need to define an auxiliary function E(z0, z1, . . . , zk).

Let k be a positive integer, and let E(z0, z1, . . . , zk) be a function which is
defined for all the tuples that satisfy the inequalities

z0 ≤ z1 ≤ . . . ≤ zk (35)

and which satisfies the following three properties:

• the function E is increasing in each of the variables z1, . . . , zk;

• the function E is decreasing as a function of z0; and

• for every s, the function

Es(z0, zs+1, . . . , zk)
def
= E(z0, z0, . . . , z0, zs+1, . . . , zk) (36)

is either increasing or decreasing.

In terms of the auxiliary functionE(z0, z1, . . . , zk), the estimator F (x1, . . . , xn)
can be defined as follows: For every sample x1, . . . , xn, we find k+1 largest val-
ues x(n−k), . . . , x(n), and compute the value

F (x1, . . . , xn)
def
= E(x(n−k), x(n+1−k), . . . , x(n)). (37)

Now, instead of the exact values x1, . . . , xn, we only know interval xi =
[xi, xi] of possible values. For each combination of values xi ∈ xi, we can apply
the formula (37) and produce the corresponding estimate F (x1, . . . , xn). Our
objective is to find the range

F = [F , F ] = {F (x1, . . . , xn) : xi ∈ xi} (38)

of possible values of F when xi ∈ xi.

A comment about notations. In accordance with the usual notations of
order statistics, by (i), for each selection xi ∈ xi, we will denote the index of
the value which is i-th in the increasing order in the ordering of the selected
values

x(1) ≤ x(2) ≤ . . . ≤ x(n). (39)
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As an example, let us take n = 3 and the intervals x1 = [0, 1], x2 = [0, 2],
and x3 = [−1, 1]. In this case, if we select x1 = 0.8, x2 = 0.2, and x3 = 0.9,
then sorting leads to the following order x2 = 0.2 < x1 = 0.8 < x3 = 0.9. Thus,

• x2 is the smallest value, i.e., in order statistics notation, x2 = x(1), and
(1) = 2;

• x1 is the second value in the increasing order, so x1 = x(2), and (2) = 1;

• finally, x3 is the third value in the increasing order, so x3 = x(2), and
(2) = 3.

For every other quantity, e.g., for the lower endpoint xj and xj , the notation
x(i) will mean the value of xj for the value j for which the corresponding value
xj is the i-th in the increasing order of the values x1, . . . , xn. In other words,
the notation x(i) will mean the value of xj fir j equal to (i).

In the above example, x(1) means the value xj for the index j for which the
corresponding value xj is the first in the increasing order. In this example, the
value x2 is the first, i.e., (1) = 2, and thus, x(1) = x2 = 0.

Warning. The order of the lower endpoints xi and the order of the upper
endpoints xi do not necessarily follow the order of the values themselves. Thus,
while we always have, e.g., x(1) ≤ x(2), we may have x(1) > x(2). This happens
because the notation (i) reflects the order of the values xi but not of the lower
endpoints. Thus, x(1) does not mean the smallest of the lower endpoints – it
simply means the lower endpoint corresponding to the smallest value.

In the above example, the smallest of the lowest endpoints is x3 = −1,
but since we order in the order of the values xj (and not in the order of lower
endpoints), we have x(1) = x2 = 0.

An auxiliary result about the optimizing values of x(n−k). In our for-
mulation, we have n intervals [xi, xi] and thus, 2n endpoints xi and xi.

Let us prove the following two properties:

• the first property is that for every tuple x = (x1, . . . , xn), there exists
another tuple x′ = (x′

1, . . . , x
′
n) with x′

i ∈ xi in which

– the value x′
(n−k) is equal to one of 2n endpoints, and

– we have F (x′
1, . . . , x

′
n) ≥ F (x1, . . . , xn);

• the second property is that for every tuple (x1, . . . , xn), there exists an-
other tuple (x′

1, . . . , x
′
n) with x′

i ∈ xi in which

– the value x′
(n−k) is equal to one of 2n endpoints, and

– we have F (x′
1, . . . , x

′
n) ≤ F (x1, . . . , xn).

As a result of these two properties, to find both
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• the smallest possible value F of the function F (x1, . . . , xn) and

• the largest possible value F of this function,

it is sufficient to consider tuples for which x(n−k) is equal to one of 2n endpoints.

Proving the first property. Let us first prove the first property – the one
that enables us to make a conclusion about the maximum.

Let us start with an arbitrary tuple x. For this tuple, the value x(n−k)

belongs to the corresponding interval [x(n−k), x(n−k)] and is, therefore, larger
than or equal to the lower endpoint of this interval x(n−k) ≤ x(n−k).

Thus, there exists an endpoint which is smaller than or equal to x(n−k).
Let z denote the largest of all the endpoints which are smaller than or equal to
x(n−k). Since all these endpoints are smaller than or equal to x(n−k), the largest
of them is also smaller than or equal to x(n−k): z ≤ x(n−k).

Let us define the new tuple x′
i as follows:

• for all j = 1, . . . , k, we take x′
(n−k+j) = x(n−k+j); in other words, we keep

all the value x(n−k+1), . . . , x(n−k) intact;

• for all j ≤ n− k, we take x′
(j) = min(z, x(j)).

In particular, since z ≤ x(n−k), the above selection means that we take x′
(n−k) =

z.
Let us show that this new tuple x′ is the desired one.
Indeed, by our choice, the new value x′

(n−k) coincides with one of the end-
points z.

Now, in the new tuple, x′
(n−k) = z ≤ x(n−k), and all the values x(n−k+1), . . . ,

x(n−k) remain intact. Since the function F is a decreasing function of x(n−k),
we can thus conclude that F (x′

1, . . . , x
′
n) ≥ F (x1, . . . , xn).

So, to complete our proof, it is sufficient to show that the new values x′
(j),

j ≤ n− k, still belong to the corresponding intervals [x(j), x(j)].
By definition of the minimum, each new value x′

(j) = min(z, x(j))

• is either equal to the old value x(j)), or

• it is equal to z.

If the new value x′
(j) is equal to the old value x(j), then, of course, it belongs

to the same interval [x(j), x(j)] as the old value. Let us now consider the case
when the minimum is equal to z, i.e., when x′

(j) = z < x(j). We need to prove

that the new value x′
(j) belongs to the interval [x(j), x(j)], i.e.:

• that x′
(j) ≤ x(j), and

• that x(j) ≤ x′
(j).
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The first inequality is the easiest to prove: we know that x(j) ≤ x(j), so from
x′
(j) < x(j), we conclude that indeed x′

(j) ≤ x(j).
To prove the second inequality, let us recall that the original value x(j)

belongs to the corresponding interval [x(j), x(j)] and therefore, x(j) ≤ x(j). Since
j ≤ n − k and the values x(j) are ordered by the index, we thus conclude that
x(j) ≤ x(n−k). By transitivity of order, from x(j) ≤ x(j) and x(j) ≤ x(n−k), we
conclude that x(j) ≤ x(n−k). Thus, x(j) is one the endpoints which is smaller
than or equal to x(n−k). Since z is the largest of such endpoints, we thus have
x(j) ≤ z, i.e., x(j) ≤ x′

(j).

So, each of the new values x′
(j) does belong to the corresponding interval

[x(j), x(j)].
The first property is proven.

Proving the second property. Let us now prove the second property. Let
x be an arbitrary tuple. Due to sorting, the value x(n−k) is smaller than or
equal to all the following values:

x(n−k) ≤ x(n−k+1) ≤ . . . ≤ x(n). (40)

It may happen that in the tuple x, the value x(n−k) is equal to some of the
following values; let us denote by s the number of such terms. Then,

x(n−k) = x(n−k+1) = . . . = x(n−k+s) < x(n−k+s+1) ≤ . . . ≤ x(n−k). (41)

If x(n−k) is equal to one of the endpoints, then we can simply take x′
i = xi.

If x(n−k) is not equal to one of the endpoints, then we will select x′ by
changing all the values x(n−k), x(n−k+1), . . . , x(n−k+s) at the same time, i.e.,
by taking

x′
(n−k) = x′

(n−k+1) = . . . = x′
(n−k+s) = z (42)

for some value z.
Because of the third monotonicity property of the estimator F (x1, . . . , xn),

if we only change these s + 1 equal values without changing the larger values
x(n−k+s+1), . . . , x(n−k), the function F becomes either an decreasing or an
increasing function of z. Let us consider these two cases one by one.

If the function F is decreasing, then, similarly to the proof of the first prop-
erty, we can decrease all these common values, including x(n−k), to the largest
possible endpoint z ≤ x(n−k), and thus, get a new tuple x′ in which x′

(n−k) is

equal to one of the endpoints and F (x′) ≤ F (x).
If the function F is increasing, we will increase z as much as possible without

violating the order and the conditions x(j) ∈ [x(j), x(j)]. When we increase z,
the value of the function F increases or remains the same.

To avoid violating the order, we must have z ≤ x(n−k+s+1). To avoid getting
out of the corresponding intervals, we must have z ≤ x(n−k), z ≤ x(n−k+1), . . . ,
z ≤ x(n−k+s). The largest possible value z that bounded by all these bounds is
the smallest of these bounds. Thus, we will take

z = min(x(n−k+s+1), xn−k, x(n−k+1), . . . , x(n−k+s)). (43)
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If the minimum (43) is equal to one of the endpoints, then we get the desired
tuple x′, with x′

(n−k) = z equal to one of the endpoints, and with F (x′) ≥ F (x).

If the minimum (43) is equal to x(n−k+s+1), then we get ourselves a new
tuple in which we have s+1 values equal to x(n−k). We then repeat the process
for the new tuple, etc.

At each step,

• either we reach a tuple for which x′
(n−k) is equal to an endpoint,

• or we increase the number of equal values after x(n−k).

Since there are only k values after x(n−k), and on each iteration, the number
of equal values increases by 1, after ≤ k + 1 iterations, we reach a tuple x′ in
which x′

(n−k) is equal to an endpoint.
At each step, we decrease the value of F or keep it intact. Thus, the second

property is proven too.

Main idea of our algorithm. Due to our auxiliary statement, to find the
maximal or minimal value of f(x1, . . . , xn), it is sufficient, for each of 2n end-
points t, to consider all the tuples for which x(n−k) = t.

For each of the endpoints t, we then find the smallest F (t) and the largest
F (t) of the values F (x1, . . . , xn) under the condition that x(n−k) = t.

Once we find these values, we then take:

• the largest of the values F (t) as F , and

• the smallest of the values F (t) as F .

The remaining question is: how do we compute the values F (t) and F (t)?

How to compute F (t) and F (t): preliminary analysis. For each endpoint
t = x(n−k) and for each interval [xi, xi], we have three possible situations:

• If t < xi, this means that every value xi ∈ [xi, xi] is also larger than t.

t xi xi xi

Thus, no matter which value xi we choose from the corresponding interval
[xi, xi], this value xi will be larger than t = x(n−k). So, we will have
xi = x(n−k+j) for some j > 0.

• If t > xi, this means that every value xi ∈ [xi, xi] is also smaller than t.
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xi xi xi t

Thus, no matter which value xi we choose from the corresponding interval
[xi, xi], this value xi will be smaller than t = x(n−k). So, we will have
xi = x(j) for some j < n− k.

• Finally, if xi ≤ t ≤ xi, i.e., if t belongs to the corresponding interval
[xi, xi], then a value xi selected from this interval can be both below and
above x(n−k) in the sorting x(j).

So, once we selected the endpoint t as the value x(n−k), let us first count

• how many values xi are guaranteed to be above this value t = x(n−k) and

• how many values xi are guaranteed to be below this value t = x(n−k).

Let t+ denote the number of all the indices i for which t < xi, and let t−

denote the number of all the indices i for which t > xi.
Overall, we have no more than k values x(j) which are larger then x(n−k),

and no more than n− k− 1 values x(j) which are smaller then x(n−k). Thus, if
t+ > k or t− > n− k − 1, the choice of t as x(n−k) is simply impossible, so this
endpoint t should be simply dismissed from our computations.

Let us now concentrate on the remaining endpoints, for which t+ ≤ k and
t− ≤ n− k − 1. Due to the the fact that F is an increasing function of each of
the variables x(n−k+j), for t

+ indices xi for which t < xi, we select:

• the largest possible value xi when we compute F (t), and

• the smallest possible value xi when we compute F (t).

For the remaining k−t+ values x(n−k+j), we must select some of the n−t+−t−

indices xi for which t ∈ [xi, xi].
To find the maximum F (t), for each of the selected indices i, we should

similarly take xi = xi. Thus, we should select k − t+ largest of these values
xi. (To find these largest values for all t, it makes sense to pre-sort the upper
endpoints xi.)

To find the minimum F (t), we should select the smallest values which are
still ≥ t – i.e., the values equal to t.

Thus, we arrive at the following algorithm for computing F and F .

7 Algorithm for Computing Ranges of Mono-
tonic Estimators under Interval Uncertainty

Formulation of the problem: brief reminder. We need to compute the
endpoints F and F of the range (38) of a given monotonic estimator F (x1, . . . , xn)
(formula (37)) when each variable xi belongs to the known interval [xi, xi].
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Preliminary step. We sort all the upper endpoints xi into an increasing
sequence. This order will be used in the next step (computing F ).

Computing F . To compute F , we repeat the following procedure for each of
2n endpoints t = xi and t = xi, i = 1, . . . , n.

• First, by considering indices i = 1, . . . , n, we count

– the number t+ of all the indices i for which t < xi, and

– the number t− of all the indices i for which t > xi.

• If t+ > k or t− > n− k− 1, we dismiss the endpoint t and move to a next
one. Otherwise:

– for all t+ indices i for which t < xi, we select xi = xi;

– from the n− t+ − t− indices for which xi ≤ t ≤ xi, we select k − t+

indices with the largest values of xi (we use the sorting of the upper
bounds – obtained on the preliminary step – to find these indices);
for these indices, we take xi = xi;

– for one of the remaining indices, we take xi = t;

– for all other remaining indices, we take xi = xi.

• Then, we compute the value F (x1, . . . , xn) for the selected xi; we denote
this value as F (t).

Finally, we compute the largest of the ≤ 2n values F (t) as the desired value F .

Computing F . To compute F , we repeat the following procedure for each of
2n endpoints t = xi and t = xi, i = 1, . . . , n.

• First, by considering indices i = 1, . . . , n, we count

– the number t+ of all the indices i for which t < xi, and

– the number t− of all the indices i for which t > xi.

• If t+ > k or t− > n− k− 1, we dismiss the endpoint t and move to a next
one. Otherwise:

– for all t+ indices i for which t < xi, we select xi = xi;

– from the n−t+−t− indices for which xi ≤ t ≤ xi, we select k+1−t+

indices for which we take xi = t;

– for the remaining indices, we take xi = xi.

• Then, we compute the value F (x1, . . . , xn) for the selected xi; we denote
this value as F (t).

Finally, we compute the smallest of the ≤ 2n values F (t) as the desired value
F .
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Computational complexity of this algorithm: analysis. The first step
– sorting – requires O(n · log2(n)) steps; see, e.g., [6].

In the main part of the algorithm, for each of 2n endpoints t, we process
each of the n intervals [xi, xi] by using a constant number of computational
steps, and then compute F once. Thus, for each endpoint t, we perform O(n)
computations and one call to f .

Overall, in the main part, we thus need n ·O(n) = O(n2) computations and
O(n) calls to F . Thus, the total computation time of our algorithm is

O(n · log2(n)) +O(n2) +O(n) · tF , (44)

where tF is a time needed for a single call to the function F (x1, . . . , xn).
Since n · log2(n) ≤ n2, we have O(n · log2(n)) + O(n2) = O(n2). Hence, we

arrive at the following conclusion:

Computational complexity of this algorithm: result. The above algo-
rithm requires time

O(n2) +O(n) · tF , (45)

where tF is a time needed for a single call to the function F (x1, . . . , xn).

8 Algorithm: Numerical Example

Interval data. Let us assume that we have n = 5 interval data points:

[x1, x1] = [e0, e3]; [x2, x2] = [e1, e2]; [x3, x3] = [e1, e3];

[x4, x4] = [e2, e3]; [x5, x5] = [e2, e4], (46)

and we want to find the range of the Hill estimator corresponding to k = 2.

Comment. We have selected all the endpoints xi and xi to be of the type ez

with a simple z, so that their logarithms – which are used in the expression for
the Hill estimator – becomes easy to compute and process.

Preliminary step. According to our algorithm, at this step, we sort the
intervals in the increasing order of their upper endpoints xi. As a result, we get
the following reordering of the intervals:

[x1, x1] = [e1, e2]; [x2, x2] = [e0, e3]; [x3, x3] = [e1, e3];

[x4, x4] = [e2, e3]; [x5, x5] = [e2, e4]. (47)

Computing H. According to our algorithm, we consider all endpoints t. In
our case, there are five different endpoints: t = e0, t = e1, t = e2, t = e3, and
t = e4. Let us consider these endpoints one by one.
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Computing H: case of t = e0. First, we consider the value t = e0. In this
case, we have t+ = 4 intervals for which t < xi: intervals

[x1, x1] = [e1, e2], [x3, x3] = [e1, e3], [x4, x4] = [e2, e3],

[x5, x5] = [e2, e4].

Since 4 = t+ > k = 2, we dismiss this endpoint.

Computing H: case of t = e1. Then, we consider the value t = e1. In this
case:

• We have t+ = 2 intervals for which t < xi: intervals

[x4, x4] = [e2, e3] and [x5, x5] = [e2, e4];

here, t+ ≤ k.

• We also have t− = 0 intervals for which xi < t.

Then:

• for all t+ = 2 indices i for which t < xi, we select xi = xi; so, we select

x4 = x4 = e3 and x5 = x5 = e4;

• from the n − t+ − t− = 5 − 2 − 0 = 3 indices for which xi ≤ t ≤ xi, we
select k − t+ = 0 indices with the largest values of xi; since k − t+ = 0,
we skip this step;

• for one of the remaining indices, e.g., for the first of them i = 1, we take

x1 = t = e1;

• for all other remaining indices, we take xi = xi, i.e., we take

x2 = x2 = e0 and x3 = x3 = e1.

Then, we compute the value H(x1, . . . , xn) for the selected xi. Here, x(n−k) =
x(3) = t = e1, and the larger values x(4) and x(5) are equal to e3 and e4. Thus,

H(x1, . . . , xn) =
1

2
· (ln(x(4)) + ln(x(5)))− ln(x(3)) =

1

2
· (3 + 4)− 1 = 3.5− 1 = 2.5. (48)

So, for t = e1, we have H(t) = 2.5.
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Computing H: case of t = e2. After that, we consider the value t = e2. In
this case:

• we have t+ = 0 intervals for which t < xi and

• we have t− = 0 intervals for which xi < t.

Then:

• from the n − t+ − t− = 5 − 0 − 0 = 5 indices for which xi ≤ t ≤ xi, we
select k − t+ = 2− 0 = 2 indices with the largest values of xi; e.g., i = 4
and i = 5; for these values, we take xi = xi, i.e., we take

x4 = x4 = e3 and x5 = x5 = e4;

• for one of the remaining indices, e.g., for the first of them i = 1, we take

x1 = t = e2;

• for all other remaining indices, we take xi = xi, i.e., we take

x2 = x2 = e0 and x3 = x3 = e1.

Then, we compute the value H(x1, . . . , xn) for the selected xi. Here, x(n−k) =
x(3) = t = e2, and the larger values x(4) and x(5) are equal to e3 and e4. Thus,

H(x1, . . . , xn) =
1

2
· (ln(x(4)) + ln(x(5)))− ln(x(3)) =

1

2
· (3 + 4)− 2 = 3.5− 2 = 1.5. (49)

So, for t = e2, we have H(t) = 1.5.

Computing H: case of t = e3. For t = e3:

• we have t+ = 0 intervals for which t < xi, and

• we have t− = 1 interval for which xi < t: the interval

[x1, x1] = [e1, e2].

Then:

• from the n − t+ − t− = 5 − 0 − 1 = 4 indices for which xi ≤ t ≤ xi, we
select k − t+ = 2− 0 = 2 indices with the largest values of xi; e.g., i = 4
and i = 5; for these values, we take xi = xi, i.e., we take

x4 = x4 = e3 and x5 = x5 = e4;
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• for one of the remaining indices, e.g., for the first of them i = 2, we take

x2 = t = e3;

• for all other remaining indices, we take xi = xi, i.e., we take

x1 = x1 = e1 and x3 = x3 = e1.

Then, we compute the value H(x1, . . . , xn) for the selected xi. Here, x(n−k) =
x(3) = t = e3, and the larger values x(4) and x(5) are equal to e3 and e4. Thus,

H(x1, . . . , xn) =
1

2
· (ln(x(4)) + ln(x(5)))− ln(x(3)) =

1

2
· (3 + 4)− 3 = 3.5− 3 = 0.5. (50)

So, for t = e3, we have H(t) = 0.5.

Computing H: case of t = e4. Finally, for t = e4:

• we have t+ = 0 intervals for which t < xi, and

• we have t− = 4 intervals for which xi < t:

[x1, x1] = [e1, e2]; [x2, x2] = [e0, e3]; [x3, x3] = [e1, e3];

[x4, x4] = [e2, e3].

Since t− = 4 > n− k − 1 = 5− 2− 1 = 2, we dismiss this endpoints.

Computing H: final step. At the end, we take the largest of the three
values H(t) as the desired value H;

H = max(H(e1), H(e2),H(e3)) = max(2.5, 1.5, 0.5) = 2.5. (51)

Computing H. Here, we also consider all the endpoints t – except for the
values t = e0 and t = e4 which, as we already know from computing H, will be
dismissed.

Computing H: case of t = e1. First, we consider the value t = e1. In this
case:

• We have t+ = 2 intervals for which t < xi: intervals

[x4, x4] = [e2, e3] and [x5, x5] = [e2, e4].

• We also have t− = 0 intervals for which xi < t.
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Then:

• for all t+ = 2 indices i for which t < xi, we select xi = xi, i.e., we take

x4 = x4 = e2 and x5 = x5 = e2;

• from the n − t+ − t− = 5 − 2 − 0 = 3 indices for which xi ≤ t ≤ xi, we
select k + 1 − t+ = 2 + 1 − 2 = 1 index for which we take xi = t; for
example, we select the smallest such index i = 1, and select

x1 = t = e2;

• for the remaining indices, we take xi = xi, i.e., we take

x2 = x2 = e0 and x3 = x3 = e1.

Then, we compute the value H(x1, . . . , xn) for the selected xi. Here, x(n−k) =
x(3) = t = e1, and the larger values x(4) and x(5) are equal to e2 and e2. Thus,

H(x1, . . . , xn) =
1

2
· (ln(x(4)) + ln(x(5)))− ln(x(3)) =

1

2
· (2 + 2)− 1 = 2− 1 = 1. (52)

Computing H: case of t = e2. After that, we consider the value t = e2. In
this case:

• we have t+ = 0 intervals for which t < xi and

• we have t− = 0 intervals for which xi < t.

Then:

• from the n − t+ − t− = 5 − 0 − 0 = 5 indices for which xi ≤ t ≤ xi, we
select k + 1 − t+ = 2 + 1 − 0 = 3 indices for which we take xi = t; for
example, we select the smallest such indices i = 1, i = 2, and i = 3, and
select

x1 = x2 = x3 = t = e2;

• for the remaining indices, we take xi = xi, i.e., we take

x4 = x4 = e2 and x5 = x5 = e2.

Then, we compute the value H(x1, . . . , xn) for the selected xi. Here, x(n−k) =
x(3) = t = e2, and the larger values x(4) and x(5) are equal to e2 and e2. Thus,

H(x1, . . . , xn) =
1

2
· (ln(x(4)) + ln(x(5)))− ln(x(3)) =

1

2
· (2 + 2)− 2 = 2− 2 = 0. (53)
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Computing H: case of t = e3. Finally, we consider the value t = e3. In this
case:

• We have t+ = 0 intervals for which t < xi, and

• we have t− = 1 interval
[x1, x1] = [e1, e2]

for which xi < t.

Then:

• from the n − t+ − t− = 5 − 0 − 1 = 4 indices for which xi ≤ t ≤ xi, we
select k + 1 − t+ = 2 + 1 − 0 = 3 indices for which we take xi = t; for
example, we select the smallest such indices i = 2, i = 3, and i = 4, and
select

x2 = x3 = x4 = t = e3;

• for the remaining indices, we take xi = xi, i.e., we take

x1 = x1 = e1 and x5 = x5 = e2.

Then, we compute the value H(x1, . . . , xn) for the selected xi. Here, x(n−k) =
x(3) = t = e3, and the larger values x(4) and x(5) are equal to e3 and e3. Thus,

H(x1, . . . , xn) =
1

2
· (ln(x(4)) + ln(x(5)))− ln(x(3)) =

1

2
· (3 + 3)− 3 = 3− 3 = 0. (54)

Computing H: final step. At the end, we take the smallest of the three
values H(t) as the desired value H;

H = max(H(e1),H(e2),H(e3)) = max(1, 0, 0) = 0. (55)

Result: for the given data, the range of possible values of the Hill estimator
is equal to

[H,H] = [0, 2.5].

Comment. From the definition of the Hill estimator, it easily follows that this
estimator is always non-negative. Indeed,

H =
1

k
·

k∑
j=1

ln(x(n−j+1))−ln(x(n−k)) =
1

k
·

k∑
j=1

ln(x(n−j+1))−
1

k
·

k∑
j=1

ln(x(n−k)) =

1

k
·

k∑
j=1

(ln(x(n−j+1))− ln(x(n−k))). (56)
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Thus, the smallest possible value H of the Hill estimator is also always non-
negative: H ≥ 0.

One can also easily check that H = 0 if k + 1 largest values xi are equal to
each other:

x(n−k) = x(n+k+1) = . . . = x(n). (57)

In this case, the smallest possible value H is ≤ 0, hence H = 0.
In our example, we can have x1 = x2 = . . . = x5 = e2, so it is indeed possible

to have H = 0, thus H = 0.

9 Conclusion

In this paper, we consider situations (frequent in practice) in which we want
to estimate the parameters of the heavy-tailed distribution based on the sam-
ple values x1, . . . , xn, and these sample values are only known with interval
uncertainty.

For example, for each observation, we have an estimate x̃i for the corre-
sponding data point, and we know the upper bound ∆i on the corresponding
approximation error. In this case, the only information that we have about the
actual (unknown) value xi is that |xi − x̃i| ≤ ∆i, i.e., that xi belongs to the

interval [xi, xi]
def
= [x̃i −∆i, x̃i +∆i].

There exist known algorithms for estimating the parameters of the heavy-
tailed distribution based on the exact values x1, . . . , xn. For different values xi ∈
[xi, xi], these algorithms lead, in general, to different results. We are therefore
interested in computing the range of all possible values of these characteristics
when xi ∈ [xi, xi]. In this paper, we propose efficient algorithms for computing
these ranges.
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