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Abstract—One of the main methods of determining the Earth
structure is the analysis of the seismic data. Based on the
seismic data, we produce a 3-D map describing the density
at different locations on different depths. Due to incomplete
coverage and measurement uncertainty, this map provides only
an approximate description of the actual density distribution.
For example, based on the seismic data, it is impossible to
distinguish between the densities at two nearby points. In other
words, what we actually reconstruct is not a function of 3
variables, but rather values determined on the appropriate
spatial granules. Because of this granularity, it is necessary to
find the spatial resolution at different locations and at different
depths, i.e., in other words, it is necessary to determine the
corresponding granules. In this paper, we show how Type-2
methods can help in determining these granules.
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I. NEED TO FIND GRANULARITY (SPATIAL
RESOLUTION) OF THE RESULTS OF SEISMIC DATA

PROCESSING

In evaluations of natural resources and in the search
for natural resources, it is very important to determine
Earth structure. Our civilization greatly depends on the
things we extract from the Earth, such as fossil fuels (oil,
coal, natural gas), minerals, and water. Our need for these
commodities is constantly growing, and because of this
growth, they are being exhausted. Even under the best
conservation policies, there is (and there will be) a constant
need to find new sources of minerals, fuels, and water.

The only sure-proof way to guarantee that there are
resources such as minerals at a certain location is to actually
drill a borehole and analyze the materials extracted. How-
ever, exploration for natural resources using indirect means
began in earnest during the first half of the 20th century.
The result was the discovery of many large relatively easy
to locate resources such as the oil in the Middle East.

However, nowadays, most easy-to-access mineral re-
sources have already been discovered. For example, new oil
fields are mainly discovered either at large depths, or under
water, or in very remote areas – in short, in the areas where
drilling is very expensive. It is therefore desirable to predict

the presence of resources as accurately as possible before
we invest in drilling.

From previous exploration experiences, we usually have
a good idea of what type of structures are symptomatic
for a particular region. For example, oil and gas tend to
concentrate near the top of natural underground domal struc-
tures. So, to be able to distinguish between more promising
and less promising locations, it is desirable to determine
the structure of the Earth at these locations. To be more
precise, we want to know the structure at different depths z
at different locations (x, y).

Determination of Earth structure is also very important
for assessing earthquake risk. Another vitally important
application where the knowledge of the Earth structure
is crucial is the assessment of earth hazards. Earthquakes
can be very destructive, so it is important to be able to
estimate the probability of an earthquake, where one is
most likely to occur, and what will be the magnitude of
the expected earthquake. Geophysicists have shown that
earthquakes result from accumulation of mechanical stress;
so if we know the detailed structure of the corresponding
Earth locations, we can get a good idea of the corresponding
stresses and faults present and the potential for occurrence of
an earthquake. From this viewpoint, it is also very important
to determine the structure of the Earth.

Data that we can use to determine the Earth structure.
In general, to determine the Earth structure, we can use
different measurement results that can be obtained without
actually drilling the boreholes: e.g., gravity and magnetic
measurements, analyzing the travel-times and paths of seis-
mic ways as they propagate through the earth, etc.

Seismic measurements are usually the most informative.
Because of the importance and difficulty of the inverse
problem, geophysicists would like to use all possible mea-
surement results: gravity, magnetic, seismic data, etc. In
this paper, we will concentrate on the measurements which
carry the largest amount of information about the Earth



structure and are, therefore, most important for solving
inverse problems.

Some measurements – like gravity and magnetic mea-
surements – describe the overall effect of a large area.
These measurements can help us determine the average mass
density in the area, or the average concentration of magnetic
materials in the area, but they often do not determine the
detailed structure of this area. This detailed structure can
be determined only from measurements which are narrowly
focused on small sub-areas of interest.

The most important of these measurements are usually
seismic measurements. Seismic measurements involve the
recording of vibrations caused by distant earthquakes, ex-
plosions, or mechanical devices. For example, these records
are what seismographic stations all over the world still use
to detect earthquakes. However, the signal coming from an
earthquake carries not only information about the earthquake
itself, it also carries the information about the materials
along the path from an earthquake to the station: e.g., by
measuring the travel-time of a seismic wave, checking how
fast the signal came, we can determine the velocity of sound
v in these materials. Usually, the velocity of sound increases
with increasing density, so, by knowing the velocity of
sound at different 3-D points, we will be able to determine
the density of materials at different locations and different
depths.

The main problem with the analysis of earthquake data
(i.e., passive seismic data) is that earthquakes are rare events,
and they mainly occur in a few seismically active belts. Thus,
we have a very uneven distribution of sources and receivers
that results in a “fuzzy” image of earth structure in many
areas.

To get a better understanding of the Earth structure,
we must therefore rely on active seismic data – in other
words, we must make artificial explosions, place sensors
around them, and measure how the resulting seismic waves
propagate. The most important information about the seismic
wave is the travel-time ti, i.e., the time that it takes for the
wave to travel from its source to the sensor. to determine
the geophysical structure of a region, we measure seismic
travel times and reconstruct velocities at different depths
from these data. The problem of reconstructing this structure
is called the seismic inverse problem; see, e.g., [11].

How seismic inverse problem is solved. First, we discretize
the problem: we divide our 3-D spatial region into cells, and
we consider the velocity values to be constant within each
each cell. The value of the velocity in the cell j will be
denoted by vj .

Once we know the velocities vj in each cell j, we can
then determine the paths which seismic waves take. Seismic
waves travel along the shortest path – shortest in terms of
time. As a result, within each cell, the path is a straight line,
and on the border between the two cells with velocities v

and v′, the direction of the path changes in accordance with
Snell’s law

sin(φ)

v
=

sin(φ′)

v′
,

where φ and φ′ are the angles between the paths and the
line orthogonal to the border between the cells. (If this
formula requires sin(φ′) > 1, this means that this wave
cannot penetrate into the neighboring cell at all; instead, it
bounces back into the original cell with the same angle φ.)

B
B
B
B
BB
A
A
A
A
A�
�
�
�
�
�
�
�
�
���@ �@

6

?

6

?

d

d
α1

α2
s2

s1

In particular, we can thus determine the paths from the
source to each sensor. The travel-time ti along i-th path can
then be determined as the sum of travel-times in different
cells j through which this path passes: ti =

∑
j

ℓij
vj

, where

ℓij denotes the length of the part of i-th path within cell j.
This formula becomes linear if we replace the original

unknowns – velocities vj – by their inverses sj
def
=

1

vj
,

called slownesses. In terms of slownesses, the formula for
the travel-time takes the simpler form ti =

∑
j

ℓij · sj .

The system is not exactly linear, because the values ℓij
depend on the path and thus, depend on the velocities. To
solve this problem, several methods have been proposed.
One of the most popular methods, proposed by J. Hole in
[6], consists of the following, We start with some initial rea-
sonable values of velocities. Then, we repeat the following
two steps until the process converges:

• based on the current values of the slownesses, we find
the shortest pathes between sources and sensors and
thus, the values ℓij ;

• based on the current values ℓij , we solve the above
system of linear equations, and get the updated values
of slownesses, etc.

Need to find spatial resolution. Based on the seismic data,
we produce a 3-D map describing the velocity vj at different
locations on different depths. Due to incomplete coverage
and measurement uncertainty, this map provides only an
approximate description of the actual velocity distribution.
For example, based on the seismic data, it is impossible
to distinguish between the densities at two nearby points. In
other words, what we actually reconstruct is not a function of



3 variables, but rather values determined on the appropriate
spatial granules. Because of this granularity, it is necessary
to find the spatial resolution at different locations and at
different depths, i.e., in other words, it is necessary to
determine the corresponding granules.

II. HOW GRANULARITY (SPATIAL RESOLUTION) IS
DETERMINED NOW: SUCCESSES AND LIMITATIONS

Uncertainty vs. spatial resolution (granularity). Actually,
when we reconstruct the velocities in different cells, we have
two types of uncertainty (see, e.g., [9], [13]:

• first, the “traditional” uncertainty – the reconstructed
value of velocity is, due to measurement inaccuracy
and incomplete coverage, only approximately equal to
the actual (unknown) velocity value;

• second, the spatial resolution – each measured value
represents not the value at a single point, but rather the
“average” value over the whole region (granule) that
affected the measurement; see, e.g., [12].

Methods of determining traditional uncertainty have been
traditionally more developed, and the main ideas of methods
for determined spatial resolution comes from these more
traditional methods. In view of this, before we describe the
existing methods for determining spatial resolution, let us
describe the corresponding methods for determining more
traditional uncertainty.

How traditional uncertainty is determined: main idea.
There exist many techniques for estimating the “traditional”
uncertainty; see, e.g., [1], [2], [5], [10] and references
therein.

Most of these methods are based on the following idea.
Usually, we know the accuracy of different measurements.
We therefore

• first, we add, to the measured values of traveltimes,
simulated noise of the size of the corresponding mea-
surement errors; these values, due to our selection of
noise, could possibly emerge if we simply repeat the
same measurements;

• then, we reconstruct the new values of the velocities
based on these modified traveltimes; these values come
from realistic traveltimes and thus, can occur if we
simply repeat the same measurements;

• finally, we compare the resulting velocities with the
originally reconstructed ones: the difference between
these two reconstructions is a good indication how
accurate are these values.

Comment. Since the geophysical models involve a large
amount of expert knowledge, it is also necessary to take
into account the uncertainty of the expert statements; this is
done, e.g., in [2], [3], [4].

How this idea is applied to determine spatial resolution.
To determine spatial resolution, we can also simulate noise,

the only difference is that this noise should reflect spatial
resolution (granularity) and not the inaccuracy of the mea-
surement values. Thus, we arrive at the following method:

• first, we add a perturbation of spatial size δ0 (e.g.,
sinusoidal) to the reconstructed field ṽ(x);

• then, we simulate the new traveltimes based on the
perturbed values of the velocities;

• finally, we apply the same seismic data processing
algorithm to the simulated traveltimes, and reconstruct
the new field ṽnew(x).

If the perturbations are not visible in ṽnew(x) − ṽ(x), this
means that details of spatial size δ0 cannot be reconstructed.
If perturbations are

• visible in one area of the map and
• not very clear in the other part of the map,

this means that
• in the first area, we can detect details with spatial

resolution δ0 while
• in the second area, the spatial resolution is much lower,

and the details of this size are not visible.
In the geosciences, this method is known as a checkerboard
method since adding 2-D sinusoidal periodic perturbations
makes the map look like a checkerboard.

The use of this method to determine spatial resolution
of seismic data processing is described, in detail, in [1],
[9], [13], [14]. In particular, in [9], [13], [14], it is proven
that the empirically optimal sinusoidal perturbations are
actually optimal (under a reasonable formalization of the
corresponding optimization problem).

Checkerboard method: main limitation. The main limi-
tation of the checkerboard method is that its running time
is several times higher than the time of the original seismic
data processing. Indeed,

• in addition to applying the seismic data processing
algorithm to the original data,

• we also need to apply the same algorithm to the sim-
ulated data – and apply it several times, to make sure
that we have reliable results about spatial resolution.

Seismic data processing is usually very time-consuming,
often requiring hours and even days of computations on high
performance computers. Thus, if we want to compute not
only the 3-D maps themselves, but also the spatial resolution
of the corresponding maps, the computation time drastically
increases – and the whole process slows down.

It is therefore desirable to develop faster techniques for
estimating spatial resolution of the corresponding maps,
techniques that will not require new processing of simulated
seismic data – and will only use the results of the processing
the original seismic data.

A similar problem arises for estimating traditional un-
certainty. As we have mentioned, the existing methods
for determining traditional uncertainty are also based on



simulating errors and applying the (time-consuming) seismic
data processing algorithms to the simulated traveltimes. As
a result, the existing methods for determining the traditional
uncertainty are also too time-consuming, and there is a
similar need to developing faster uncertainty estimation
techniques.

Since, as we mentioned, spatial resolution techniques
usually emulate techniques for determining traditional un-
certainty, let us therefore start with describing the existing
techniques for faster

First heuristic idea for estimating uncertainty: ray cov-
erage. In general, each measurement adds information about
the affected quantities. The more measurements we perform,
the more information we have and thus, the more accurately
we can determine the desired quantity.

In particular, for each cell j, the value vj affects those
traveltime measurements ti for which the corresponding
path goes through this cell, i.e., for which ℓij > 0. Thus,
the more rays pass through the cell, the more accurate the
corresponding measurement. The number of such rays –
called a ray coverage – is indeed reasonably well correlated
with uncertainty and can, thus, serve as an estimate for this
uncertainty:

• the smaller the ray coverage,
• the larger the uncertainty.

Limitations of ray coverage and the DWS idea. Simply
counting the ray does not take into account that some
ray barely tough the cell, withe the values ℓij very small.
Clearly, such rays do not add much to the accuracy of
determining the velocity vj in the corresponding cell. It is
therefore necessary to take into account not only how many
rays go through the cell, but also how long are the paths
of each ray in each cell. This idea was originally proposed
by C. H. Thurber (personal communication, 1986) under the
name of the Derivative Weight Sum; it was first published
in [17].

As the name implies, instead of simply counting the rays
that pass through a given cell j, we instead compute the
sum of the lengths D(j) =

∑
i

ℓij . This method have been

successfully used in several geophysical problems; see, e.g.,
[15], [18], [19], [20]. It is indeed better correlated with the
actual (simulation-computed) accuracy that the ray coverage.

Comment. The above form of the DWS is based on Hole’s
code approach, in which the slowness is assumed to be con-
stant within each cell. An alternative approach is assuming
that the slowness function is not piece-wise constant but
rather piece-wise linear. In other words, we determine the
values sj at different points j = (j1, j2, j3) on a rectangular
grid (here ji are assumed to be integers), and we use linear
extrapolation to describe the values s(x1, x2, x3) at arbitrary
points xi = ji + αi with 0 ≤ αi ≤ 1.

In the 1-D case, linear interpolation takes the simple form
s(x) = α · sj+1 + (1 − α) · sj . To get the formula for the
2-D case, we first use linear interpolation to get the values

s(x1, j2) = α1 · sj1+1,j2 + (1− α1) · sj1,j2
and

s(x1, j2 + 1) = α1 · sj1+1,j2+1 + (1− α1) · sj1,j2+1

and then use 1-D linear interpolation to estimate s(x1, x2)
as

s(x1, x2) = α2 · s(x1, j2 + 1) + (1− α2) · s(x1, j2),

i.e., substituting the above expressions for s(x1, j2 +1) and
s(x1, j2), the expression

s(x1, x2) = α1 · α2 · sj1+1,j2+1 + (1− α1) · α2 · sj1,j2+1+

α1 · (1− α2) · sj1+1,j2 + (1− α1) · (1− α2) · sj1,j2 .

Similarly, we can go from the 2-D to the 3-D case, resulting
in

s(x1, x2, x3) =

α3 · s(x1, x2, j3 + 1) + (1− α3) · s(x1, x2, j3),

and

s(x1, x2, x3) = α1 · α2 · α3 · sj1+1,j2+1,j3+1+

(1− α1) · α2 · α3 · sj1,j2+1,j3+1+

α1 · (1− α2) · α3 · sj1+1,j2,j3+1+

(1− α1) · (1− α2) · α3 · sj1,j2,j3+1+

α1 · α2 · (1− α3) · sj1+1,j2+1,j3+

(1− α1) · α2 · (1− α3) · sj1,j2+1,j3+

α1 · (1− α2) · (1− α3) · sj1+1,j2,j3+

(1− α1) · (1− α2) · (1− α3) · sj1,j2,j3 .

Under this linear interpolation, in the formula for ti, the
coefficient at each term sj is no longer ℓij , but rather the
integral of the corresponding interpolation coefficient ωij(x)
over the ray path γi:

∫
ωij(x) dγi. Thus, instead of the

sum of the lengths, it is reasonable to take the sum of
these integrals D(j) =

∑
i

∫
ωij(x) dγi. This is actually

the original form of the DWS.

Angular diversity: a similar approach to spatial reso-
lution. If we have many rays passing through the cell j,
then we can find the slowness sj in this cell with a high
accuracy. However, if all these rays are parallel and close
to each other, then all of them provide the information not
about this particular cell, but rather about a block of cells
following the common path. Thus, in effect, instead of the
value sj , we get the average value of slowness over several
cells – i.e., we get a map with a low spatial resolution. To get



a good spatial resolution, we must have “angular diversity”,
rays at different angles passing through the cell j.

The measure of such diversity called ray density tensor
was proposed in [8]; see also [7], [16], [21]. In this measure,
for each cell j, we form a 3× 3 tensor (= matrix)

Rab(j) =
∑
i

ℓij · eij,a · eij,b,

where eij = (eij,1, eij,2, eij,3) is unit vector in the direction
in which the i-th ray crosses the j-th cell.

By plotting, for each unit vector e = (e1, e2, e3), the
value

∑
a,b

Rab(j) · ea · eb in the corresponding direction, we

get an ellipsoid that describes spatial resolution in different
directions. If this ellipsoid is close to a sphere, this means
that we have equally good spatial resolution in different
directions. If the ellipsoid is strongly tilted in one direction,
this means that most of the ray are oriented in this direction,
so spatial resolution in this direction is not good.

Limitations of the known approaches. From the applica-
tion viewpoint, the main limitation is that these methods are,
in effect, qualitative, in the following sense:

• the ray coverage, DWS, and the ray density tensor
provide us with reasonable indications of where the
uncertainty and/or spatial resolution are better and
where they are worse;

• however, they do not give a geophysicist any specific
guidance on how to use these techniques: what exactly
is the accuracy? what exactly is the spatial resolution
in different directions?

An additional limitation is that the above methods for
gauging uncertainty and spatial resolution are heuristic tech-
niques, they are not justified – statistically or otherwise.

It is therefore desirable to provide justified quantitative
estimates for uncertainty and for spatial resolution.

III. GAUGING UNCERTAINTY AND GRANULARITY
(SPATIAL RESOLUTION) OF THE RESULTS OF SEISMIC
DATA PROCESSING: NEW JUSTIFICATIONS AND NEW

TECHNIQUES

Gauging uncertainty: Gaussian approach. For each cell
j, each ray i that passes though it leads to an equation
ℓij ·sj+. . . = ti. If σ is the accuracy with which we measure
each traveltime, then, in the assumption that the measure-
ment errors are independent and normally distributed, the
probability of a given value sj is proportional to∏

i

exp

(
− (ℓij · sj + . . .− ti)

2

2σ2

)
.

By using the fact that exp(a) · exp(b) = exp(a + b), we

can represent this expression as ∼ exp

(
− (sj − . . .)2

2σ(j)2

)
,

where (σ(j))2
def
=

σ2

D2(j)
, and D2(j)

def
=

∑
i

ℓ2ij . Thus,

the resulting estimate for sj is normally distributed, with
standard deviation σ(j) =

σ√
D2(j)

.

This formula is similar for the formula for the DWS, with
the only difference that we add up squares of the lengths
instead of the lengths themselves.

Comment: fuzzy approach. We get the same expression if we
use a fuzzy approach, with Gaussian membership functions
and algebraic product d& d′ = d · d′ as a t-norm.

In practice, we should consider type 2 approaches, i.e.,
take into account that, e.g., the value σ is itself only known
with uncertainty – e.g., we know only the interval [σ, σ] of
possible values of σ. In this case, we get σ(j) =

σ√
D2(j)

and σ(j) =
σ√
D2(j)

Gauging uncertainty: robust statistical approach. In the
case of the normal distribution, finding the most probable
values of the parameters is equivalent to the Least Squares

method
∑
i

e2i
σ2
i

→ min, where ei is the difference between

the model and measured values corresponding to the i-th
measurement. Often, measurement and estimation errors are
not normally distributed – and, moreover, we often do not
know the shape of the corresponding distribution. In this
case, instead of the Least Squares method corresponding to
the normal distributions, it makes sense to consider so-called

lp-methods
∑
i

|ei|p

σp
i

→ min where a parameter p needs to

be empirically determined; see, e.g., [5]. For seismic data
processing, the empirical value p is close to 1; see [5].

The use of an lp-method is equivalent to using the

probability distribution ∼ exp

(
−|ei|p

σp

)
. For the seismic

case p = 1 and ei = ℓij · sj + . . . − ti, we thus get a term
proportional to∏

i

exp

(
−|ℓij · sj + . . .− ti|

σ

)
.

By combining the coefficients at sj , we thus conclude that
the standard deviation is approximately equal to σ(j) =
σ

D(j)
, where D(j) =

∑
i

ℓij is exactly the DWS expression.

Thus, in the robust case, we get a statistical justification of
the DWS formulas.

Comment. Similar formulas appear if, instead of Gaussian,
we use exponential membership functions ∼ exp(−c · |e|).
The uncertainty in σ can be handled similarly to the Gaus-
sian case.

Gauging spatial resolution. What is the accuracy with

which we can determine, e.g., the partial derivative
∂s

∂x1
,

i.e., in discrete terms, the difference s′ − s, where s′
def
=

sj1+1,j2,j3 and s
def
= sj1,j2,j3? This question is best answered



in the above-described linear approximation. If the ray i is
parallel to x1 (i.e., αi1 = 0), then, in the formula for ti, the
values s and s′ are included with the same coefficient, so
we can only determine the average value (s+ s′)/2.

In general, the difference between the corresponding
interpolation coefficients at s and s′ is proportional to
ℓij · sin(αij,1):
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So, in addition to the term proportional to (s + s′)/2, we
also get a term proportional to s′ − s, with a coefficient
ℓij · sin(αij,1). Similarly to the Gaussian approach to un-
certainty, we can now argue that the accuracy with which
we can determine the desired gradient is proportional to

σ2
1 =

σ2

D11(j)
, where D11 =

∑
i

ℓ2ij · sin2(αij,1). In vector

terms, cos(αij,1) = eij,1, so sin2(αij,1) = 1− e2ij,1.
Thus, in general, the accuracy in the direction e =

(e1, e2, e3) is ∼ σ√
De(j)

, where De(j) =
∑

Dab(j)·ea ·eb,

and

Dab(j) = D2(j) · δab −
∑
i

ℓ2ij · eij,a · eij,b.

This formula is similar to the ray density tensor formula,
with ℓ2ij instead of ℓij . (In the robust case, we get exactly
the ray density tensor.)
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