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Abstract

For spatially distributed quantities v(x), there are two main reasons
why the measured value is different from the actual value. First, the
sensors are imprecise, so the measured value is slightly different from
the actual one. Second, sensors have a finite spatial resolution: they do
not simply measure the value at a single point, they are “blurred”, i.e.,
affected by the values of the nearby points as well. It is known that
uncertainty can be often described by the Gaussian distribution. This
possibility comes from the Central Limit Theorem, according to which the
sum of many independent small measurement errors has an approximately
Gaussian distribution. In this paper, we show how a similar technique can
be applied to spatial resolution: a combination of several independent
small blurrings can be described by a Gaussian blurring function.

Uncertainty and spatial resolution. For spatially distributed quantities
v(x), there are two main reasons why the measured value is different from the
actual value (see, e.g., [3]):

• First, the sensors are imprecise. As a result, even for the case when there
is no spatial variation, i.e., when the value of the measured quantity is
the same at all spatial locations x (v(x) = v0), the measured value ṽ is,
in general, slightly different from the actual one: the measurement error

∆v
def
= ṽ − v is different from 0.

• Second, sensors have a finite spatial resolution in the following sense: the
signal generated by a sensor located at a point x does not depend only
on the value of v(x) at the sensor’s location x, it is also depending on the
values v(y) at nearby spatial locations y.

Thus, to understand the measurement accuracy, we need to understand both
uncertainty and spatial resolution of the corresponding measurement.
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How uncertainty is usually described. To describe uncertainty, we need
to know the probabilities of different values of the measurement error ∆v. In
other words, for each interval [v, v], we need to know the probability p([v, v])
that ∆v belongs to this interval. For narrow intervals [v, v], with a small width

δv
def
= v − v, this probability p([v, v]) is proportional to the width: p([v, v]) ≈

c(∆v) · δ. The corresponding coefficient c(x) ≈ p([v, v])

v − v
is called the probability

density and denoted by ρ(∆v).
Thus, to describe measurement uncertainty, we need to describe the corre-

sponding probability density ρ(∆v).

Mathematical comment. Formally, the probability density is defined as a limit

ρ(∆v)
def
= lim

v−v

p([v, v])

v − v
,

where the limit is taken over the intervals [v, v] that contain the value ∆v.
Since probabilities are non-negative, we have ρ(x) ≥ 0. The sum of all

probabilities is equal to 1, so we have
∫
ρ(x) dx = 1.

Physical comment. In general, a measuring instrument may have different ac-
curacy on different parts of its scale. For example, usually, when we measure
values which are close to the limits of this measuring instrument, we get much
lower accuracy. As a result, we can have different probabilities at different parts
(sub-scales) of the original scale. To simplify our description, we limit ourselves
to one of these sub-scales – and thus, we can safely assume that the measurement
accuracy is the same for all the values v.

Central Limit Theorem and Gaussian distribution. It is known that
uncertainty can be often described by the Gaussian (= normal) distribution,
with the probability density

ρ(x) =
1√
2π

· exp
(
− (x− a)2

2σ2

)
. (1)

This possibility comes from the Central Limit Theorem, according to which the

sum x =
N∑
i=1

xi of a large number N of independent small random variables xi

has an approximately Gaussian distribution. (To be more precise, the theorem
says that in the limit N → ∞, the distribution of the sum tends to the Gaussian
distribution.)

In practice, often, the measurement error is caused by a joint effect of a large
number of small independent factors, so it makes sense to conclude that the dis-
tribution is approximately Gaussian. This theoretical conclusion has been ex-
perimentally confirmed on the example of many actual measuring instruments;
see, e.g., [1, 2].
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Comment. The above result is about the 1-D distribution: of a random num-
ber. For the multi-D case – of a random vector x = (x1, . . . , xn) – a similar
result also leads to multi-D Gaussian distribution, with an expression

ρ(x) = const · exp

−
n∑

i,j=1

cij · (xi − ai) · (xj − aj)

 . (2)

How spatial resolution is usually described. The value ṽ(x) measured
by a sensor place at a point x is affected not only by the value v(x) at this
location, but also by the values v(y) at nearby locations y.

In general, the dependence of the measured quantity ṽ(x) on the values v(x)
and v(y) can be non-linear: ṽ(x) = F (v(x), v(y), . . .).

In some cases, the signal that we are measuring is quite strong. For exam-
ple, in geophysics, the seismic waves coming from strong nearby earthquakes
are strong. In such cases, the signal-to-noise ratio is high, and the effects of
uncertainty and spatial resolution are small.

The problem of detecting and processing uncertainty and spatial resolution
becomes important only in the cases when the signal is relatively small, so
small that it needs special data processing to detect. Such cases are abundant
in data processing. For example, in geophysics, in the gravity measurements,
we try to detect the values of density at different locations and at different
depths based on slight deviations from the standard free fall acceleration g =
9.81 m/sec2, deviations which require very accurate measuring instruments to
detect. Similarly, seismic measurements are based on measuring the seismic
waves against the noise background, measurements which also require highly
sensitive equipment. For example, to measure seismic waves from relatively
weak distant earthquakes, it is necessary to place the sensors below ground, in
special noise-protected chambers.

Since the effect of all values v(x) and v(y) is usually small, the terms which
are quadratic and or higher order in terms of these small signals are extremely
small and can be therefore safely ignored. It is thus reasonable to expand
the dependence ṽ(x) = F (v(x), v(y), . . .) in Taylor series and keep only linear
terms in this expansion. As a result, we conclude that the dependence of the
measured value ṽ(x) on the values v(x) and v(y) is linear, i.e., in the discrete
approximation, in which we only consider points y on a grid, ṽ(x) ≈

∑
y
w(x, y) ·

v(y), for some weights w(x, y). The denser the grid, the more values v(y) we
take into account. In the limit, the sum turns into an integral

ṽ(x) =

∫
w(x, y) · v(y) dy.

The weight w(x, y) depends on how close the locations x and y are, i.e., in
general, it depends on the difference x− y between the two locations: w(x, y) =
w(x− y). To be more precise, similarly to the case of uncertainty, we may have
different weights w(x − y) in different subregions. To simplify our description,
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we limit ourselves to one of these subregions – and thus, we can safely assume
that the weight function w(x− y) is the same for all the measured values ṽ(x).

Under this assumption, we conclude that the measured value ṽ(x) is related
to the actual values v(y) by the formula

ṽ(x) =

∫
w(x− y) · v(y) dy, (3)

for some weight function w(x).

Terminological comment. In mathematical terms, the function ṽ(x) as de-
scribed by the formula (3) is called the convolution of the functions w(x) and
v(x).

Comment 1: related to measurement theory. Usually, sensors are calibrated –
e.g., by testing them on the case when the signal is constant v(x) = v0 for some
constant v0. In this case, ideally, the measurement results should coincide with
this constant value v0.

In reality, according to (3), the actual measured value is equal to ṽ0 =
v0 ·

∫
w(x−y) dy. By introducing an auxiliary variable z = x−y, we can conclude

that ṽ0 = v0 ·
∫
w(z) dz. If this value is different from v0, then the sensor is

re-scaled (re-calibrated) so that the original signal ṽ0 would now correspond
to the signal v0: e.g., by introducing an additional step of multiplying the
original measurement result by the ratio v0/ṽ0. For the re-calibrated measuring
instrument, we have ṽ0 = v0 and hence, ṽ0 = v0 ·

∫
w(z) dz = v0; thus,∫

w(z) dz. (4)

Because of this, in the following text, we can, without losing generality, assume
that the weight function satisfies the condition (4).

Comment 2: related to physics. From the purely mathematical viewpoint, it
is possible that some of the weights w(y) can be negative. However, in most
physical measurements, the nearby values v(y) affect the sensor in the same way
(although with somewhat smaller strength) as the value v(x) at the sensor’s
location x. For example, the measured value of the gravity at a given location
x is affected not only by the density at this location x, but also by the density
y at nearby points y. Thus, from the physical viewpoint, we can assume that
all the weights are non-negative: w(z) ≥ 0.

This assumption makes perfect sense. The whole point of spatial resolution
is that we are unable to distinguish between the contributions of the value v(x)
at location x and the contribution of the values v(y) at nearby locations y. If
we had positive weights for x and negative weights for nearby locations y, then
we would, in effect, measure the (weighted) difference between the signals at x
and signals at nearby locations – which would enable us to effectively separate
the values at these locations.
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Thus, in the following text, we assume that the weight function w(x) is
everywhere non-negative:

w(z) ≥ 0. (5)

Problem: it is desirable to limit the class of weight functions corre-
sponding to spatial resolution. In principle, we can have different weight
functions w(z) satisfying conditions (4) and (5) – just like for uncertainty, we
could have different possible probability density functions ρ(x).

For the case of uncertainty, if we take into account that the actual measure-
ment error comes from many different independent sources, then (as we have
mentioned earlier) we can conclude that the distribution is Gaussian. Thus, we
can limit ourselves to a 2-parametric family (1) of probability density functions.

It is desirable to come up with a similar few-parametric class of weight
functions w(z) for describing spatial resolution.

Main idea. Our main idea is that, similar to uncertainty, the “blurring” (3) of
the original signal v(x) is caused by a large number N of different independent
factors, each of them relatively small.

Main idea: towards a precise formulation. In precise terms, we assume
that the original signals goes through a sequence of a large number N of “small”
blurrings. Let vi(x) denote the signal at the i-th stage of this sequential proce-
dure. We start with the original signal v0(x) = v(x), and on each stage, apply
the corresponding small blurring to get the next-stage signal:

vi(x) =

∫
wi(x− y) · vi−1(y) dy, (6)

where the weight function wi(z) is concentrated in a small vicinity of 0. The
observed signal ṽ(x) corresponds to the result of going through all N stages:
ṽ(x) = vN (x).

It is desirable to find out which transformations (3) can be thus represented
for large N – and in the limit when N → ∞.

Analysis of the problem. It is known that when we apply two blurrings
corresponding to weight functions w(x) and w′(x) one after another, the result
is equivalent to a single blurring with a weight functions w′′(x) which is equal
to the convolution of the functions w(x) and w′(x):

w̃′′(x) =

∫
w′(x− t) · w(t) dt. (7)

Indeed, suppose that we start with a function v(x), and then apply the two
blurrings one after another:

v1(x) =

∫
w(x− y) · v(y) dy, (8)
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and then

ṽ(x) =

∫
w′(x− y) · v1(y) dy. (9)

Substituting the formula (8) into the expression (9), we conclude that

ṽ(x) =

∫ ∫
w′(x− y) · w(y − z) · v(z) dydz. (10)

On the other hand, the equation

ṽ(x) =

∫
w′′(x− z) · v(z) dz, (11)

where w′′(x) is described by the formula (7), has the form

ṽ(x) =

∫ ∫
w′(x− z − t) · w(t) · v(z) dtdz, (12)

By introducing new variable y = z+ t, for which t = y−z and x−z− t = x−y,
we get the desired formula (10) he statement is proven.

Thus, the original question can be reformulated as follows: how can we
describe the results of convolution of many different weight functions wi(x)
corresponding to small changes (i.e., for which wi(x) > 0 only in a small vicinity
of 0). To answer this question, we would like to use the case of uncertainty, where
we had a similar result about the sum of several independent random variables.

To use this result, let us recall how the sum of two independent random
variables can be described. As we have mentioned, each random variable xi can
be described by its probability density function ρi(xi). For each value x1, the
probability density that the first variable takes the value x1 is equal to ρ1(x1),
and for each value x2, the probability density that the second variable takes
the value x2 is equal to ρ2(x2). Since the random variables are independent,
the probability that the first variable takes the value x1 and the second variable
takes the value x2 is equal to the product: ρ1(x1) · ρ2(x2). In this case, the sum
of the values of the two random variables is equal to x = x1+x2. So, if we want
to find the probability density ρ(x) that the sum of the two random variables is
equal to x, we must add up the probabilities ρ1(x1) · ρ2(x2) (with x2 = x− x1)
corresponding to all possible values of x1. Thus, we have the formula

ρ(x) =

∫
ρ1(x1) · ρ2(x− x1) dx1. (13)

In other words, the probability density function ρ(x) corresponding to the sum
of two random variables is equal to the convolution of the probability density
functions ρi(xi) corresponding to individual variables.

Due to the conditions (4) and (5), the weight functions wi(x) can be (for-
mally) interpreted as probability density functions of some random variables xi,
and their convolution w(x) can be therefore interpreted as a probability density

function for the sum
N∑
i=1

xi of these random variables.
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Since we assumed that wi(x) > 0 only for values x close to 0, the correspond-
ing random variables xi are small. Thus, due to the central limit theorem, the
distribution of their sum is close to Gaussian. Therefore, the probability den-
sity function w(x) for this sum is close to the probability density function (2)
of the multi-D Gaussian distribution. In the limit N → ∞, we have the exact
Gaussian function. Thus, we arrive at the following conclusion.

Conclusion. If we take into account that the actual blurring (3) is usually a
combination of several independent small blurrings, then we conclude that the
blurring can be described by a Gaussian weight function

w(x) = const · exp

−
n∑

i,j=1

cij · (xi − ai) · (xj − aj)

 . (14)

Thus, similarly to the case of uncertainty, we have a reasonable finite-parametric
family to describe spatial resolution.
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